㈠ HPLC原理及基本操作是什麼
原理
高效液相色譜法儀根據各種各樣的相互作用力來分離混合物。這種相互作用力通常是分析物及分析管柱之間的一種非共價性質。
使用高效液相色譜時,液體待檢測物在不同的時間被注入色譜柱,通過壓力在固定相中移動,由於被測物中不同物質與固定相的相互作用不同,不同的物質順序離開色譜柱,通過檢測器得到不同的峰信號,每個峰頂都代表一個另外化合物的種類,最後通過分析比對這些信號來判斷待測物所含有的物質。
以液體為流動相而設計的色譜分析儀器稱為液相色譜儀。採用高壓輸液泵,高效固定相和高壓靈敏檢測器等裝置的液相色譜儀成為高效液相色譜儀。高效液相色譜儀種類繁多,但不論何種類型的高效液相色譜儀,基本上都分為4個部分:高壓輸液裝置,進樣系統,分離系統和檢測系統。
操作
將要分離和分析的樣品混合物以不連續的小體積(通常為微升)引入滲透通過色譜柱的流動相流中。樣品的組分以不同的速度通過色譜柱,這是與吸附劑(也稱為固定相)的特定物理相互作用的函數。每個組分的速度取決於其化學性質,固定相(柱)的性質以及流動相的組成。
特定分析物洗脫(從色譜柱中出現)的時間稱為其保留時間。在特定條件下測得的保留時間是給定分析物的識別特徵。
可以使用許多不同類型的色譜柱,其中填充了粒徑,孔隙率和表面化學性質各異的吸附劑。使用較小的顆粒尺寸的包裝材料需要使用較高的操作壓力(「背壓」)的和通常改善的色譜解析度(連續的分析物從柱中出現的峰之間的分離度)。吸收劑顆粒本質上可以是疏水的或極性的。
常用的流動相包括水與各種有機溶劑的任何混溶性組合(最常見的是乙腈和甲醇)。一些HPLC技術使用無水流動相(請參見下面的正相色譜法)。
流動相的水性成分可能包含酸(例如甲酸,磷酸或三氟乙酸)或鹽以幫助分離樣品成分。在色譜分析過程中,流動相的組成可以保持恆定(「等度洗脫模式」)或變化(「梯度洗脫模式」)。等度洗脫通常在分離與固定相親和力非常不同的樣品成分時非常有效。
在梯度洗脫中,流動相的組成通常從低到高洗脫強度變化。流動相的洗脫強度由分析物的保留時間反映,高洗脫強度可產生快速洗脫(=較短的保留時間)。
反相色譜中的典型梯度曲線可能始於5%的乙腈(在水或水性緩沖液中),然後在5–25分鍾內線性增長至95%的乙腈。恆定流動相組成的周期可以是任何梯度曲線的一部分。例如,流動相的組成可以在5%的乙腈中保持1-3分鍾,然後線性變化直至95%的乙腈。
流動相的選定組成取決於各種樣品組分(「分析物」)和固定相之間的相互作用強度(例如,反相HPLC中的疏水相互作用)。根據它們對固定相和流動相的親和力,在色譜柱中進行分離過程中,分析物會在兩者之間分配。
此分配過程類似於液-液萃取過程中發生的分配過程,但該過程是連續的,而不是逐步進行的。在此示例中,使用水/乙腈梯度洗脫,一旦流動相在乙腈中的濃度更高(即,在洗脫強度更高的流動相中),則更多的疏水性組分將較晚洗脫(從色譜柱中洗脫)。
流動相組分,添加劑(例如鹽或酸)和梯度條件的選擇取決於色譜柱和樣品組分的性質。通常對樣品進行一系列的試驗,以便找到可以充分分離的HPLC方法。
用途
高效液相色譜作為一種重要的分析方法,廣泛的應用於化學和生化分析中,常用於醫葯品、化學、環保、生命科學、與食品工業的研究上。
