❶ 鈀金怎麼檢驗
GB/T11066.6-2009 金化學分析方法鎂、鎳、錳和鈀量的測定火焰原子吸收光譜法
GB/T11066.7-2009 金化學分析方法銀、銅、鐵、鉛、銻、鉍、鈀、鎂、錫、鎳、錳和鉻量的測定火花原子發射光譜法
GB/T11066.8-2009 金化學分析方法銀、銅、鐵、鉛、銻、鉍、鈀、鎂、鎳、錳和鉻量的測定乙酸乙酯萃取-電感耦合等離子體原子發射光譜法
GB/T15072.1- 貴金屬合金化學分析方法金、鉑、鈀合金中金量的測定硫酸亞鐵電位滴定法
GB/T15072.15- 貴金屬合金化學分析方法金、銀、鈀合金中鎳、鋅和錳量的測定電感耦合等離子體原子發射光譜法
GB/T15072.3- 貴金屬合金化學分析方法金、鉑、鈀合金中鉑量的測定高錳酸鉀電流滴定法
GB/T15072.4- 貴金屬合金化學分析方法鈀、銀合金中鈀量的測定二甲基乙二醛肟重量法
GB/T15072.5- 貴金屬合金化學分析方法金、鈀合金中銀量的測定碘化鉀電位滴定法
GB/T15072.6- 貴金屬合金化學分析方法鉑、鈀合金中銥量的測定硫酸亞鐵電流滴定法
GB/T15072.8- 貴金屬合金化學分析方法金、鈀、銀合金中銅量的測定硫脲析出EDTA絡合返滴定法
GB/T17418.3-2010 地球化學樣品中貴金屬分析方法第3部分:鈀量的測定硫脲富集-石墨爐原子吸收分光光度法
GB/T17418.6-2010 地球化學樣品中貴金屬分析方法第6部分:鉑量、鈀量和金量的測定火試金富集-發射光譜法
GB/T19720-2005 鉑合金首飾鉑、鈀含量的測定氯鉑酸銨重量法和丁二酮肟重量法
GB/T21198.3-2007 貴金屬合金首飾中貴金屬含量的測定ICP光譜法第3部分:鈀合金首飾鈀含量的測定採用釔為內標
GB/T23275-2009 釕粉化學分析方法鉛、鐵、鎳、鋁、銅、銀、金、鉑、銥、鈀、銠、硅量的測定輝光放電質譜法
GB/T23276-2009 鈀化合物分析方法鈀量的測定二甲基乙二醛肟析出EDTA絡合滴定法
GB/T23277-2009 貴金屬催化劑化學分析方法汽車尾氣凈化催化劑中鉑、鈀、銠量的測定分光光度法
GB/T23613-2009 鋨粉化學分析方法鎂、鐵、鎳、鋁、銅、銀、金、鉑、銥、鈀、銠、硅量的測定電感耦合等離子體原子發射光譜法
GB/T4698.23-1996 海綿鈦、鈦及鈦合金化學分析方法氯化亞錫--碘化鉀分光光度法測定鈀量
HJ509-2009 車用陶瓷催化轉化器中鉑、鈀、銠的測定電感耦合等離子體發射光譜法和電感耦合等離子體質譜法
QB/T2382-1998 亮金水亮鈀金水試驗方法
SH/T0684-1999 分子篩和氧化鋁基催化劑中鈀含量測定法(原子吸收光譜法)
SJ/Z1091-1976 鍍鈀溶液典型分析方法
YS/T362-2006 純鈀中雜質素的發射光譜分析
YS/T372.1-2006 貴金屬合金素分析方法銀量的測定碘化鉀電位滴定法
YS/T372.3-2006 貴金屬合金素分析方法鈀量的測定丁二肟析出EDTA絡合滴定法
YS/T563-2009 貴金屬合金化學分析方法鉑鈀銠合金中鈀量、銠量的測定丁二肟重量法、氯化亞錫分光光度法
YS/T745.3-2010 銅陽極泥化學分析方法第3部分:鉑量和鈀量的測定火試金富集-電感耦合等離子體發射光譜法
❷ 海水鋨演化
與Sr同位素系統的對比表明,在地殼與地幔庫間鋨同位素成分的寬范圍應在海水的Os同位素成分上產生大的變化。海水非常低的鋨含量是此分析的一個主要障礙,但富有機質的深海沉積物通過從海水中攝取鋨和其他金屬起著預富集鋨的作用。Ravizza和Turekian(1992)證明,為了進行同位素分析這種鋨通過從海底層中淋取被優先釋放出來。由此,他們證明,現代海水的放射成因的187Os/186Os比值為8.5左右。相反,淋取後的殘留物具相當低的Os同位素比值,因為微隕石(宇宙塵)組分的存在,它們總是不斷地降落到地球。
圖6-18 計算得到的1.85 Ga前肖德貝里礦石與圍岩的Os同位素直方圖
圖6-19 沉積物淋取部分的Os同位素比值對年齡圖解
Pegram等(1992)將此方法應用到全部新生代海水鋨同位素演化的研究上。鋨用雙氧水淋取北太平洋所採的大活塞岩心截取的深海黑色頁岩而被提取出來。觀察了相同年齡樣品的Os和Sr同位素成分間的全部對比。Pegram等將鋨同位素比值解釋為碳酸鹽沉積物的原始特徵,而不是再活化的地球與隕石鋨之間次生混合的產物。然而,如果這是正確的,數據會表現出新生代同位素比值令人驚奇的迅速增加(圖6-19)。這被認為是喜馬拉雅山中被抬升的黑色頁岩層的風化所致。觀察到的同位素變化的范圍表明了鋨可作為控制海水地球化學的競爭流量非常靈敏的示蹤體,並因此該方法將成為古海洋學研究的有力工具。
❸ 物相分析的三種手段
常用的物相分析方法有X射線衍射分析、激光拉曼分析、傅里葉紅外分析以及微區電子衍射分析等等。
物相分析的方法分為兩種。一種是基於化合物化學性質的不同,利用化學分析的手段,研究物相的組成和含量的方法,如用氫氟酸溶解法來測定硅酸鋁製品中莫來石及玻璃相含量的分析方法,稱為物相分析的化學法。
另一種是根據化合物的光性、電性等物理性質的差異,利用儀器設備,研究物相的組成和含量的方法,成為物相分析的物理法。
物質中各組分存在形態的分析方法。廣義上應包括金屬和合金相分析,金屬中非金屬夾雜物分析和岩石、礦物及其加工產物各組成的狀態分析。物相分析的項目應包括價態、結晶基本成分和晶態結構的分析。
用以確定礦石中主要組分和伴生有益組分的賦存狀態、物相種類、含量和分配率。樣品可以從基本分析或組合分析的副樣中提取,亦可專門採集具有代表性的樣品。樣品數量應視礦床規模和物質成分復雜程度而定。
鐵礦石物相分析中,一般將鐵礦石中的含鐵礦物分為磁性鐵、硅酸鐵、碳酸鐵、硫化鐵和赤(褐)鐵;錳礦石中的含錳礦物分為碳酸錳、硅酸錳、氧化錳;鉻鐵礦石主要研究其中的伴生有益組分鎳、鈷和鉑族元素(鉑、鈀、鋨、銥、銠)等。
❹ 任務礦石中鈀含量的測定
——活性炭吸附DDO光度法
任務描述
