1. 當我們談到「差異分析」常用的統計方法有哪些
有對比分析 比例分析 速度分析 動態分析 彈性分析 因素分析 相關分析 模型分析 綜合評價分析
2. 分析數據的差異性用什麼方法
很多,t檢驗,方差分析等,有需要數據分析+q
3. 常用的分析方法有哪些
問題一:常見的數據分析方法有哪些 1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的 *** 分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
3、相關分析(Correlation Analysis)
相關分析(correlation *** ysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence *** ysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,…,Xk)變數的相依關系的統計分析方法。回歸分析(regression *** ysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。這個 還需要具體問題具體分析
問題二:在解決實際問題時常用的分析方法有哪些 在實際工作中,通常採用的技術分析方法有對比分析法,因素分析法和相關分析法等三種.
1、對比分析法
對比分析法是根據實際成本指標與不同時期的指標進行對比,來揭示差異,分析差異產生原因的一種方法.在對比分析中,可採取實際指標與計劃指標對比,本期實際與上期(或上年同期,歷史最好水平)實際指標對比,本期實際指標與國內外同類型企業的先進指標對比等形式.通過對比分析,可一般地了解企業成本的升降情況及其發展趨勢,查明原因,找出差距,提出進一步改進的措施.在採用對比分析時,應注意本期實際指標與對比指標的可比性,以使比較的結果更能說明問題,揭示的差異才能符合實際.若不可比,則可能使分析的結果不準確,甚至可能得出與實際情況完全不同的相反的結論.在採用對比分析法時,可採取絕對數對比,增減差額對比或相對數對比等多種形式.
比較分析法按比較內容(比什麼)分為:
(1)比較會計要素的總量
(2)比較結構百分比
(3)比較財務比率
2、因素分析法
因素分析法是將某一綜合性指標分解為各個相互關聯的因素,通過測定這些因素對綜合性指標差異額的影響程度的一種分析方法.在成本分析中採用因素分析法,就是將構成成本的各種因素進行分解,測定各個因素變動對成本計劃完成情況的影響程度,並據此對企業的成本計劃執行情況進行評價,並提出進一步的改進措施.
採用因素分析法的程序如下:
(1)將要分析的某項經濟指標分解為若干個因素的乘積.在分解時應注意經濟指標的組成因素應能夠反映形成該項指標差異的內在構成原因,否則,計算的結果就不準確.如材料費用指標可分解為產品產量,單位消耗量與單價的乘積.但它不能分解為生產該產品的天數,每天用料量與產品產量的乘積.因為這種構成方式不能全面反映產品材料費用的構成情況.
(2)計算經濟指標的實際數與基期數(如計劃數,上期數等),從而形成了兩個指標體系.這兩個指標的差額,即實際指標減基期指標的差額,就是所要分析的對象.各因素變動對所要分析的經濟指標完成情況影響合計數,應與該分析對象相等.
(3)確定各因素的替代順序.在確定經濟指標因素的組成時,其先後順序就是分析時的替代順序.在確定替代順序時,應從各個因素相互依存的關系出發,使分析的結果有助於分清經濟責任.替代的順序一般是先替代數量指標,後替代質量指標;先替代實物量指標,後替代貨幣量指標;先替代主要指標,後替代次要指標.
(4)計算替代指標.其方法是以基期數為基礎,用實際指標體系中的各個因素,逐步順序地替換.每次用實際數替換基數指標中的一個因素,就可以計算出一個指標.每次替換後,實際數保留下來,有幾個因素就替換幾次,就可以得出幾個指標.在替換時要注意替換順序,應採取連環的方式,不能間斷,否則,計算出來的各因素的影響程度之和,就不能與經濟指標實際數與基期數的差異額(即分析對象)相等.
(5)計算各因素變動對經濟指標的影響程度.其方法是將每次替代所得到的結果與這一因素替代前的結果進行比較,其差額就是這一因素變動對經濟指標的影響程度.
(6)將各因素變動對經濟指標影響程度的數額相加,應與該項經濟指標實際數與基期數的差額(即分析對象)相等.
上述因素分析法的計算過程可用以下公式表示:
設某項經濟指標N是由A,B,C三個因素組成的.在分析時,若是用實際指標與計劃指標進行對比,則計劃指標與實際指標的計算公式如下:
計劃指標N0=A0×B0×C0
實際指標N1=A1×B1×C1
分析對象為N1-N0的差額.