高效液相色譜從原理上與經典的液相色譜沒有本質的差別,它的特點是採用了高壓輸液泵、高靈敏度檢測器和高效微粒固定相,可將液體混合物中的成分分離、成分定性及定量分析。適於分析高沸點不易揮發、分子量大、不同極性的有機化合物。例如:可檢測分析食品中的三聚氰胺的含量。
㈡ 如何建立HPLC法測定有關物質的方法.ppt
摘要 本文就如何建立TLC法測定有關物質的方法進行論述,系統地闡述了薄層色譜法各條件確定的原理,並列舉了質量標准制訂中存在的某些問題。
關鍵詞 薄層色譜法(TLC法) 有關物質 方法建立
有關物質是研究品中除主成分以外的雜質,它可能是原料合成過程中帶入的原料、中間體、試劑、降解物、副產物、聚合體、異構體以及不同晶型、旋光異構的物質,也可能是制劑過程中產生的降解物,或是在貯藏、運輸、使用過程中產生的降解物等[1]。這些雜質的存在直接反映品的有效性和安全性,故要對其進行研究,特別是在品申報的質量研究資料中需建立其檢測方法,並根據生產、穩定性考核等實際情況考慮是否在質量標准中制訂該檢查項,規定其限度。目前,有關物質的常用測定方法有高效液相色譜法(HPLC法)和薄層色譜法(TLC法)。
TLC的特點是快速、簡便,尤其是對無紫外吸收的雜質測定,更具有其應用價值。如能將TLC法與HPLC法有機地結合、或彼此間進行比對研究,便可得到更多、更為准確的有關雜質信息,做到兩方法間的相輔相成,相益得彰!本文將著重討論如何建立薄層色譜法測定有關物質的方法。
1.測定方法類型
常用的方法有雜質對照品法(適用於已知雜質)和自身(稀釋)對照法(適用於一般雜質檢查,雜質成分少且尚不能取得雜質對照品)。目前國內由於難以獲得雜質對照品、故一般均採用自身對照法。
2.展開劑的確定(即專屬性試驗)
專屬性的研究是提供被分析物在雜質和輔料存在時能被區分的證明,該點是色譜條件建立的關鍵。通常採用在被分析物的對照品或精製品中加入一定量的雜質或輔料,證明色譜條件可將各雜質與被分析物分離[1]。這里的關鍵是:將多少量的雜質加入到多少量的主成分中。正確的作法是將1%(w/w)濃度量的各雜質加入到100%濃度的主成分中,配製這樣的溶液來
驗證系統適用性。之所以如此配製,目的是模仿樣品中有可能存在的狀態,即有少量(1%左右)雜質存在時是否能與主成分達到完全分離,只有這樣才能比較客觀、科學地反映樣品中實際存在情況的(見圖1);而不應把該溶液配製成:主成分與中間體相同濃度的。因為一者實際檢測時樣品中不可能存在此種情況;二者該濃度不易確定,目前國內申報資料中一般的作法均是配製成較低的一致濃度,這樣各斑點當然易於完全分離了(見圖2),但在實際測定時,由於主斑點急劇增大,很易將相鄰雜質包含於主成分斑點中。同樣,質量標准中的系統適用性試驗用溶液的配製方法亦如此。
(1,3,4為雜質,2為主成分)
圖1 圖2 (雜質濃度均為供試品溶液濃度的1%)
3.檢出條件的確定
其基本出發點是:主成分與相關雜質均應在該條件下顯色,且在相同濃度下,斑點大小應基本一致。薄層板的類型根據被測物質的性質來選用,測定有紫外吸收的物質通常選用GF254或GF365板;測定無紫外吸收、需噴顯色劑的,常選用硅膠G板或H板,選用該類薄層板時,顯色方法根據被測物質的結構式選取,但當有多個顯色方法時,應分別進行試驗,選取靈敏度最高的顯色方法。如醋酸氫化可的松有關物質的測定,中國典2000年版採用鹼性四氮唑藍試液顯色,美國典26版採用硫酸-乙醇(10:90)溶液顯色,兩者均為激素類物的顯色方法。醋酸氫化可的松屬於激素類中的腎上腺皮質激素,四氮唑法是腎上腺皮質激素的重要顯色方法;而硫酸-乙醇顯色法則主要是針對激素類中的的顯色反應,對於屬於腎上腺皮質激素類的醋酸氫化可的松則反應活性不強,結果兩法的靈敏度相差10倍以上。因此,檢出條件的確定,一定要在查閱文獻的基礎上,並根據試驗結果進行綜合考慮。