鈀是鉑族元素之一。在地殼中含量極微,屬「超痕量元素」,比「稀有元素」還少,比某些「分散元素」分散。鉑族元素的分析,是現今人們公認的一個難題。勘查地球樣品中的鉑族元素的含量低,基體復雜,樣品均勻性差,干擾因素多;且鉑族元素本身具有相似的電子層結構和化學性質,很多分析試劑能同時與多種鉑族元素發生相似的反應並產生干擾,很難找到一些特效的分析試劑。加之,它們又多伴在一起,因此分離和測定十分困難。本次任務用DDO光度法測定礦石中的鈀含量,通過本次任務,掌握兩個知識點:一是鈀的富集與分離,二是鈀的顯色測定。
任務實施
一、試劑配製
(1)石油醚-三氯甲烷混合溶液(3 +1):石油醚的沸程在60~90℃或90~120℃為佳。
(2)DDO溶液(2g/L):稱取0.2g DDO溶於100mL丙酮中。
(3)氯化鈉溶液(200g/L):稱取20g氯化鈉,溶於100mL水中。
(4)乙酸丁酯。
(5 )鈀標准溶液:稱取0.1000 g光譜純鈀片於500mL燒杯中,加20mL王水,於砂浴上加熱溶解,然後以少量鹽酸吹洗杯壁,加入5滴氯化鈉溶液(200g/L),並移到水浴上蒸干,加2mL鹽酸(1 +1),蒸發到干,反復處理三次,取下用鹽酸溶液(8mol/L)溶解,移入1L容量瓶中,並用鹽酸溶液(8mol/L)定容,此貯備液含鈀100μg/mL。吸取10mL貯備液於 500mL 容量瓶中,以並用鹽酸溶液(8mol/L )定容,此貯備液含鈀2μg/mL。
二、分析步驟
稱取10~30g試樣於瓷舟中,在550~650℃的高溫爐中焙燒1~2h,中間攪拌2~3次,冷後移入250mL燒杯中,加入50mL王水(1+1 ),搖勻,蓋上表面皿,在電熱板上加熱分解15~20min,取下表面皿,低溫蒸至黏稠狀,加HCl重復蒸發兩次(每次5mL),加水60mL稀釋,過濾。用水洗凈燒杯及沉澱,在濾液中加0.3 g活性炭(可滴加少量金標准溶液)攪拌均勻,放置過夜。用定性濾紙過濾並擦凈燒杯,再用水洗沉澱約15 次。將活性炭連濾紙轉移至瓷坩堝中,放入馬弗爐低溫升至650℃灰化完全。
在含鈀灰分的瓷坩堝中加王水5mL,水浴加熱溶解,加3 滴氯化鈉溶液(200g/L),繼續水浴蒸干,加鹽酸2~3次趕硝酸。殘渣用15mL鹽酸溶液(8mol/L)溶解後,並將此溶液移入25mL比色管中(至20mL)。
加乙酸丁酯4mL萃取1min,分層後棄去有機相。在水相中加入1mL DDO溶液(2g/L),搖勻,放入60~70℃的水浴中保溫10min,然後冷卻(或在25℃的室溫中放置1h),加入5mL石油醚-三氯甲烷混合溶劑,振搖1min,分層後,吸取有機相,用1cm吸收池,在波長450 nm處以試劑空白作參比,測定其吸光度。
鈀工作曲線的繪制:分別吸取含鈀0、2.00、4.00、8.00、12.00、20.00μg的鈀標准溶液於25mL比色管中,用鹽酸溶液(8mol/L)稀釋至20mL,以下操作同試樣分析步驟。
三、結果計算
鈀的含量按下式計算:
岩石礦物分析
式中:w(Pd)為鈀的質量分數,μg/g;m1為從工作曲線上查得試樣溶液中鈀的質量,μg;m0為從工作曲線上查得試樣空白中鈀的質量,μg;m為稱取試樣的質量,g。
四、質量記錄表格
測定完成後,填寫附錄一中質量記錄表格3、4、8。
任務分析
一、方法原理
試樣先經灼燒使某些不溶於王水的鈀礦物轉變為能在王水中溶解的單體金屬,然後用王水分解,以HCl驅除大部分HNO3後,加水稀釋,濾去殘渣。濾液用水稀釋使溶液中含酸量每100mL不超過5mL,分數次加入活性炭以使鈀吸附完全。濾出活性炭灰化後,溶於王水。先用乙酸丁酯萃取Au及Fe等雜質。然後在水相中使Pd與DDO反應。Pd(Ⅱ)與雙十二烷基二硫代乙二醯胺(DDO)生成黃色配合物,用石油醚-三氯甲烷混合液萃取測定鈀。
二、干擾情況
在本法的顯色條件下,80μg Au(Ⅲ)、40μg Rh(Ⅱ)、20μg Ir(Ⅳ)、20mg Ag(Ⅰ)、100μg Se(Ⅳ)、40μg Te(Ⅳ)、20mg Fe(Ⅲ)、20mg Cu(Ⅱ)、50mg Ni(Ⅱ)、50mg Pb(Ⅱ)對鈀的測定不幹擾。硝酸根的存在對鈀測定有嚴重干擾,導致結果偏低。高氯酸根的存在對測定無影響。
所取試樣中鈀含量小於5μg時,採用目視比色本法可測低至0.01 g/t的試樣。
三、配製貴金屬標准溶液的注意事項
在貴金屬分析化學中,通常使用貴金屬的氯化物或氯離子配合物與各種試劑發生反應,因為貴金屬氯化物和氯配合物的制備方法容易、穩定性好,而且具有確定的價態和形態。其他鹽類,如硝酸鹽、硫酸鹽、過氯酸鹽等不夠穩定,有的組成復雜,或與試劑反應難於進行。因此貴金屬的標准溶液(除銀一般是以AgNO3形式配製外)大都是以氯配合物的形式制備。
採用純度在99.95% 以上的金屬片或粉末以王水或(鹽酸+氧化劑)溶解時,溶解之後應除去氧化劑,如用鹽酸除硝酸和氮的氧化物時,應在沸水浴上小心蒸發,並加入氯化鈉或氯化鉀作保護劑;以鹽酸溶液稀釋定容時,應控制鹽酸濃度,以便保證較高的氯離子濃度,避免價態的變化和發生水解,以保證標准溶液能夠長期儲存。
貴金屬標准存儲溶液應具有較高的金屬離子濃度,以便在儲存時不易發生濃度的變化。分析用標准工作溶液常常由存儲溶液稀釋制備,但在常溫下保存時間一般不得超過2個月。
貴金屬標准溶液的儲存是一個重要的問題。影響貴金屬標准溶液穩定性的主要因素有兩個方面:貴金屬配合物離子的穩定性和容器對貴金屬離子的吸附。配合物離子穩定性依賴於酸度和氯離子濃度。對於鋨、釕標准溶液的儲存,還應考慮揮發損失的問題,在鹽酸(1mol/L)介質中,釕溶液保存在石英玻璃或玻璃容器里可穩定4個月,4個月後會損失25%;鋨溶液只能穩定2個月,2個月後會損失50%。銀標准溶液應避光保存。容器對貴金屬離子的吸附與容器的種類和溶液酸度有關,溶液的酸度越高,器壁吸附越少。
實驗指南與安全提示
DDO和Pd的反應稍慢,且試劑又不溶於水和鹽酸中,故加入DDO試劑應沿著管壁緩緩加入,並激烈振盪兩次,讓試劑很好地分散於溶液中,並放置30min,或在60~70℃的水浴中保溫10min。DDO與Pd(Ⅱ)形成黃色配合物,其配位比為2∶1,配合物被有機溶劑萃取後,色強非常穩定,15 h內無變化。
