① 通過直接感知的現象,推測無法直接感知的事實。這是物理學中常用方法,這種方法叫什麼你能舉出有關例子
轉換法,物理學中對於一些看不見摸不著的現象或不易直接測量的物理量,通常用一些非常直觀的現象去認識或用易測量的物理量間接測量,這種研究問題的方法叫轉換法。
實例
物體發生形變或運動狀態改變可證明一些物體受到力的作用;馬德堡半球實驗可證明大氣壓的存在;霧的出現可以證明空氣中含有水蒸氣;影子的形成可以證明光沿直線傳播;月食現象可證明月亮不是光源;奧斯特實驗可證明電流周圍存在著磁場。
指南針指南北可證明地磁場的存在;鉛塊實驗可證明分子間存在著引力;運動的物體能對外做功可證明它具有能;可以通過電磁鐵吸引鐵釘的多少來顯示電磁鐵的磁性強弱;可以通過敲動音叉所引起的乒乓球的彈開來說明一切發聲體都在振動等。
(1)奧斯特實驗什麼科學研究方法擴展閱讀
常用的物理方法
1、實驗法
實驗法就是利用有關的器材或設備,通過仔細的觀察,收集相關的數據,對數據進行科學的處理,得出正確的結論或答案。我們科學研究,特別是物理研究的一種最基本的方法。很多偉大的發明和發現都是在實驗中發現的。
例如,影響感應電動勢大小的因素,就是通過實驗去探究。我們用條形磁鐵、螺線管、電流表、導線等器材。實驗時我們將兩導線和螺線管兩接線柱相連接,另一端與電流表接線柱連接。實驗中先固定其中一個變數,觀察另外一個變數,看看感應電動勢的大小如何變化。
①先用1根條形磁鐵快速插入或拔出螺線管,電流表指針偏轉,但角度較小;再用2根條形磁鐵快速插入或拔出螺線管,電流表也偏轉,此時的角度比1根時大得多。
為什麼會這樣?這是因為當線圈的匝數一定時,兩次都快速插入或拔出,可以認為兩次的時間都相等;而第二次用兩根磁鐵,則可以認為磁感應強度B增加了,φ=BS,磁通量φ增加了,這說明了感應電動勢的大小與磁通量有直接的關系。
②我們始終用1根條形磁鐵。實驗時,我們先將條形磁鐵緩慢插入螺線管中,看到電流表指針偏轉,角度較小;再用相同的條形磁鐵快速插入螺線管中,我們發現此時電流表指針的偏轉角度比慢速插入時更大。當其它條件都相同時,快插入時間短,慢插入時間長。這就說明了時間T也是直接影響了感應電動勢大小的因素。
因此,通過這個實驗我們很容易地歸納總結得出結論:電路中感應電動勢的大小跟穿過這一電路的磁通量的變化率成正比。這就是法拉第電磁感應定律。
2、分析法
分析法就是研究者用眼睛仔細觀察物體的運動情況、狀態和過程等表面現象,通過運用大腦的抽象思維能力、邏輯推理能力等,深入揭示物體間,各部分之間內在的、本質的必然的聯系,即規律性。並通過定律、定理等,找到解決問題的一種方法。物理學上的分析包括物理量的分析、物理對象的分析和物理過程的分析。
物理對象的分析出現在以下情況:若研究對象是由幾個相互聯系的物體組成,則可以將其中的一個或幾個物體劃分出來,單獨研究。
例如,靜力學中研究一個物體的受力情況時,先將物體假想與周圍物體隔離開來,按重力、彈力、摩擦力、電場力、分子力或磁場力的順序分析受力;在動力學問題中,先分析受力後,列出ΣF=ma再求出a或其中某個力;在較為復雜的運動中使用動能定理或動量定理時,先將物體隔離,分析出每個力的做功或沖量。
類比法 類比法是人類認識客觀世界的一種基本思維方法。所謂類比法是根據兩個或兩類對象之間在某些方面有相同或相似的屬性,從而推出他們在其他方面也可能具有相同或相似的屬性的一種推理方法,它不同於歸納、演繹,它是從特殊到特殊的推理方法。
歷史上,開普勒、麥克斯韋、愛因斯坦等許多著名科學家都曾經對類比法作出過很高的評價。類比法是一種物理學的研究方法,也是一種科學方法論,還是一種非常好的教學和學習方法,在物理學的教學中具有極為重要的地位。
3、類比法
在物理學的研究和發展中,無論是對單個問題的解決,還是某些新概念的建立,乃至未知領域的探究,都滲透著類比思想與方法。類比法的獨特性,使它對科學的發展起到積極推動作用,在物理學的研究的發展中占重要的地位。類比法是物理學研究中的一種重要方法。
物理學研究沒有固定的模式,只能在已有認識的基礎上一步一步摸索前進。在科學觀測和實驗手段缺乏,理論指導和感性認識不足,歸納推理和演繹推理不適用的情況下,類比法則可以充分發揮優勢,啟發思路,提供線索,指明科學研究的方向,使研究工作少走彎路。
例如,1935年日本物理學家湯川秀樹把核力與電磁力相類比,提出了核子通過核力場,由一方放出粒子,另一方吸收粒子而相互作用,並且估算出這種粒子的質量。1974年,鮑威爾發現了這種粒子的存在,使陷入困境的核力研究又充滿了生機。
又例如,法國科學家庫侖用扭秤測定兩帶電球間的作用力時,發現兩帶電球間的作用力的定量關系與牛頓萬有引力定律F=G的數學關系相似,他大膽地把靜電力的定量關系類比於萬有引力公式而得出靜電力F=k,後來被許多科學實驗所證實,於1785年確定為庫侖定律。
在高中的物理教學和物理研究中,還有替換法、等效法、圖像法等方法也是高中物理教學、物理學習中常用的方法。
參考資料來源:網路-轉換法
參考資料來源:網路-物理方法
② 奧斯特實驗 使用了什麼重要的物理方法
奧斯特將導線的一端和伽伐尼電池正極連接,導線沿南北方向平行地放在小磁針的上方,當導線另一端連到負極時,磁針立即指向東西方向。把玻璃板、木片、石塊等非磁性物體插在導線和磁針之間,甚至把小磁針浸在盛水的銅盒子里,磁針照樣偏轉。 奧斯特認為在通電導線的周圍,發生一種「電流沖擊」。這種沖擊只能作用在磁性粒子上,對非磁性物體是可以穿過的。磁性物質或磁性粒子受到這些沖擊時,阻礙它穿過,於是就被帶動,發生了偏轉。 導線放在磁針的下面,小磁針就向相反方向偏轉;如果導線水平地沿東西方向放置,這時不論將導線放在磁針的上面還是下面,磁針始終保持靜止。 他認為電流沖擊是沿著以導線為軸線的螺旋線方向傳播,螺紋方向與軸線保持垂直。這就是形象的橫向效應的描述。 奧斯特對磁效應的解釋,雖然不完全正確,但並不影響這一實驗的重大意義,它證明了電和磁能相互轉化,這為電磁學的發展打下基礎。
③ 什麼是奧斯特實驗
奧斯特實驗:
1820年丹麥的物理學家奧斯特(Oersted,1777~1851)在做實驗時偶然發現:當導線中通過電流時,旁邊的小磁針發生了偏轉。奧斯特實驗用的是一根直導線,後來科學家們又把導線彎成各種形狀,通電後研究電流的磁場。通電導線的周圍存在磁場,磁場的方向與電流的方向有關,這種現象叫做電流的磁效應。
希望幫助到你,若有疑問,可以追問~~~
祝你學習進步,更上一層樓!(*^__^*)