4.供試品溶液濃度的確定(靈敏度試驗——最低檢出限的測定)
供試品溶液濃度的設定在有關物質檢測中是至關重要的,濃度越高、越能反映樣品中雜質存在的情況,但若設定得過高,則會產生主斑點嚴重拖尾、「斷腰」等超載現象的發生,產生錯誤結論;若設定太低,又將達不到檢測雜質的目的,觀測不到雜質量的變化。其設定是根據最低點樣量和最大點樣量來綜合考慮的。
最低檢出限雖然是個絕對值,但真正的意義卻是其相對值,即相對於供試品溶液的濃度多少而言,所以測定結果不僅要羅列出其絕對值又應列出其相對值,這樣最低檢出限才有意義!最大點樣量則是通過不斷加大供試品溶液濃度,直至主斑點嚴重拖尾、「斷腰」等情況出現時來得到的。然後根據最低檢出限,採用「上推法」來確定:如一般設定雜質斑點小於1.0%對照斑點,對照溶液的濃度至少應為最低檢出濃度(即最低檢出限)的20~50倍,則供試品溶液濃度是最低檢出濃度的2000~5000倍;反過來,最低檢出濃度應至少達到供試品溶液濃度的0.02%~0.05%。應注意的是:由於最低檢出量和最大點樣量因試驗環境、薄層板質量以及即時試驗時其他各因素的不同而改變(即耐受性因數),故供試品溶液的濃度在保證小於最大進樣量的情況下,可在此基礎上設定得再高一些,以保證該濃度可適用於各種條件下。舉例說明見表1(規定雜質限度為1.0%)。
表1 最低檢出量、最大點樣量、供試品溶液和對照溶液濃度之間的比例關系
最大點樣量
供試品溶液
對照溶液
最低檢出量 濃 度 8mg/ml 3mg/ml 30μg/ml 1μg/ml 點樣量 10μl 10μl 10μl 10μl 絕對量 30μg 0.3μg 10ng 相對於樣品測定濃度的 100% 1.0% 0.02% 倍 數 關 系 5000倍 30倍 「基準點」
供試品溶液濃度也可設定得再高些,但不可超過最大點樣量。
5.加樣回收試驗(即准確性試驗)
准確性試驗可採用在預經有關物質測定後的樣品中,加入已知量雜質的方法來評價。准確稱取各雜質,將含有1%(w/w)濃度的各雜質加入到樣品溶液中,以驗證所採用的薄層測定條件是否可分離檢測出相應的各雜質以及樣品中已存在的雜質是否累加,斑點是否加深。該原理同前面所述的專屬性研究是一致的。
6.強力破壞試驗
該項研究是為了揭示原料內在穩定性的特性,它是開發研究的一部分。這些試驗是在比加速試驗更劇烈的條件下進行的,其能夠包含品在銷售過程中所遇到的劇烈條件。可取一批樣品通過強光、高溫、高濕、氧化破壞、以及酸鹼破壞來證明該展開條件能分離檢測出雜質。
7.展開距離
測定時一定要採用25cm、長薄層板,展開距離應盡可能長一些,以使雜質與主成分盡量分離。如用短板,易造成臨近主斑點的雜質斑點「躲進」主斑點中。但同時又應注意,距離拉大,斑點分散,會損失最低檢出限,降低靈敏度,故應綜合考慮。
8.其它的因素
展開溫度應盡量控制在20~25℃之間,尤其在冬季,應注意環境的溫度,如太低,將嚴重影響展開效果。另層析缸的蓋兒,應塗抹凡士林油,以保證整個試驗過程中,層析缸的密封,避免展開劑揮發;並應在展開前,預先傾入展開劑,以使層析缸內的空氣飽和,達到最佳的展開效果。薄層板由於有自製、市售,質量不一也應注意。