DDO對Pd有很高的選擇性。除100μg以上的金影響測定外,Fe、Co、Ni、Pb、Ir、Cu、Ag對Pd的測定無干擾。Pt(Ⅳ)、Rh(Ⅲ)若無強還原劑存在也無干擾。
當Pt、Pd的含量較低時,可採用目視比色測定。Pt、Pd與DDO的有色配合物在有機相中24 h內穩定。
加入DDO溶液的量要求准確,因試劑本身有淺綠色。
Pt(Ⅳ)不與DDO反應,但加入SnCl2還原為Pt(Ⅱ)就立即生成紅色螯合物,可穩定24h以上。
DDO的制備:稱取15 g二硫代已二醯胺於錐形瓶中,加入100mL乙醇溶解,在另一燒杯中,稱取46 g月桂胺,加入50mL乙醇溶解,將上述溶液合並,混勻,蓋上帶玻璃管的橡皮塞(作空氣冷凝管),在水浴上加熱,保持微沸30~40min,待無氨味時取出,倒入燒杯中,用冰水冷卻,抽濾,用冰冷卻過的乙醇洗滌至無綠色,取出沉澱於另一燒杯中,用100mL丙酮溶解後,移到錐形瓶(帶空氣冷凝管)中,加入一小勺活性炭,在水浴上加熱5~10min,趁熱抽濾,用丙酮洗滌,將濾液置於蒸發皿上,使其自然乾燥。若顏色不正常時,可用丙酮重結晶一次。
由於鈀的化合物均易分解,所以在蒸干時要特別小心,否則結果嚴重偏低。
活性炭吸附鈀應在低酸度下進行,故溶礦過程中盡量蒸去多餘的酸。
顯色反應應在鹽酸(>6mol/L)介質中進行。
拓展提高
鎳鋶試金法測定礦石中的貴金屬
鎳鋶試金法(也稱硫化鎳試金法)是以硫化鎳、硫化鐵(和硫化銅)組成的鋶來捕集貴金屬,它適合於捕集金和所有鉑族元素。也可用於其他試金法熔煉有困難的高硫高鎳樣品。硫化鎳有足夠大的密度(5.3g/cm3),便於與熔渣分開,並容易粉碎。鎳鋶扣捕集貴金屬的能力很強,試金扣的量在12g以上能將50g樣品中的貴金屬捕集完全。鎳鋶試金法中熔渣的硅酸度在1.5~2.0之間為好。但是要注意渣的是酸度不要太大,否則熔渣很黏,不利於鋶扣與熔渣的分離。鋶扣一般採用鹽酸溶解,硫成硫化氫逸出,銅、鐵、鎳(包括銀)以氯配合物形式進入溶液,金和鉑族金屬留在殘渣內。濃鹽酸溶解鋶扣時,鋨的損失比較大,鉑、鈀也會有一定的損失。用稀鹽酸溶解或採用封閉溶解法可減少這些元素的損失。鎳鋶試金法測定金的重現性不太好,其中既有金的捕集效率問題,也有金在鹽酸溶解時的損失問題。採用碲共沉澱法可以改善金的回收率和重現性。鎳鋶試金法需要加入硫黃作為還原劑和硫化劑,硫黃的加入量要適當。加得少了,在用鹽酸溶解扣時,鋨、釕的損失會增加。過量了又給試金扣的溶解帶來困難。為了避免硫黃過剩,可以用硫化鐵代替一部分硫黃,而且這樣的試金扣在水中能自行粉化。
一、鋶鎳試金法的特點
1.鋶鎳試金法優點
(1)可以捕集所有的鉑族元素。
(2)不同類型的樣品,其熔劑的組成變化相對較小。
(3)對含硫和鎳的樣品不需要事先除去。
(4)熔劑與樣品的比例較小,所以可以處理較大量的樣品。
(5)硫化鎳扣可直接用於激光剝蝕法。
2.鋶鎳試金法的局限性
(1)空白較高。有時有些元素的空白值可達數百個pg/g水平。尤其是鎳試劑的空白較高,建議使用純度較高的羰基鎳粉。
(2)Os以OsO4的形式揮發。
(3)在硫化鎳扣用鹽酸溶解時,有的貴金屬元素比如釕和鈀會以氯化物或含氯的配合物形式揮發損失。
(4)個別元素會由於硫化鎳捕集效率低或碲共沉澱的不完全分離而導致回收較差(<90%)。
(5)鹽酸溶解硫化鎳扣時,會產生大量硫化氫氣體,需要有效的排煙氣設備。
採用減小硫化鎳試金扣的方法可以降低試劑空白。早先的硫化鎳試金法一般要加入10 g以上的鎳,現在一般大約為幾克(根據樣品中鉑族元素含量范圍和樣品基體性質而定)。
二、鎳鋶試金法配料
配料是鎳鋶試金分析中關鍵的一步。首先要了解所測樣品的種類,以確定熔料的配方。
根據試料中的物質組成,按照預期生成熔渣的硅酸度,通過反應式計算,可獲得配料中各種試劑的加入量。
1.一般地質樣品配料大體范圍
(1)岩石、沉積物、土壤類:如石英、輝石、橄欖石、方解石、沉積岩、土壤、水系沉積物、海洋沉積物等,配方一般為(20g樣):Na2B4O5(OH)420~25g,Na2CO310~14g,Ni 2~3g,SiO21~2g,麵粉0.5~1g。
(2)礦石類樣品等:如鉻鐵礦、超基性岩、黃鐵礦、黃銅礦、閃鋅礦、鎳礦等,配方一般為(20g樣):Na2B4O5(OH)4或Li2B4O725g,Na2CO315~20g,Ni 3.5~6g,SiO23~6g,麵粉2g。
許多鉻鐵礦中往往含有較多的鉑族元素,而鉻鐵礦是很難熔融的礦物,熔劑配方對鉻鐵礦的熔解很關鍵。可以加入偏磷酸鈉使鉻鐵礦完全熔融,其熔劑配方為:樣品10g,SiO29g,(NaPO3)x15g,Li2B4O730g,Ni 7.5g,S 4.5g。熔融溫度必須達到1200℃。
2.針對不同物料調整配方的要點
(1)硅酸鹽類樣品:硅酸鹽樣品中二氧化硅佔一半以上,還有少量鈣、鎂、鋁,需要加入較多的碳酸鈉,適量的硼砂。
(2)碳酸鹽類樣品:此類樣品的主要成分為碳酸鈣、碳酸鎂,在熔樣時分解逸出二氧化碳成為氧化鈣、氧化鎂,因此在熔樣時必須加入較多酸性熔劑二氧化硅和較多硼砂。
(3)氧化礦樣品:氧化礦樣品指含有較多赤鐵礦、磁鐵礦的樣品,具有一定的氧化力,能消耗掉部分還原劑,配料時需加以考慮。
(4)硫化礦樣品:含有較多的硫化物,還原力較強。需加入較多碳酸鈉,減少硫的加入量。
銅精礦、硫化銅鎳礦、輝銻礦、鎳礦、黃鐵礦等礦種常含有鉑族元素和金銀,熔礦相對困難,配料時需加大碳酸鈉和二氧化硅的量。
三、應用實例
鋶鎳試金-ICP-MS測定礦石中的貴金屬大多數鋶鎳試金-ICP-MS分析流程不包括鋨的測定,因為鋨被氧化成四氧化鋨,揮發損失。以前先將鋨蒸餾出,再用王水溶解殘渣測鋨。這種方法流程過長,不利於大批量樣品分析。改進的鎳鋶試金-碲共沉澱ICP-MS測定鉑族元素的方法,採用封閉溶解貴金屬硫化物濾渣與同位素稀釋法測鋨相結合,解決了包括鋨在內的全部鉑族元素和金的測定,避免了鋨的蒸餾分離和(或)單獨測定,簡化了分析流程。該方法要點如下:
1.樣品處理步驟