採用因素分析法測定各因素變動對指標N的影響程度時,......>>
問題三:常用的分析方法有哪些 目前系統安全分析法有20餘種,其中常用的分析法是:
(1)安全檢查表(safety check list)
(2)初步危險分析(PHA)
(3)故障類型、影響及致命度分析(FMECA)
(4)事件要分析(ETA)
(5)事故樹分析(FTA)
問題四:常用的分析方法及模型有哪些? 不細說了,直接網路搜索此書――《贏取競爭的100+N工具箱(mba原版1862頁).pdf》 目錄太長,涉及版權也不能再上圖了
下載不到的評論留下郵箱
問題五:常用的葯物分析方法有哪些 重量分析法
酸鹼滴定法
沉澱滴定法
氧化還原滴定法
非水滴定法
葯物儀器分析法
紫外分光光度法
質譜法
核磁共振波譜法
薄層色譜法
氣相色譜法
高效液相色譜法
電泳法和PH值測定法
物理常數測定法
問題六:數據分析方法有哪些 一、描述性統計
描述性統計是一類統計方法的匯總,揭示了數據分布特性。它主要包括數據的頻數分析、數據的集中趨勢分析、數據離散程度分析、數據的分布以及一些基本的統計圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹法。
2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以在做數據分析之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
二、回歸分析
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律。
1. 一元線性分析
只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
2. 多元線性回歸分析
使用條件:分析多個自變數X與因變數Y的關系,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
3.Logistic回歸分析
線性回歸模型要求因變數是連續的正態分布變數,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權回歸等。
三、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
1. 單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系。
2. 多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3. 多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
4. 協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,降低了分析結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法。
四、假設檢驗
1. 參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。
2. 非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位D是否相同,總體分布是否正態)進行檢驗。
適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。
1)雖然是連續數據,但總體分布形態未知或者非正態;
2)總體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
問題七:常用的數據分析方法有哪些? 10分 一、掌握基礎、更新知識。
基本技術怎麼強調都不過分。這里的術更多是(計算機、統計知識), 多年做數據分析、數據挖掘的經歷來看、以及業界朋友的交流來看,這點大家深有感觸的。
資料庫查詢―SQL
數據分析師在計算機的層面的技能要求較低,主要是會SQL,因為這里解決一個數據提取的問題。有機會可以去逛逛一些專業的數據論壇,學習一些SQL技巧、新的函數,對你工作效率的提高是很有幫助的。
統計知識與數據挖掘
你要掌握基礎的、成熟的數據建模方法、數據挖掘方法。例如:多元統計:回歸分析、因子分析、離散等,數據挖掘中的:決策樹、聚類、關聯規則、神經網路等。但是還是應該關注一些博客、論壇中大家對於最新方法的介紹,或者是對老方法的新運用,不斷更新自己知識,才能跟上時代,也許你工作中根本不會用到,但是未來呢?
行業知識
如果數據不結合具體的行業、業務知識,數據就是一堆數字,不代表任何東西。是冷冰冰,是不會產生任何價值的,數據驅動營銷、提高科學決策一切都是空的。
一名數據分析師,一定要對所在行業知識、業務知識有深入的了解。例如:看到某個數據,你首先必須要知道,這個數據的統計口徑是什麼?是如何取出來的?這個數據在這個行業, 在相應的業務是在哪個環節是產生的?數值的代表業務發生了什麼(背景是什麼)?對於A部門來說,本月新會員有10萬,10萬好還是不好呢?先問問上面的這個問題:
對於A部門,
1、新會員的統計口徑是什麼。第一次在使用A部門的產品的會員?還是在站在公司角度上說,第一次在公司發展業務接觸的會員?
2、是如何統計出來的。A:時間;是通過創建時間,還是業務完成時間。B:業務場景。是只要與業務發接觸,例如下了單,還是要業務完成後,到成功支付。
3、這個數據是在哪個環節統計出來。在注冊環節,在下單環節,在成功支付環節。
4、這個數據代表著什麼。10萬高嗎?與歷史相同比較?是否做了營銷活動?這個行業處理行業生命同期哪個階段?
在前面二點,更多要求你能按業務邏輯,來進行數據的提取(更多是寫SQL代碼從資料庫取出數據)。後面二點,更重要是對業務了解,更行業知識了解,你才能進行相應的數據解讀,才能讓數據產生真正的價值,不是嗎?