二.討論
1. 質量標准中的系統適用性試驗,最好能將最難分離的雜質訂入系統適用性試驗用溶液的配製,將此雜質的濃度配製為主成分濃度的1%,或0.5%,或0.2%(依據雜質限度而定)進行試驗,驗證分離度後,再進行樣品的測定,以確保試驗的准確進行。
2. 質量標准中,應配製系列濃度的對照溶液(即梯度對照),以對雜質有「半定量」的概念,這可更好地評價雜質存在的情況;並應規定雜質的個數及最大雜質斑點的限度,使質量標准更完善、科學。經查閱,中國典薄層色譜法測定有關物質的有70個品種,僅有2個品種採用了梯度對照,絕大部分品種僅是制定了對照溶液,均未規定雜質個數,和最大雜質斑點限度,如有若干個雜質斑點也無法判定;而英國典和美國典則幾乎每個品種均採用梯度對照,並規定雜質個數和最大雜質斑點限度,這一點值得學習和推廣。
3. 錯誤的一種誤區,認為HPLC法完全替代了TLC法,這是不正確的,一定要做到相互補充、相互論證、相互參考才是最客觀、最科學的!
本文是在參閱了日本《分析方法驗證》一書和大量日本國內新申報資料中質量研究部
分的內容所寫而成。
㈢ 高分子聚合物可以用高效液相色譜法分析么
高分子聚合物可以用高效液相色譜法分析
高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。對於高沸點、熱穩定性差、相對分子量大(大於400以上)的有機物(這些物質幾乎佔有機物總數的75%~80%)原則上都可應用高效液相色譜法來進行分離、分析。據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
1、環境中有機氯農葯殘留量分析
固定相:薄殼型硅膠(37 ~50mm)
流動相:正己烷
流速:1.5 mL/min
色譜柱:50cm´;2.5mm(內徑)
檢測器:差示折光檢測器
可對水果、蔬菜中的農葯殘留量進行分析。
2、稠環芳烴的分析
稠環芳烴多為致癌物質。
固定相:十八烷基硅烷化鍵合相
流動相:20%甲醇-水 ~100%甲醇;線性梯度淋洗2%/min
流速:1mL/min
柱 溫:50℃
柱壓:70 ´104 Pa
檢測器:紫外檢測器
3.陰離子分析
雙柱;薄殼型陰離子交換樹脂分離柱(3×250mm),
流動相:0.003mol·L-1 NaHCO3 / 0.0024 mol·L-1Na2CO3,流量138 mL/hr。
七種陰離子在20分鍾內基本上得到完全分離,各組分含量在3~50 ppm。
㈣ 高分子聚合物可以用高效液相色譜法分析么
高分子聚合物可以用高效液相色譜法分析么
高效液相色譜分析 3.1 高效液相色譜法的特點 3.2 影響色譜峰擴展及色譜 目錄 ...分離可用液固色譜法; 不同官能團、同系物用液液分配色譜 高分子聚合物
㈤ 高效液相色譜常用什麼色譜法
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離
㈥ HPLC法中定量分析方法大致有哪幾種
氣相色譜定量檢測一般就兩種,一個是外標法,一個是標法,對於沒有標准物質的,就只能靠容面積歸一法粗略定量。
通過對人類和環境有影響的各種物質的含量、排放量的檢測,跟蹤環境質量的變化,確定環境質量水平,為環境管理、污染治理等工作提供基礎和保證。簡單地說,了解環境水平,進行環境監測,是開展一切環境工作的前提。