(1)取樣20g 於玻璃三角瓶中,加入混合熔劑,充分搖動混勻後,轉入黏土坩堝中。
(2)准確加入適量鋨稀釋劑,覆蓋少量熔劑,放入已升溫至1100℃的馬弗爐中熔融1.5 h。
(3)取出坩堝,將熔融體注入鐵模,冷卻後,取出鋶鎳扣,粉碎。轉入燒杯,加入60ml濃鹽酸,加熱溶解至溶液變清且不再冒泡為止。
(4)加入1mL碲共沉澱劑(含碲0.5mg),1mL二氯化錫(1mol/L)溶液,加熱0.5 h並放置數小時使碲凝聚。
(5)用0.45μm濾膜負壓抽濾,2mol/L鹽酸洗沉澱數次。
(6)將沉澱和濾膜一同轉入帶螺帽的Teflon封閉溶樣器,加入1mL王水,密封,於約100℃電熱板上溶解2~3 h。
(7)冷卻後轉入10mL比色管中,水定容待測。
2.鉑族元素的測定
樣品溶液直接用ICP-MS測定,釕、銠、鈀、銥、鉑用常規標准溶液標化測定。鋨採用同位素稀釋法測定。內標採用10 ng/mL的鎘、鉈標准溶液。雖然採用了密封溶渣的方法,但對鋨進行同位素稀釋測定仍是必不可少的。一方面是因為密封溶解不能確保沒有氣體泄漏;另一方面,即便是溶解過程沒有鋨的泄漏損失,由於不同氧化程度的鋨在ICP技術中靈敏度的巨大差異,採用標准溶液標化會造成分析結果的極大誤差。
閱讀材料
貴金屬首飾分析
在貴金屬首飾中,黃金首飾占據主導地位,銀飾品由於其白色和低廉的價格而成為普通百姓歡迎的主要原因。隨著人們生活的提高,鉑金首飾的消費也迅速增長。當今的黃金首飾市場已趨於國際化,生產和消費已超出地域限制的趨勢。通常,廣大消費者關心的是所購買的金或鉑金首飾是否符合標示的含金或含鉑量,同時希望有一種簡單易行的非破壞性鑒別方法;對於首飾生產廠家,應該以誠信為本,從生產的源頭即飾品材料的成分分析進行把關,使其質量達到國家規定的標准,避免不符合產品出廠;同時,在飾品進入市場之後,有關部門應加強監管,不定期進行抽樣化驗,禁止不合格產品或假貨在市場上銷售。只有這樣,才能維護首飾消費者的合法利益。
一、金首飾的成色
在首飾交易中,金的成色常用「開(K)」表示,[「開」(K)源於英文詞carat,稱「克拉」,原用於表示寶石的質量單位,1ct=0.200g];其純度以千分比表示。純金為24開,也即成色是1000‰。以此推算,1 K的含金量=41.66‰,18 開金就是含有750‰的金。由於41.66‰為無限循環小數,因此不同地域就出現不同的K金標准。國際標准化組織(ISO )推薦的22 K、18 K、14 K 和9 K 飾品金的成色分別含金916‰、750‰、585‰和375‰。我國黃金首飾分類標准如表,基本上與國際標准接軌。由於不同的購買目的,每個國家對黃金首飾成色的要求大不相同,表7-6列出了我國黃金首飾成色分類標准(GB11887-1990 )。
表7-7列出了黃金的成色等級及其適用地域范圍。
表7-5 我國黃金首飾成色分類標准
表7-6 黃金成色等級和適用范圍
二、金首飾的鑒定
從嚴格的意義上來說,首飾的鑒定和分析有著不同的含義。鑒定意味著是對飾品真假的區別或鑒別,它既要維持原有飾品的原貌,又能快速地對飾品做出比較正確的結論。而分析往往意味著是通過某種現代儀器手段或方法對首飾的組成和(或)含金量給出公正和正確的分析結果。
鑒定常常根據金的物理性質如顏色、密度和硬度等進行測估。在金首飾的鑒定中,試金石法和密度法的應用由來已久。前者現在稱為「條痕比色法」,即將金首飾在試金石(一種特殊的硅酸鹽石頭)上輕輕劃痕,然後再與「對牌」(即已知金成色的標准)在試金石上的劃痕顏色比較。據稱有經驗的鑒定者可以將金成色控制在1% 的誤差內。這種方法在以前銀行和舊首飾的收購中常常使用,因為具有立等可取的快速特點。密度法的應用據說是阿基米德在為國王金冠打造中是否被摻假一事的冥思苦想中,因進浴池洗澡受滿池水的溢出啟發而發現了「浮力定律」,並由此揭開了假金皇冠的秘密。自此之後,密度法的鑒定就有了科學依據。
採用密度法鑒定金飾品,首飾應該潔凈乾燥,設法避免在液體中稱量時附著在首飾上的氣泡,最好是按照國家標准《貴金屬及其合金密度的測試方法》(GB/T1423 -1996)進行。值得注意的是,該法不適用於空心首飾和鑲嵌首飾。當然,也不適用於金包鎢的假首飾,因為鎢和金的密度相近。
三、金首飾的分析及含金量的精密測定
(一)無損分析
利用某些現代儀器對貴金屬飾品的成色進行無損檢測被認為是比較理想的方法,因為它具有不破壞樣品、無污染、快速和准確的特點,同時又能提供樣品中多種雜質元素及其含量數據。例如,藉助黃金首飾標樣,X射線熒光光譜法(XRF )廣泛用於飾品的組成和元素含量的測定,並且已被制定成國家標准檢測方法。然而這一方法的測定結果仍受到飾品表面的光滑度、形狀、大小的影響以及因樣品照射位置、面積的差異導致主、次元素熒光強度不同程度的損失,於是有不少改進的測定方法報道,例如無標樣的XRFA方法、XRF-密度校正法等,從而在一定程度上提高了方法的檢測精度和擴大了方法的適用范圍。
(二)化學分析
多姿多彩的金飾品皆源於金基合金材料,材料成分的准確分析是金飾品質量控制的根本保證。因此,僅僅依靠無損分析法顯然是不現實的,因為單就制備用於分析這些合金的標樣就是一件十分復雜和消耗人力、資金的工作。如果把金飾品的分析納入貴金屬合金材料分析范疇的話,原則上貴金屬合金材料中的許多化學分析或儀器分析方法都能適用。這些分析方法既能夠准確地測定主金屬組分的含量,也能夠提供次成分乃至雜質元素的分析結果。如AAS、ICP-AES法等。
應該指出的是,廣大消費者最關心的是飾品中主成分金、鉑、鈀、銀等的含量,其他金屬成分對構成首飾的成本與其工藝所體現的價值相比都微不足道。正因為如此,貴金屬飾品的主成分分析關鍵在於測定方法的准確與否。對於金(或銀)的主成分分析,火試金重量法是具有高准確度的測定方法之一,也是傳統的金銀飾品分析檢測方法。與火試金重量法相比,容量法、電位滴定法和庫侖分析法的操作手續是簡單的,尤其是具有高准確度、精密度和不需要標准樣品的庫侖分析法,對於貴金屬飾品主含量的測定是特別適宜的。
四、鉑金首飾的成分