對於新進入數據行業或者剛進入數據行業的朋友來說:
行業知識都重要,也許你看到很多的數據行業的同仁,在微博或者寫文章說,數據分析思想、行業知識、業務知識很重要。我非常同意。因為作為數據分析師,在發表任何觀點的時候,都不要忘記你居於的背景是什麼?
但大家一定不要忘記了一些基本的技術,不要把基礎去忘記了,如果一名數據分析師不會寫SQL,那麻煩就大了。哈哈。。你只有把數據先取對了,才能正確的分析,否則一切都是錯誤了,甚至會導致致命的結論。新同學,還是好好花時間把基礎技能學好。因為基礎技能你可以在短期內快速提高,但是在行業、業務知識的是一點一滴的積累起來的,有時候是急不來的,這更需要花時間慢慢去沉澱下來。
不要過於追求很高級、高深的統計方法,我提倡有空還是要多去學習基本的統計學知識,從而提高工作效率,達到事半功倍。以我經驗來說,我負責任告訴新進的同學,永遠不要忘記基本知識、基本技能的學習。
二、要有三心。
1、細心。
2、耐心。
3、靜心。
數據分析師其實是一個細活,特別是在前文提到的例子中的前面二點。而且在數據分析過程中,是一個不斷循環迭代的過程,所以一定在耐心,不怕麻煩,能靜下心來不斷去修改自己的分析思路。
三、形成自己結構化的思維。
數據分析師一定要嚴謹。而嚴謹一定要很強的結構化思維,如何提高結構化思維,也許只需要工作隊中不斷的實踐。但是我推薦你用mindman......>>
問題八:常用的多元分析方法? 包括3類:①多元方差分析、多元回歸分析和協方差分析,稱為線性模型方法,用以研究確定的自變數與因變數之間的關系;②判別函數分析和聚類分析,用以研究對事物的分類;③主成分分析、典型相關和因素分析,研究如何用較少的綜合因素代替為數較多的原始變數。
多元方差分析
是把總變異按照其來源(或實驗設計)分為多個部分,從而檢驗各個因素對因變數的影響以及各因素間交互作用的統計方法。例如,在分析2×2析因設計資料時,總變異可分為分屬兩個因素的兩個組間變異、兩因素間的交互作用及誤差(即組內變異)等四部分,然後對組間變異和交互作用的顯著性進行F檢驗。
多元方差分析的優點
是可以在一次研究中同時檢驗具有多個水平的多個因素各自對因變數的影響以及各因素間的交互作用。其應用的限制條件是,各個因素每一水平的樣本必須是獨立的隨機樣本,其重復觀測的數據服從正態分布,且各總體方差相等。
多元回歸分析
用以評估和分析一個因變數與多個自變數之間線性函數關系的統計方法。一個因變數y與自變數x1、x2、…xm有線性回歸關系是指: 其中α、β1…βm是待估參數,ε是表示誤差的隨機變數。通過實驗可獲得x1、x2…xm的若干組數據以及對應的y值,利用這些數據和最小二乘法就能對方程中的參數作出估計,記為╋、琛常它們稱為偏回歸系數。
多元回歸分析的優點
是可以定量地描述某一現象和某些因素間的線性函數關系。將各變數的已知值代入回歸方程便可求得因變數的估計值(預測值),從而可以有效地預測某種現象的發生和發展。它既可以用於連續變數,也可用於二分變數(0,1回歸)。多元回歸的應用有嚴格的限制。首先要用方差分析法檢驗自變數y與m個自變數之間的線性回歸關系有無顯著性,其次,如果y與m個自變數總的來說有線性關系,也並不意味著所有自變數都與因變數有線性關系,還需對每個自變數的偏回歸系數進行t檢驗,以剔除在方程中不起作用的自變數。也可以用逐步回歸的方法建立回歸方程,逐步選取自變數,從而保證引入方程的自變數都是重要的。
協方差分析
把線性回歸與方差分析結合起來檢驗多個修正均數間有無差別的統計方法。例如,一個實驗包含兩個多元自變數,一個是離散變數(具有多個水平),一個是連續變數,實驗目的是分析離散變數的各個水平的優劣,此變數是方差變數;而連續變數是由於無法加以控制而進入實驗的,稱為協變數。在運用協方差分析時,可先求出該連續變數與因變數的線性回歸函數,然後根據這個函數扣除該變數的影響,即求出該連續變數取等值情況時因變數的修正均數,最後用方差分析檢驗各修正均數間的差異顯著性,即檢驗離散變數對因變數的影響。
協方差分析兼具方差分析和回歸分析的優點
可以在考慮連續變數影響的條件下檢驗離散變數對因變數的影響,有助於排除非實驗因素的干擾作用。其限制條件是,理論上要求各組資料(樣本)都來自方差相同的正態總體,各組的總體直線回歸系數相等且都不為0。因此應用協方差分析前應先進行方差齊性檢驗和回歸系數的假設檢驗,若符合或經變換後符合上述條件,方可作協方差分析。
判別函數分析
判定個體所屬類別的統計方法。其基本原理是:根據兩個或多個已知類別的樣本觀測資料確定一個或幾個線性判別函數和判別指標,然後用該判別函數依據判別指標來判定另一個個體屬於哪一類。 判別分析不僅用於連續變數,而且藉助於數量化理論亦可用於定性資料。它有助於客觀地確定歸類標准。然而,判別分析僅可用於類別已確定的情況。當類別本身未定時,預用聚類分析先分出類別,然後再進行判別分析。
聚類分析
解決分類問題的一種統計方法。若給定n個觀測對象,每個觀......>>
問題九:常用的數學分析方法有哪些 你問的是什麼層次?