HPLC根據固定相和流動相的成分分為正相色譜和反向色譜。
正相色譜法
採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
㈦ 色譜柱是如何將高聚物分級的
不同聚合度的進入孔道不同,按分子大小分開。
分子量的多分散性是高聚物的基本特徵之一。聚合物的性能與其分子量和分子量分布密切相關。凝膠滲透色譜液相色譜的一個分支,其還可測定聚合物的支化度,共聚物及共混物的組成。採用制備型的色譜儀,可將聚合物按分子量的大小分級,制備窄分布試樣,供進一步分析和測定其結構。
色譜柱簡介
色譜法是一種分離混合物中各組分的分析技術。色譜柱是色譜中使用的儀器的一部分。使用柱的五種色譜方法是氣相色譜,液相色譜,離子交換色譜,尺寸排阻色譜和手性色譜。色譜的基本原理可以應用於所有五種方法,今天我們分享其中兩種方法——氣相色譜柱和高效液相色譜柱。
氣相色譜柱,氣相色譜柱的長度通常在1至100米之間。氣相色譜法,液相固定相結合或吸附到毛細管柱的表面上,或結合到柱內填充的固體載體上。匹配分析物和固定相的極性兩者具有相似的極性,固定相的厚度在0.1到8 µm之間,而厚度越厚,分析物的揮發性就越大。
高效液相色譜是液相色譜的一種。在液-固色譜柱中,固定相為固體,分析物吸收到固定相上,從而分析混合物的成分。HPLC在分析柱之前有一個保護柱,以保護並延長分析柱的使用壽命。保護柱的作用是去除色譜柱上不可逆的顆粒物、污染物和分子等。
㈧ 各位,高分子的聚合物能用HPLC嗎
可以試試用凝膠色譜柱,選分子量范圍在2000-20000的范圍.
㈨ 請問HPLC是做什麼的原理操作方法
HPLC是高效液相色譜,英文全稱是High Performance Liquid Chromatography。該方法在化學、醫學、工業、農學、商檢和法檢等學科領域中被用來做重要的分離分析技術。
用途:高效液相色譜更適宜於分離、分析高沸點、熱穩定性差、有生理活性及相對分子量比較大的物質,因而廣泛應用於核酸、肽類、內酯、稠環芳烴、高聚物、葯物、人體代謝產物、表面活性劑,抗氧化劑、殺蟲劑、除莠劑的分析等物質的分析。
原理:高效液相色譜以液體為流動相,採用高壓輸液系統,將具有不同極性的單一溶劑或不同比例的混合溶劑、緩沖液等流動相泵入裝有固定相的色譜柱,在柱內各成分被分離後,進入檢測器進行檢測,從而實現對試樣的分析和分離。
操作方法:如下圖所示,溶劑貯器中的流動相被泵吸入,經梯度控制器按一定的梯度進行混合然後輸出,經測其壓力和流量,導入進樣閥(器)經保護柱、分離柱後到檢測器檢測,由數據處理設備處理數據或記錄儀記錄色譜圖,餾分收集器收集餾分,廢液瓶收集廢液。
液相色譜法開始階段是用大直徑的玻璃管柱在室溫和常壓下用液位差輸送流動相,稱為經典液相色譜法,此方法柱效低、時間長(常有幾個小時)。高效液相色譜法(High performance Liquid Chromatography,HPLC)是在經典液相色譜法的基礎上,於60年代後期引入了氣相色譜理論而迅速發展起來的。
HPLC根據固定相和流動相的成分分為正相色譜和反向色譜。
正相色譜法
採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法