銀白色的首飾高貴典雅,然而用銀打造的首飾佩戴不久便會晦暗而喪失光澤。金屬鉑的亮白色雖然不及銀,但卻能夠長期經受腐蝕並保持其白色,因此鉑金首飾受到人們的青睞。目前,鉑首飾主要用純鉑和鉑合金製作,也有含鉑的白色K金,例如含有10% Pt、10% Pd、3% Cu和2% Zn的18 K金。所謂白色K金就是為了取代昂貴的鉑而在金基體中加入能夠使金漂白的元素,如 Ag、Al、Co、Cr、In、Fe、Mg、Mn、Ni、Pd、Pt、Si、Sn、Ti、V、Zn等,但白色K金大多數是Au-Pd-Ag系合金,其中可能還含有Cu、Ni、Fe、Mn等。含Ni的白色K金價格便宜,但Ni對人體皮膚具有潛在的毒性問題頗受爭議,為保護消費者的利益,某些歐洲國家今年來已制定了有關製造和銷售與皮膚接觸的含鎳首飾的法令,並制定了相關標准。白色K金依舊按金的成色區分,而對鉑首飾的成色還沒有硬性規定的標准。由於鉑的供給受到資源的限制,近年來價格逐漸攀升,幾乎接近金價的3 倍,這樣一來,鉑首飾的鑒別與分析更令人關注。
五、鉑金首飾分析
到目前為止,還缺乏一種簡單的、像鑒別黃金首飾那樣來鑒別鉑首飾的方法。一些分析工作者試圖採用像無損分析金飾品那樣,用X射線熒光光譜法來進行分析,但是鉑飾品成分比較復雜,難以獲得用作比較的標准樣品。曾有利用XRF金標樣的多元素回歸方程,對Pt、Pd的熒光強度進行修正後並當作Au、Ag的熒光強度,再以計算機編程計算鉑製品中Pt、Au、Pd、Ag、Cu、Ni等元素含量的X射線熒光光譜測定方法,但其准確度和適用性仍有待研究。
在溶液中利用氯化銨將Pt(Ⅳ)沉澱成(NH)2PtCl6的重量法現在已經很少用於分析工作中,因為(NH)2PtCl6沉澱不很完全,且Ir、Rh存在時共沉澱。然而對於鉑飾品這一特殊分析對象,經改進的(NH)2PtCl6-光譜(或原子吸收)法則能夠適用,而且還被制定為鉑首飾合金分析的標准方法。鉑首飾中鉑含量的測定,採用精密庫侖滴定分析法是較好的選擇。該法不需要鉑首飾標准樣品,測定方法的選擇性好,准確度和精密度都很高,而且測定手續簡便快速。
❺ 貴金屬的分析方法看哪裡
貴金屬當中所涵蓋的分析方法內容相對豐富及具備一定專業度,建議盡可能通過大型平台進行系統的接觸和學習後,才能一定程度地提高熟練度。
❻ 岩石中PGE、Au、Ag含量分析
1.樣品和分析方法
1)樣品
研究樣品均采自遵義新土溝、黃家灣和湖南大坪、柑子坪、後坪黑色岩系鉑多金屬礦床,岩石類型有鉑多金屬礦層、黑色頁岩、磷塊岩。
2)測試流程
(1)Pt、Pd、Au採用濕法分解,活性炭等富集,光譜測定:樣品用鹽酸-過氧化氫溶樣,活性炭-樹脂組合工藝富集,富集物灰化後加入光譜緩沖劑,用光柵光譜儀攝譜,相板用光譜超痕量分析相板測量系統測定,方法檢出限為Pt 0.2×10-9,Pd 0.1×10-9,Au0.1×10-9。
(2)Os、Ru採用鹼熔分解,蒸餾分離,催化光度法測定:鋨釕分析樣用過氧化鈉熔融法分解,硫酸酸化,以溴酸鈉-重鉻酸鉀-氯化鈉作氧化劑,乙醇-硫酸為分離劑,蒸餾法分離鋨釕,利用鋨釕對鈰(IV)-砷(III)體系,催化分光光度法測定。兩個元素的方法檢出限均為0.02×10-9。
(3)Rh、Ir用鋶試金富集,催化分光光度法和催化極譜法測定:樣品經小鋶試金分離富集,試金扣置於蒸餾水中粉化,加入稀鹽酸加熱溶解,過濾除去鐵和鎳,待測鉑族元素硫化物沉澱後用焦硫酸鈉熔融法分解,用水提取並分成兩份溶液,在硫酸-六次甲基四胺體系中,催化極譜法測銠,砷(III)-鈰(IV)-Ag(I)體系中,催化分光光度法測銥。兩元素的方法檢出限均為0.02×10-9。
(4)Ag用王水溶解,原子吸收法測定:王水溶解銀後,溶液蒸至盡干,用鹽酸趕硝酸,轉化為鹽酸介質,定溶後用GGX-9型原子吸收測定,檢出限為0.2×10-6。
3)實驗的可靠性驗證
本測試採用國土資源部物化探研究所研製的GPT系列標樣,其標准值和測試值列於表4-1中,從表中可知其實驗測試值與標准值誤差小於3%。另外,在活性炭吸附過程中,加入了助吸劑,採用的是組合富集工藝,對鉑鈀的回收率可達95%以上。
2.測定結果和討論
1)PGE、Au、Ag的元素豐度及配分模式
從測試結果(表4-2)中可看出:①黑色岩系各岩類中以鉑多金屬礦層的PGE總量(ΣPGE)值最高,平均值為212.76×10-9,遠大於黑色頁岩、磷塊岩、硅質岩、碳酸鹽岩的23.33×10-9、11.88×10-9、16.5×10-9、5.46×10-9;Ir、Ru在PGE的6 元素中相對虧損,Os、Rh、Pt、Pd相對富集。Au、Ag在黑色岩系各岩類中亦相對富集,一般Ag>Au;②礦層中各PGE元素的含量均為最高,各元素含量均遠大於地殼豐度和原始地幔值;Ru含量為4.19×10-9~13.91×10-9,平均值為9.99×10-9。Ru雖表現為相對虧損,但含量仍為其地殼豐度(1.0×10-9)的9.99倍,其原始地幔值(5×10-9)的近2倍。Os在礦層中超常富集,為65.3×10-9~184.4×10-9,平均值為 144.78×10-9;③Au在礦層中相對PGE更為富集,為32.83×10-9~302.07×10-9,平均值為178.64×10-9,大於其C1球粒隕石值(140×10-9)。Murowchick等(1994)亦提出Au在華南寒武系底部及世界其他黑色頁岩中相對比較富集,其含量大於5×10-9。Ag在鉑多金屬礦石中最為富集,其含量平均值高達60.37×10-6,為地殼豐度的1160.96倍。所測各元素含量排序為Ag>Au>Os>Pt>Pd>Rh>Ru>Ir(圖4-1 A),其原始地幔標准化PGE配分曲線圖基本一致,均顯示為Os-Rh-Pd-Pt富集的「W」型,與李勝榮等(2000)、張光弟等(2001)的測試結果基本相似。
表4-1 全岩PGE分析標樣測試結果Table4-1 The result of PGE standard of bulk composition
續表
註:「-」表示未測。