1、數學分析方法的基本內容是數學化、模型化和計算機化。從數學角度看,數學中發現了許多有實用價值的手段,如線性規劃、整數規劃、動態規劃、對策論、排隊論、存貨模型、調度模型、概率統計等等,對定量化的分析與決斷起到了重大的推動作用;從模型化角度看,每一種數學手段都包括了解決決策問題的具體數學模型,人們可以藉助於模型找出自己所需了解的問題的答案;從計算機化的角度看,人們可以借用電子計算機這個快速邏輯計算工具,縮短解決問題的時間,增強預測的精確性。這「三化」是互相聯系的,它們的結合使決策的技術和方法發生了重大變化。
2、另一個層次:待定系數法,換元法,數學歸納法。
問題十:常見的調查方法有哪些 (一)、按調查對象的范圍分,可分為全面調查和非全面調查.
(二)、按調查的連續性來分,可分為一次性調查和經常性調查.
(三)、按調查的組織方式不同,可分為統計報表和專門調查.
(四)、按調查的方法不同,可分為直接觀察法、報告法和詢問法.
4. 差異分析的檢驗方法
眾所周知,當你所自己今年比去年更優秀的時候是不可以隨便吹牛的,請把你在上發文的頻率以及質量擺出來!
面對今年和去年的數據,或許你需要一個統計檢驗的方法...
也就是方差相等,在t檢驗和方差分析中,都需要滿足這一前提條件。在兩組和多組比較中,方差齊性的意思很容易理解,無非就是比較各組的方差大小,看看各組的方差是不是差不多大小,如果差別太大,就認為是方差不齊,或方差不等。如果差別不大,就認為方差齊性或方差相等。當然,這種所謂的差別大或小,需要統計學的檢驗,所以就有了方差齊性檢驗。
在t檢驗和方差分析中,要求樣本是來自正態分布的樣本。以此為前提才可以對樣本的均值進行統計檢驗。檢驗的目的是判斷這兩個樣本是否來自於同一個總體的隨機抽樣結果還是來自完全不同的樣本。另外需要注意的是,如果樣本量大於30,此時樣本的均值也近似服從正態分布,這是我們也可以使用t檢驗。
組間差異檢驗,終於有人講清楚了!