一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
㈩ HPLC簡介
HPLC是指具有高分離效能的柱液相色譜法[1]。
HPLC系採用高壓輸液泵將規定的流動相泵入裝有填充劑的色譜柱,對供試品進行分離測定的色譜方法[2]。注入的供試品,由流動相帶入柱內,各組分在柱內被分離,並依次進入檢測器,由積分儀或數據處理系統記錄和處理色譜信號。
HPLC所用的儀器為高效液相色譜儀。儀器應定期檢定並符合有關規定。
反相色譜系統使用非極性填充劑,常用的色譜柱填充劑為化學鍵合硅膠,以十八烷基硅烷鍵合硅膠最為常用,辛基硅烷鍵合硅膠和其他類型的硅烷鍵合硅膠(如氰基鍵合硅烷和氨基鍵合硅烷等)也有使用。正相色譜系統使用極性填充劑,常用的填充劑有硅膠等。離子交換色譜系統使用離子交換填充劑;分子排阻色譜系統使用凝膠或高分子多孔微球等填充劑;對映異構體的分離通常使用手性填充劑。填充劑的性能(如載體的形狀、粒徑、孔徑、表面積、鍵合基團的表面覆蓋度、含碳量和鍵合類型等)以及色譜柱的填充,直接影響供試品的保留行為和分離效果。分析分子量小於2000的化合物應選擇孔徑在15nm(1nm10A)以下的填料,分析分子量大於2000的化合物則應選擇孔徑在30nm以上的填料。除另有規定外,普通分析柱的填充劑粒徑一般在3~10μm之間,粒徑更小(約2μm)的填充劑常用於填裝微徑柱(內徑約2mm)。
使用微徑柱時,輸液泵的性能、進樣體積、檢測池體積和系統的死體積等必須與之匹配;如有必要,色譜條件也需作適當的調整。當對其測定結果產生爭議時,應以品種項下規定的色譜條件的測定結果為准。
以硅膠為載體的鍵合固定相的使用溫度通常不超過40℃,為改善分離效果可適當提高色譜柱的使用溫度,但不宜超過60℃。
流動相的pH值應控制在2~8之間。當pH值大於8時,可使載體硅膠溶解;當pH值小於2時,與硅膠相連的化學鍵合相易水解脫落。當色譜系統中需使用pH值大於8的流動相時,應選用耐堿的填充劑,如採用高純硅膠為載體並具有高表面覆蓋度的鍵合硅膠填充劑、包覆聚合物填充劑、有機一無機雜化填充劑或非硅膠基鍵合填充劑等;當需使用pH值小於2的流動相時,應選用耐酸的填充劑,如具有大體積側鏈能產生空間位阻保護作用的二異丙基或二異丁基取代十八烷基硅烷鍵合硅膠填充劑、有機-無機雜化填充劑等。
最常用的檢測器為紫外檢測器,包括二極體陣列檢測器,其他常見的檢測器有熒光檢測器、蒸發光散射檢測器、示差折光檢測器、電化學檢測器和質譜檢測器等。
紫外、熒光、電化學檢測器為選擇性檢測器,其響應值不僅與供試品溶液的濃度有關,還與化合物的結構有關;蒸發光散射檢測器和示差折光檢測器為通用型檢測器,對所有的化合物均有響應;蒸發光散射檢測器對結構類似的化合物,其響應值幾乎僅與供試品的質量有關;二極體陣列檢測器可以同時記錄供試品的吸收光譜,故可用於供試品的光譜鑒定和色譜峰的純度檢查。
紫外、熒光、電化學和示差折光檢測器的響應值與供試品溶液的濃度在一定范圍內呈線性關系,但蒸發光散射檢測器的響應值與供試品溶液的濃度通常呈指數關系,故進行計算時,一般需經對數轉換。
不同的檢測器,對流動相的要求不同。如採用紫外檢測器,所用流動相應符合紫外-可見分光光度法(2010年版葯典二部附錄ⅣA)項下對溶劑的要求;採用低波長檢測時,還應考慮有機相中有機溶劑的截止使用波長,並選用色譜級有機溶劑。蒸發光散射檢測器和質譜檢測器通常不允許使用含不揮發性鹽組分的流動相。