華南黑色岩系中其他岩類PGE元素含量遠低於鉑多金屬礦石的PGE含量(表4-2),黑色頁岩中Os、Pt、Pd、Au、Ag相對富集,其中以Ag值為最。所測各元素含量的平均值排序為Ag>Pd>Au>Os>Pt>Ru>Rh>Ir(圖4-1B);磷塊岩中除Os、Pd稍高於其地殼豐度值外,其他各元素含量均低於其地殼豐度值,表現為強烈虧損,所測元素含量的平均值排序為Ag>Os>Pd>Pt>Ir>Au>Rh>Ru(圖4-1 C);硅質岩中除Ag、Pd稍大於其地殼豐度值外,其他各元素含量均表現為虧損。所測元素含量平均值為Ag>Rh>Pd>Os>Pt>Ir>Au>Ru(圖4-1D);碳酸鹽岩中各元素含量均遠低於其地殼豐度值,其含量平均值排序為Pd>Ag>Os>Pt>Au>Ru(圖4-1D)。以上四者的原始地幔標准化PGE配分曲線分布基本一致,均顯示為Os-Rh-Pd-Pt富集的「W」型。
從圖4-1中可看出,黑色岩系各岩類的PGE配分模式顯現出較為一致的復雜OsRh-Pt-Pd富集的「W」型配分曲線,表明黑色岩系PGE的來源基本一致,且它們的IPGE相對於PPGE發生了顯著的分異;PGE配分曲線與原始地幔的Ru-Pt富集型PGE配分曲線相差甚遠,說明華南黑色岩系PGE可能非原始地幔和球粒隕石來源。
Rh在各類岩石中均超常富集,具體原因尚在研究之中,可能和黑色岩系中富含的有機質有關。鉑多金屬礦石和黑色頁岩的PGE配分模式較為接近,IPGE(主要是Os)在鉑多金屬礦石中超常富集(表4-2),可能是繼承了源岩的PGE富集特性;Au在鉑多金屬礦中最為富集,可能和熱液作用提高了Au活性相關(Barnes S J,et al.,1985;李勝榮等,1994;儲雪蕾等,2001)。磷塊岩、碳酸鹽岩、硅質岩的PGE配分曲線相近,Au、Pt在這三者中均顯示虧損,這可能和這幾類岩石所受的熱液蝕變有關。Barnes等(1985)研究得出,碳酸鹽蝕變作用會引起岩石中Pt、Au的虧損。
圖4-1 華南下寒武統黑色岩系各岩類PGE、Au、Ag的原始地幔標准化配分模式圖
Fig.4-1 The primitive mantle normalized pattern of PGE,Au and Ag of the Lower Cambrian black rock series of South China
2)PGE特徵參數
(1)Os/Ir、(Pt+Pd)/(Os+Ir+Ru+Rh)
Ir、Ru為華南黑色岩系中相對匱乏的成分,Ir的含量低,為0.40×10-9~11.89×10-9,並非正異常。從元素的相關比值來看,Os/Ir在太陽系為1.1,鐵隕石為0.84,球粒隕石為2.25,碳質球粒隕石為1.07。鉑多金屬礦石Os/Ir比值為7.66~183.64,平均值為46.08。這個比值大大超過了地外物質的相應比值,說明與地外物質根本不具可比性。鉑多金屬礦石的(Pt+Pd)/(Os+Ir+Ru+Rh)=0.02~1.87,均值為0.31。其中風化礦石的比值較高,可能是後期風化作用使岩石中Pt、Pd更加富集所致。黑色頁岩、磷塊岩、碳酸鹽岩、硅質岩中PGE的(Pt+Pd)/(Os+Ir+Ru+Rh)均值分別為1.64、0.72、1.51、0.58,除黑色頁岩外,其他岩類的相關比值均小於原始地幔和C1球粒隕石值的比值(0.87、0.88)。
(2)Pt/Ir、Pt/Ru、Pd/Pt
鉑多金屬礦石的Pt/Ir、Pt/Ru、Pd/Pt比值的均值分別為4.60、3.47、6.07,大於對應的原始地幔值(1.21、1.44、0.55)和C1 球粒隕石值(1.22、1.42、0.54)。其中有兩個礦石樣的 Pt/Ru 比值相對較高,分別為3.59、27.62,Pd/Pt 比值<0.5,分別為0.24、0.38。從以上數據來看,礦石PGE和原始地幔、球粒隕石的特徵參數均表現出明顯的差異;黑色頁岩的Pt/Ir、Pt/Ru、Pd/Pt比值的均值分別為13.76、5.01、11.85;磷塊岩的對應均值分別為3.55、3.06、3.85;碳酸鹽岩的對應均值分別為4.43、1.86、9.28;硅質岩的對應均值為4.33、2.74、3.19,與原始地幔值、C1球粒隕石相應值亦不甚相符。黑色岩系各岩類PGE的特徵參數與球粒隕石、地幔值不符,說明其PGE來源可能不是原始地幔或C1球粒隕石。此外,Pd/Ir值最能驗證PGE的分餾效應,以上數據說明,除黑色頁岩的Pd/Ir值大於10,屬中等分餾以外,黑色岩系其他各岩類的對應比值均較小,分餾不明顯。
(3)Au/Pt、Pt/Pd
Mao等(2002)提出,華南下寒武統黑色岩系為正常海水沉積成因,海水為超常富集的PGE、Ni、Mo等元素的主要物源。他們認為硫化物層的Au/Pt比值約為1,接近海水相關比值(0.8)。本次研究的鉑多金屬礦石的Au/Pt比值為0.78~373.35,平均值為82.35;黑色頁岩的相關比值為0.21~43.64,平均值為9.59;磷塊岩的相關比值為0.32~1.58,平均值為0.99;碳酸鹽岩的相關比值為0.71~0.96,平均值為0.84;硅質岩的相關比值為0.67。前兩者的Au/Pt比值遠遠大於海水,而後三者的比值較為接近,表明海水可能提供了相當部分的物源。Mao等(2002)還提出硫化物的Pt/Pd值亦約為1,接近海水對應比值(0.8)。本項研究的大部分岩樣的Pt/Pd值均低於0.8,個別岩樣大於或接近0.8。
3)元素相關性分析
元素的地球化學性質決定著元素的相關性,球粒隕石的Pt-Au呈正相關(劉英俊等,1984、1987),與鉑多金屬礦石、黑色頁岩、磷塊岩中二者無相關性的關系相悖(如圖4-2A),再次輔證了球粒隕石並非黑色岩系各類岩石的PGE物源。鐵隕石中Ir-Os、Ru-Ir和Pt-Ru呈正相關(劉英俊等,1984、1987),從圖4-2、圖4-3、圖4-4 的A、D、G可看出,華南黑色岩系岩石的相關元素對均無相關性。富鎳鐵隕石中Au與PGE各元素間有較強的相關性。如,Au-Pd、Os-Ru正相關,Au與Os、Ir、Pt、Ru為負相關。從圖4-2 J、K、L、M、N可看出,華南黑色岩系鉑多金屬礦石中,除了Os-Ru表現為正相關,其統計結果顯示R2=0.6012(鉑多金屬礦層)、R2=0.8688(黑色頁岩)、R2=0.8675(磷塊岩)外,其餘各元素對均無相關性。因此,可以排除鉑多金屬礦石的地外物源的可能性。