參數檢驗和非參數檢驗的區別:
1 參數檢驗是針對參數做的假設,非參數檢驗是針對總體分布情況做的假設,這個是區分參數檢驗和非參數檢驗的一個重要特徵。 例如兩樣本比較的t 檢驗是判斷兩樣本分別代表的總體的均值是否具有差異,屬於參數檢驗。而兩樣本比較的秩和檢驗(wilcoxcon 檢驗及Mann-Whitney 檢驗)是判斷兩樣本分別代表的總體的位置有無差別(即兩總體的變數值有無傾向性的未知偏離),自然屬於非參數檢驗。
2 二者的根本區別在於參數檢驗要利用到總體的信息(總體分布、總體的一些參數特徵如方差),以總體分布和樣本信息對總體參數作出推斷;非參數檢驗不需要利用總體的信息(總體分布、總體的一些參數特徵如方差),以樣本信息對總體分布作出推斷。
3,參數檢驗只能用於等距數據和比例數據,非參數檢驗主要用於記數數據。也可用於等距和比例數據,但精確性就會降低。
如何理解非參數檢驗
參數檢驗 通常是假設 總體服從正態分布,樣本統計量服從T分布 的基礎之上,對總體分布中一些未知的參數,例如總體均值、總體方差和總體標准差等進行統計推斷。如果總體的分布情況未知,同時樣本容量又小,無法運用中心極限定理實施參數檢驗,推斷總體的集中趨勢和離散程度的參數情況。這時,可以用非參數檢驗,非參數檢驗對總體分布不做假設,直接從樣本的分析入手推斷總體的分布。
與參數檢驗相比,非參數檢驗適用范圍廣,特別適用於小樣本數據、總體分布未知或偏態、方差不齊及混合樣本等各類型數據。
非參數檢驗應用廣,但參數檢驗精確度更高。
採用SPSS進行各項檢驗
方差和T檢驗 的區別在於,對於T檢驗的X來講,其只能為2個類別比如男和女。如果X為3個類別比如本科以下,本科,本科以上;此時只能使用方差分析。
方差分析(Analysis of Variance,簡稱ANOVA) ,又稱「變異數分析」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。
均為無序分類變數
① 卡方檢驗
卡方檢驗常用於分析無序分類變數之間的相關性,也可以用於分析二分類變數之間的關系。但是該檢驗只能分析相關的統計學意義,不能反映關聯強度。因此,我們常聯合Cramer's V檢驗提示關聯強度。
② Fisher精確檢驗
Fisher精確檢驗可以用於檢驗任何R*C數據之間的相關關系,但最常用於分析2*2數據,即兩個二分類變數之間的相關性。與卡方檢驗只能擬合近似分布不同的是,Fisher精確檢驗可以分析精確分布,更適合分析小樣本數據。但是該檢驗與卡方檢驗一樣,只能分析相關的統計學意義,不能反映關聯強度。
(1)從總體中隨機抽取容量為n的一切可能個樣本的平均數之平均數,等於總體的平均數。
(2)從正態總體中,隨機抽取的容量為n的一切可能 樣本平均數 的分布 也呈正態分布。
(3)雖然總體不是正態分布,如果樣本容量較大,反映總體μ和σ的 樣本平均數 的抽樣分布,也接近於正態分布。
原始數據比較符合正態分布,那麼推薦使用T檢驗,如果偏離較大,那麼推薦使用非參數檢驗,如果樣本量較大,那麼兩種檢驗方法都是可以的。
5. 差異統計分析 怎樣做
差異分析過程與方法如下:
1、均值描述—Means過程
定義:Means過程是SPSS計算各種基本描述 統計量的過程。Means過程其實就是按照用戶指 定條件,對樣本進行分組計算均數和標准差,如 按性別計算各組的均數和標准差。
2、t檢驗
t檢驗就是檢驗統計量為t的假設檢驗。 用於檢驗兩個變數之間的差異。
假設檢驗的一般步驟: • 根據實際問題提出原假設H0與備擇假設 H1。 • 選擇統計量t作為檢驗統計量,並在H0成立的條件下確定t的 分布。 • 選擇顯著性水平 ,並根據統計量t的分布查表確定臨界值及 H0的拒絕域。 • 根據樣本值計算統計量的值,並將其與臨界值作比較。 • 下結論:若統計量的值落入拒絕域內,就拒絕H0;否則,不 拒絕H0。
3、方差分析
方差分析基本概念
方差分析是R.A.Fister發明的,用於兩個及兩個以上樣 本均數差別的顯著性檢驗。方差分析方法在不同領域的各個 分析研究中都得到了廣泛的應用。從方差入手的研究方法有 助於找到事物的內在規律性。
6. 怎樣分析兩組數據的差異
一、如圖,比較兩組數據之間的差異性。