反相色譜系統的流動相首選甲醇-水系統(採用紫外末端波長檢測時,首選乙腈-水系統),如經試用不適合時,再選用其他溶劑系統。應盡可能少用含有緩沖液的流動相,必須使用時,應盡可能選用含較低濃度緩沖液的流動相。由於C18鏈在水相環境中不易保持伸展狀態,故對於十八烷基硅烷鍵合硅膠為固定相的反相色譜系統,流動相中有機溶劑的比例通常應不低於5%,否則C18鏈的隨機捲曲將導致組分保留值變化,造成色譜系統不穩定。
各品種項下規定的條件除固定相種類、流動相組分、檢測器類型不得改變外,其餘如色譜柱內徑、長度、載體粒度、流動相流速、混合流動相各組分的比例、柱溫、進樣量、檢測器的靈敏度等,均可適當改變,以適應供試品並達到系統適用性試驗的要求。其中,調整流動相組分比例時,以組分比例較低者(小於或等於50%)相對於自身的改變數不超過±30%且相對於總量的改變數不超過±10%為限,如30%相對改變數的數值超過總量的10%時,則改變數以總量的±10%為限。
對於必須使用特定牌號的填充劑方能滿足分離要求的品種,可在該品種項下註明。
HPLC的適用性試驗通常包括理論板數、分離度、重復性和拖尾因子等四個參數。其中,分離度和重復性尤為重要。[2]
按各品種項下要求對色譜系統進行適用性試驗,即用規定的對照品溶液或系統適用性試驗溶液在規定的色譜系統進行試驗,必要時,可對色譜系統進行適當調整,以符合要求。
用於評價色譜柱的分離效能。由於不同物質在同一色譜柱上的色譜行為不同,採用理論板數作為衡量柱效能的指標時,應指明測定物質,一般為待測組分或內標物質的理論板數。
在規定的色譜條件下,注入供試品溶液或各品種項下規定的內標物質溶液,記錄色譜圖,量出供試品主成分峰或內標物質峰的保留時間tR(以分鍾或長度計,下同,但應取相同單位)和峰寬(W)或半高峰寬(Wh/2),按n16(tR/W)2或n5.54(tR/Wh/2)2計算色譜柱的理論板數。
用於評價待測組分與相鄰共存物或難分離物質之間的分離程度,是衡量色譜系統效能的關鍵指標。可以通過測定待測物質與已知雜質的分離度,也可以通過測定待測組分與某一添加的指標性成分(內標物質或其他難分離物質)的分離度,或將供試品或對照品用適當的方法降解,通過測定待測組分與某一降解產物的分離度,對色譜系統進行評價與控制。
無論是定性鑒別還是定量分析,均要求待測峰與其他峰、內標峰或特定的雜質對照峰之間有較好的分離度。除另有規定外,待測組分與相鄰共存物之間的分離度應大於1.5。分離度的計算公式為:
式中tR2為相鄰兩峰中後一峰的保留時間;tR1為相鄰兩峰中前一峰的保留時間;W1、W2及W1,h/2、W2,h/2分別為此相鄰兩峰的峰寬及半高峰寬(如圖)。
當對測定結果有異議時,色譜柱的理論板數(n)和分離度(R)均以峰寬(W)的計算結果為准。
用於評價連續進樣中,色譜系統響應值的重復性能。採用外標法時,通常取各品種項下的對照品溶液,連續進樣5次,除另有規定外,其峰面積測量值的相對標准偏差應不大於2.0%;採用內標法時,通常配製相當於80%、100%和120%的對照品溶液,加入規定量的內標溶液,配成3種不同濃度的溶液,分別至少進樣2次,計算平均校正因子。其相對標准偏差應不大於2.0%。
用於評價色譜峰的對稱性。為保證分離效果和測量精度,應檢查待測峰的拖尾因子是否符合各品種項下的規定。拖尾因子計算公式為:
式中W0.05h為5%峰高處的峰寬;
d1為峰頂點至峰前沿之間的距離(如圖)。
除另有規定外,峰高法定量時T應在0.95~1.05之間。峰面積法測定時,若拖尾嚴重,將影響峰面積的准確測量。必要時,應在各品種項下對拖尾因子作出規定。
按各品種項下的規定,精密稱(量)取對照品和內標物質,分別配成溶液,精密量取各適量,混合配成校正因子測定用的對照溶液。取一定量注入儀器,記錄色譜圖。測量對照品和內標物質的峰面積或峰高,按下式計算校正因子:
式中AS為內標物質的峰面積或峰高;
AR為對照品的峰面積或峰高;
cS為內標物質的濃度;
cR為對照品的濃度。
再取各品種項下含有內標物質的供試品溶液,注入儀器,記錄色譜圖,測量供試品中待測成分和內標物質的峰面積或峰高,按下式計算含量:
式中AX為供試品的峰面積或峰高;
cX為供試品的濃度;
A'X為內標物質的峰面積或峰高;
c'S為內標物質的濃度;
f為校正因子。
採用內標法,可避免因樣品前處理及進樣體積誤差對測定結果的影響。
按各品種項下的規定,精密稱(量)取對照品和供試品,配製成溶液,分別精密取一定量,注入儀器,記錄色譜圖,測量對照品溶液和供試品溶液中待測成分的峰面積(或峰高),按下式計算含量:
式中各符號意義同上。
由於微量注射器不易精確控制進樣量,當採用外標法測定供試品中成分或雜質含量時,以定量環或自動進樣器進樣為好。
測定雜質含量時,可採用加校正因子的主成分自身對照法。在建立方法時,按各品種項下的規定,精密稱(量)取雜質對照品和待測成分對照品各適量,配製測定雜質校正因子的溶液,進樣,記錄色譜圖,按上述(1)法計算雜質的校正因子。此校正因子可直接載入各品種項下,用於校正雜質的實測峰面積。這些需作校正計算的雜質,通常以主成分為參照,採用相對保留時間定位,其數值一並載入各品種項下。
測定雜質含量時,按各品種項下規定的雜質限度,將供試品溶液稀釋成與雜質限度相當的溶液作為對照溶液,進樣,調節檢測靈敏度(以雜訊水平可接受為限)或進樣量(以柱子不過載為限),使對照溶液的主成分色譜峰的峰高約達滿量程的10%~25%或其峰面積能准確積分[通常含量低於0.5%的雜質,峰面積的相對標准偏差(RSD)應小於10%;含量在0.5%~2%的雜質,峰面積的RSD應小於5%;含量大於2%的雜質,峰面積的RSD應小於2%]。然後,取供試品溶液和對照品溶液適量,分別進樣,供試品溶液的記錄時間,除另有規定外,應為主成分色譜峰保留時間的2倍,測量供試品溶液色譜圖上各雜質的峰面積,分別乘以相應的校正因子後與對照溶液主成分的峰面積比較,依法計算各雜質含量。
測定雜質含量時,若沒有雜質對照品,也可採用不加校正因子的主成分自身對照法。同上述(3)法配製對照溶液並調節檢測靈敏度後,取供試品溶液和對照溶液適量,分別進樣,前者的記錄時間,除另有規定外,應為主成分色譜峰保留時間的2倍,測量供試品溶液色譜圖上各雜質的峰面積並與對照溶液主成分的峰面積比較,計算雜質含量。
若供試品所含的部分雜質未與溶劑峰完全分離,則按規定先記錄供試品溶液的色譜圖Ⅰ,再記錄等體積純溶劑的色譜圖Ⅱ。色譜圖Ⅰ上雜質峰的總面積(包括溶劑峰),減去色譜圖Ⅱ上的溶劑峰面積,即為總雜質峰的校正面積。然後依法計算。
按各品種項下的規定,配製供試品溶液,取一定量注入儀器,記錄色譜圖。測量各峰的面積和色譜圖上除溶劑峰以外的總色譜峰面積,計算各峰面積占總峰面積的百分率。