結合華南各岩石類型PGE、Au、Ag的元素相關性圖解(圖4-2、4-3、4-4)可知,各類岩石的IPGE各元素之間、PPGE各元素之間及IPGE和PPGE各元素之間一般不存在相關性,除極個別的元素對出現正相關性,如礦層、黑色頁岩及磷塊岩中的Ru-Os元素對(圖4-2B、圖4-3B、圖4-4B)、黑色頁岩中的Pd-Pt元素對(圖4-3O)及磷塊岩中的Au-Ru元素對(圖4-4L)。以上現象均說明,華南黑色岩系的PGE經過了相當復雜的演化過程。
圖4-2 華南黑色岩系鉑多金屬礦石的中PGE、Au的元素相關性圖解
Fig.4-2 The correlation diagram of PGE and Au of PGE polymetallic deposits of the Lower Cambrian black rock series of South China
圖4-3 華南黑色岩系黑色頁岩的PGE、Au的元素相關性圖解
Fig.4-3 The correlation diagram of PGE and Au of the Lower Cambrian black shale of South China
圖4-4 華南黑色岩系磷塊岩的PGE、Au的元素相關性圖解
Fig.4-4 The correlation diagram of PGE and Au of the Lower Cambrian phosphorite of South China
表4-2 華南下寒武統黑色岩系中各類的PGE、AU和Ag含量(×10-9)及其相關參數Table4-2 Corresponding parameters and compositions of PGE,Au and Ag(×10-9)of the Lower Cambrian black shale South China
續表
註:原始地幔值和C1球粒隕石值引自文獻McDonugh W F,Sun S S,1995;地殼豐度值為大陸地殼整體的元素豐度值(韓吟文等,2003);(Pt+Pd)/(Os+Ir+Ru+Rh);∑PGE*為(Ir+Ru+Rh+Pt+Pd之和。
❼ 鋨187光譜儀能測出來嗎
額,幺八七光譜一能一能測出來嗎?我覺得這個光譜儀光譜儀能是可以測出來的。
❽ 放射性同位素分析測定技術與方法
要利用放射性同位素體系測定岩石礦物的年齡就必須獲得准確的母體、子體的量。由於岩石礦物是幾乎含有周期表中83 個自然產出元素的復雜體系,盡管現代分析方法技術能較為精確地分析這些元素的含量,但一方面相對於年齡測定的准確度與精確度的要求來說,含量分析給出的精確度還是非常低的,另一方面這些元素分析給出的結果無法獲得有關子體同位素的准確量值。如果微量元素平行樣品分析最佳精確度≤10%,在放射性同位素定年中,以埃迪卡拉-寒武紀分界 542Ma 為例,年齡測定誤差在±54Ma,那麼測定的地質事件可能屬於寒武紀/奧陶紀邊界或新元代埃迪卡拉紀。顯然這種分析誤差在放射性同位素定年中是不可接受的。同時自然界一些放射成因子體存在同量異位素,它們疊加在一起將造成對放射成因子體的錯誤定量。
對岩石礦物的放射性定年,首先須將它們完全分解。對於硅酸鹽類礦物一般用氫氟酸+硝酸、硫化物與自然金屬類用硝酸或王水、碳酸鹽類用鹽酸,在聚四氟乙烯密封溶樣罐中加熱分解。由於即使是優級純的化學試劑本身也含有一定的雜質元素,為了降低這些雜質元素及其同位素對樣品結果的影響,所用試劑均應亞沸蒸餾為超純試劑。同時因為空氣中也含有低濃度的金屬元素,實驗室的空氣需進行過濾並保持較室外環境稍高的壓力。所用器皿多由純石英或聚四氟乙烯製成。完全分解後的樣品溶液根據測定對象的不同,要轉移到不同的離子交換樹脂上將待測元素與其他元素分離開,如 Rb-Sr與其他元素的分離由陽離子交換樹脂;Sm-Nd先由陽離子交換樹脂與其他元素分離,而後再由塗有己基二乙基磷酸氫 (HDEHP)的聚四氟乙烯粉末柱上由鹽酸淋洗將 Sm 與 Nd 分離開;Pb 由氫溴酸載入到陰離子交換樹脂上,通過鹽酸淋洗與其他元素分離。其他定年系統,依元素化學性質的不同而採用不同的分離方法,如 Re-Os 在 Carius 管中由鹽酸、硝酸分解樣品,使Os 轉化為 OsO4 由蒸餾而與 Re 分離;Re 則通過萃取與陽離子交換與其他元素分離(杜安道等,2001;屈文俊等,2003)。
為了准確獲得母體、子體元素含量,通過在樣品中定量加入人工富集某一同位素的相應元素稀釋劑後進行分離測定,這種方法稱為同位素稀釋法 (陳岳龍等,2005),由這種方法測得的母體、子體元素含量精確度可達千分之幾,遠較其他分析方法的精確度高。
此外,一些特別的同位素體系可以通過樣品先在反應堆中照射,將母體中的某一同位素轉換成同量異位素,從而將母體、子體的測定在一次處理中完成。如將鉀在反應堆中照射後,其中的39 K 轉變為39 Ar,由於在自然界中39 K、40 K 的豐度比是恆定的,測定出39 K的含量也就確定了40 K的含量。而39 Ar可與40 K 的放射成因40 Ar 子體在同一體系中完成測定。類似地還有Re-Os體系。
分離純化後的單個元素要准確獲得母體、子體元素的含量及子體中相應同位素的量就必須進行質譜分析。質譜分析就是將純化後的單一元素載入在質譜計離子源的燈絲上,這種燈絲一般為錸帶或鉭帶,通過增高燈絲電流使載入在其上的被分析元素發生電離形成帶電粒子。這些帶電粒子通過靜電分析系統後到達扇形磁場中,通過磁場將不同質/荷比的粒子分離開,在信號接收端由法拉第杯或光電倍增管、電子倍增器記錄不同質/荷比的離子流強度,即可得到相應同位素的量值。其原理如圖6-2、式 (6-11)所示。
圖6-2 扇形磁場質譜計基本結構示意圖
實心圓與空心圓分別代表元素的輕、重同位素
地球化學
式中:r為質荷比為m/e的帶電粒子運動半徑;H為磁場強度;V為靜電分析系統的電壓。