(6)差異分析試驗常用哪些方法擴展閱讀:
一、分析數據
分析數據是將收集的數據通過加工、整理和分析、使其轉化為信息,通常用方法有:
老七種工具,即排列圖、因果圖、分層法、調查表、散步圖、直方圖、控制圖;
新七種工具,即關聯圖、系統圖、矩陣圖、KJ法、計劃評審技術、PDPC法、矩陣數據圖;
二、過程改進
數據分析是質量管理體系的基礎。組織的管理者應在適當時,通過對以下問題的分析,評估其有效性:
①提供決策的信息是否充分、可信,是否存在因信息不足、失准、滯後而導致決策失誤的問題;
②信息對持續改進質量管理體系、過程、產品所發揮的作用是否與期望值一致,是否在產品實現過程中有效運用數據分析;
③收集數據的目的是否明確,收集的數據是否真實和充分,信息渠道是否暢通;
④數據分析方法是否合理,是否將風險控制在可接受的范圍;
⑤數據分析所需資源是否得到保障。
7. 試驗結果的分析方法有哪些說明其適用范圍
答:1.直接分析法,在試驗范圍中的全部試驗結果中,通過直接對比選取最准點,由於最佳結果是直接觀察得到的,故比較可靠;
2.因素-指標關系趨勢圖分析法,即計算因素各個水平的平均試驗指標,以因素的水平為橫坐標,以平均指標為縱坐標,繪制因素-指標關系趨勢圖,然後找出各因素水平與試驗指標的變化規律;
3.極差分析法,這里的極差是指因素的各個水平下的試驗,指標最大值與最小值之間的差值,極差的大小可以反映出試驗中各因素所起作用的大小,通常,極差大的為主要因素,所以根據極差大小判斷因素的主次;
4.方差分析法,設法從整個試驗結果的差異中,將因各種條件因素所引起的方差與因試驗誤差所引起的方差分離出來,然後檢驗各種條件因素對試驗結果的影響是否顯著,方差方法是定量分析,它意義明確,可比性強;
5.回歸分析法,根據實驗結果確定指標與因素之間的定量關系,建立回歸方程.
8. 我想考察不同產地的樣品中某一成分是否有差異該用什麼統計方法
檢驗差異的方法有三種,非參數秩和檢驗、卡方檢驗和方差分析。根據不同的數據類型選擇不同的方法。
非參數秩和檢驗用於定類-定序數據分析,例如不同地方人的考試成績等級是否存在差異,某一成分應該不存在等級增減情況,所以應該不能用這種方法。
卡方檢驗用於定類-定類數據分析,例如不同性別的人(男,女)患有高血壓(是,否)是否存在差異,主觀判斷提問者「成分差異應該也不是屬於這種??
方差分析用於定類-數值型數據分析,例如不同地方的人的身高是否存在差別,成分差異是否屬於數值型提者自己判斷一下?
因為不確定是哪種數據,保險起見附上卡方檢驗和方差分析的方法(使用軟體spss)
1、卡方檢驗
(1)操作:分析-描述統計-交叉表(統計量勾選卡方;單元格勾選百分比中的行)
(2)結果分析:先看顯著值P值,如果p小於0.05則認為存在顯著差異,大於0.05,則不存在顯著差異。如果存在顯著差異了,就看交叉表每個情況所佔的百分比,判斷誰比誰高或低。(一般來說顯著值就是皮爾遜卡方對應的顯著性,下表中為0.000,但是根據下圖藍色的框,如果有超過20%的期望計數小於5的話就不能看皮爾遜卡方的,這個時候要看費希爾確切概率,怎麼看呢?要回到之前操作那裡,做交叉表分析的時候,點擊右邊的「精確」然後在框裡面點擊「精確」這個時候就會出現費希爾確切概率,操作如下下圖,費希爾確切系數小於0.05則存在顯著差異,否則不存在顯著差異)
③多重比較
得出上述結論之後,不能簡單根據均值與標准差下定論,還需要看多重比較
兩兩比較,P<0.05存在顯著差異;P>0.05不存在顯著差異
④在多重比較表格得知哪兩個因素之間存在顯著差異之後,再回到描述表格,下結論:誰顯著小於(大於)誰(也可看均值圖)
9. 比較實驗前後差異我們一般選用哪種方法
比較實驗前後差異我們一般選用以下兩種方法:
1、也是國內最常用的方法,就是實驗前做一次獨立樣本t檢驗,以確保實驗前你的干預組和控制組的數據是不一樣的,
2、也是國外較為常用的方法,較第一種方法來說較為標准,不會犯一類錯誤,但仍有一定的爭議,即使用兩因素重復測量方差分析來進行測量,因為只有兩個水平,因此有人認為不可以做重復測量方差分析,但也有人認為只需要忽略掉球形檢驗即可使用,接下來我將會逐步教大家如何進行兩因素重復測量方差分析以及如何查看結果。