質譜計一般發射出來的是正離子,通常稱為熱離子質譜計 (TIMS)。某些難電離為正離子的元素,如鋨,形成氧化物後更容易電離為負離子。這種對負離子進行靜電分析的極性與熱離子質譜計相反,稱為負熱離子質譜計 (N-TIMS)。
離子源電離過程中,由於較輕的同位素相對於重同位素具較低的電離能,從而優先電離,造成測定過程隨時間輕同位素電離越來越少、重同位素越來越多,這就是儀器測定過程中的同位素分餾效應。這種效應不校正,將會造成同位素分析中高達 1%的不可接受誤差。這種分餾效應對於具有三個以上同位素,且其中兩個自地球形成以來沒有其他因素造成其同位素豐度發生變化的元素,可利用這兩個同位素的理論值與實際測定值之間的差別進行分餾校正,稱為內部分餾校正。以鍶為例,在自然界有84 Sr、86 Sr、87 Sr、88 Sr 這 4 個同位素,其中87 Sr由87 Rb 的衰變而造成豐度有變化,但自地球形成以來86 Sr、88 Sr 的豐度沒有其他因素使其增加或減少,因此86 Sr/88 Sr 是恆定的,國際上公認值為0.1194。將質譜測量中每次觀測到的86Sr/88Sr比值與0.1194的偏差再除以相應同位素的質量差即可得到分餾因子 (F),即:
地球化學
86 Sr、88 Sr的質量差為1.996 ,獲得86 Sr/88 Sr的觀測值即可計算出單位質量分餾因子F ,由實測的( 87 Sr/86 Sr) obs可由式(613)計算出真實的( 87 Sr/86 Sr) true ,式中86 Sr、87 Sr的質量差Δmass=1.000。
地球化學
這種分餾校正可使87 Sr/86 Sr比值的內部分析精確度從大約1%提高到優於0.01%。這種分餾校正方式稱為線性規律校正,對於一些更輕的同位素由指數分餾規律校正更為符合實際 (陳岳龍等,2005)。
對鉛同位素分析或銣同位素稀釋法測定無法使用內部分餾校正,這是因為鉛的4 個同位素中有3 個具放射成因組分的影響,而不具固定的同位素比值;而銣只有 2 個同位素,加入稀釋劑後這兩個同位素的比值不同於天然體系的。在這種情況下,必須使用外部分餾校正。外部校正有兩種方法,一是通過標准樣品;二是通過加入雙稀釋劑到樣品中達到間接的內部分餾校正。
由於同位素比值可以方便地校正測定過程中的同位素分餾影響,對於式 (6-10)在實際應用過程中均除以相應子體的某一穩定同位素而表示為同位素比值的關系。以 Sr 為例,可以表示為
地球化學
如果一組樣品 (3 個以上)是同時形成的且具共同來源,它們形成後直到分析測定時體系始終處於封閉狀態,它們在以母體/子體元素某同位素比值為橫坐標、放射成因子體同位素/子體元素某同位素比值為縱坐標的圖上應形成線性分布,該線性分布的斜率m (=eλt-1)即可解出這一組樣品的年齡,因此稱為等時線;截距即為它們共同的初始子體同位素比值。
❾ 貴金屬的分析方法有誰知道嗎
貴金屬從方法的角度上看,是需要通過富格林進行科學客觀的分析才能有正確的認知的。
❿ 鋶試金富集-微堆中子活化測定鉑、鈀、銥、銠、鋨、釕
方法提要
用鎳鋶試金富集鉑族元素,鎳扣用(1+1)HCl溶解後制備靶樣,送入反應堆中輻照。經適當時間的冷卻,用γ能譜儀測量被測核素的特徵γ峰。
方法適用於地球化學勘查水系沉積物、土壤、岩石等樣品中鉑、鈀、釕、銠、鋨、銥的測定。方法的檢出限w(B):Pt0.6×10-9、Pd0.46×10-9、Ru0.6×10-9、Rh0.05×10-9、Os0.27×10-9、Ir0.006×10-9。
儀器與裝置
微型核反應堆中子通量1×1012n·cm-2·s-1。
快速氣動樣品傳輸系統。
數字多道γ能譜儀系統。
同軸高純鍺探測器對60Co1332keV相對效率大於30%,解析度為小於2.0keV,峰康比>50∶1。
平面鍺探測器。
低本底鉛室。
試劑
鹽酸。
鋶試金試劑見64.2.1.2鋶試金。
鉑、鈀、銥、銠、釕標准儲備溶液ρ(B)=100.0μg/mL配製方法同64.3.1。
鋨標准儲備溶液ρ(Os)=100.0μg/mL稱取0.1154g光譜純氯鋨酸銨[(NH4)2Os(H2O)Cl5]置於200mL燒杯中,加入0.2~0.3mg(NH4)2Fe(SO4)2和25mL水,待鹽類溶解後,加25mLH2SO4,在電熱板上加熱至微冒白煙,再繼續5min。取下,冷卻,用水稀釋至500mL。
混合標准溶液由標准儲備溶液逐級稀釋,並配製成Pd、Pt為5.0μg/mL,Ir、Os、Rh、Ru為1.0μg/mL混合工作溶液。
分析步驟
稱取20~50g(精確至0.1g)試樣,按64.2.1.2鋶試金的操作步驟處理,將粉化後的鎳扣用鹽酸溶解後,取下,稍冷,趁熱用微孔(0.45μm)濾膜過濾,用(2+98)熱HCl溶液洗滌殘渣,再用熱水沖洗殘渣,將濾膜烘乾,用處理後的聚乙烯薄膜包裝成1cm×1cm的靶樣,裝入樣品盒,用快速氣動裝置送入反應堆中輻照。輻照後的試樣經過適當時間的冷卻,用γ能譜儀測量被測核素的特徵γ峰,由IAE/SPA分析軟體進行譜分析和數據處理,相對法計算分析結果。測量條件見表64.3,鉑族元素分析所用核參數見表64.4。
表64.3 照射、測量條件
注:104Rh是用平面鍺探測器測量的,其他均用高純鍺探測器測量。
表64.4核素參數
注意事項
1)試金扣要粉碎得細一些,掌握好溶解時間,時間太短,扣中的雜質溶解不完全,對測定造成影響;時間太長,貴金屬硫化物長期與熱HCl溶液接觸,不可避免地造成了貴金屬的損失。
2)金對鉑的干擾的校正:
測定Pt是用核素199Au的158keVγ峰,其核反應如下:
198Pt(n,γ)→199Pt→199Au,而197Au(n,γ)→198Au(n,γ)→199Au
顯然Au產生的199Au對Pt測定有正干擾。因此應用金標准,跟著試樣一起照射,計算Au對Pt的干擾系數k,用以下公式對Pt進行校正:
w(Pt)=w'(Pt)—k×w(Au)式中:w(Pt)為校正後Pt含量;k為Au對Pt的干擾系數;w'(Pt)為校正前Pt含量;w(Au)為Au的含量。