導航:首頁 > 研究方法 > 數據分析的基本方法有哪些

數據分析的基本方法有哪些

發布時間:2022-01-19 09:15:51

1. 常用的數據分析方法哪些

①對比分析法

通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。


②分組分析法


分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。


③預測分析法


預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。


⑤AB測試分析法


AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

2. 做數據分析時的常用方法有哪些

數據分析的三個常用方法有數據趨勢分析、數據對比分析及數據細分分析。


1、數據趨勢分析


趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。


2、數據對比分析


對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。


3、數據細分分析


在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

3. 大數據分析的基本方法有哪些

1.可視化分析


不管是對數據分析專家還是普通用戶,數據可視化是數據分析工具最基本的要求。可視化可以直觀的展示數據,讓數據自己說話,讓觀眾聽到結果。


2. 數據挖掘演算法


可視化是給人看的,數據挖掘就是給機器看的。集群、分割、孤立點分析還有其他的演算法讓我們深入數據內部,挖掘價值。這些演算法不僅要處理大數據的量,也要處理大數據的速度。


3. 預測性分析能力


數據挖掘可以讓分析員更好的理解數據,而預測性分析可以讓分析員根據可視化分析和數據挖掘的結果做出一些預測性的判斷。


4. 語義引擎


由於非結構化數據的多樣性帶來了數據分析的新的挑戰,需要一系列的工具去解析,提取,分析數據。語義引擎需要被設計成能夠從“文檔”中智能提取信息。


5. 數據質量和數據管理


數據質量和數據管理是一些管理方面的最佳實踐。通過標准化的流程和工具對數據進行處理可以保證一個預先定義好的高質量的分析結果。

4. 常用數據分析處理方法有哪些

1、漏斗分析法


漏斗分析法能夠科學反映用戶行為狀態,以及從起點到終點各階段用戶轉化率情況,是一種重要的分析模型。漏斗分析模型已經廣泛應用於網站和APP的用戶行為分析中,例如流量監控、CRM系統、SEO優化、產品營銷和銷售等日常數據運營與數據分析工作中。


2、留存分析法


留存分析法是一種用來分析用戶參與情況和活躍程度的分析模型,考察進行初始行為的用戶中,有多少人會進行後續行為。從用戶的角度來說,留存率越高就說明這個產品對用戶的核心需求也把握的越好,轉化成產品的活躍用戶也會更多,最終能幫助公司更好的盈利。


3、分組分析法


分組分析法是根據數據分析對象的特徵,按照一定的標志(指標),把數據分析對象劃分為不同的部分和類型來進行研究,以揭示其內在的聯系和規律性。


4、矩陣分析法


矩陣分析法是指根據事物(如產品、服務等)的兩個重要屬性(指標)作為分析的依據,進行分類關聯分析,找出解決問題的一種分析方法,也稱為矩陣關聯分析法,簡稱矩陣分析法。

5. 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

6. 數據分析方法都有哪些

大家都知道,每個人都有自己的想法,在數據分析領域也是一樣的。不同的數據分析師對於數據分析的方法都有自己的見解,而數據分析的方法中最重要的作用就是能夠把某一事物的數據轉化成平常人都能夠清楚明白的見解,如果做到了這些,我們可以說這就是一個成功的數據分析師。那麼對於數據分析師來說,使用一些工具可以更好地理解和分析數據的價值,有一個完整的數據分析體系是一個至關重要的事情,而常用的四種數據分析方法有:描述型分析、診斷型分析、預測型分析和指令型分析。那麼這些數據分析方法具體是什麼內容呢?下面我們就簡單的給大家介紹一下。
首先我們說一下描述型分析,描述性分析就是表達發生了什麼?我們在分析事情之前,首先會考慮發生了什麼?這樣我們才會有目標的分析事情,而描述型分析就是這樣的,描述型分析師一個比較常見的分析方法, 在很多業務中用描述性分析進行對企業的重要指標個業務進行衡量,通過利用可視化工具能夠有效的挖掘所提供信息的價值。
然後我們說一說診斷型分析,診斷性分析就是表達為什麼會發生?當我們發現的事情發生的開始,我們就要對事情進行進一步的研究,探究事情發生的原因。於是就需要描述性的數據分析的下一步步驟,那就是診斷型分析,而診斷分析能夠使數據分析師深入的分析數據,這樣才能夠有機會去獲得數據的核心內容。
接著我們說一下預測型分析,預測性分析就是表達可能發生什麼?當我們分析完了事情發生的原因,需要對事情的進行預判,很多的事情都是有預兆性質的,所以我們需要對事情進行預測性分析,預測型分析主要就是用於進行預測分析,事情未來發生的可能性可以轉變成一種可以量化的值,或者是預估事情發生的時間,可以使用各種可變的數據進行預測,在不確定的環境下,預測性分析可以做出更好的決定,很多領域都用到了預測模型。
而指令型分析就是表達需要做什麼?上述提到的三種分析都是對於事情的分析,但不是對於解決事情做出分析,我們對事情的分析的目的就是為解決事情,通過用戶的實際情況確定最佳的解決方案,這樣才能夠為事情做出最適合的解決方案。這種分析就是指令性分析。
通過上面對數據分析方法的描述,相信大家已經了解了數據分析方法了吧?大家在進行數據分析的時候用到上面提到的數據分析方法,這樣才能夠對於某種事情進行分析,同時在大家進行分析的時候可以根據上面的順序進行分析,這樣才能夠分析出一個比較准確地結果,希望大家能夠熟練運用好這些數據分析方法。

7. 數據分析的基本方法有哪些

數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

8. 數據分析必備的方法有哪些

一、細分剖析


細分剖析是數據剖析的根底,單一維度下的目標數據信息價值很低。細分辦法能夠分為兩類,一類是逐步剖析,比方:來北京市的訪客可分為向陽,海淀等區;另一類是維度穿插,如:來自付費SEM的新訪客。


細分用於處理一切問題。比方漏斗轉化,實際上便是把轉化進程依照過程進行細分,流量途徑的剖析和評價也需要很多的用到細分辦法。


二、比照剖析


比照剖析主要是指將兩個彼此聯系的目標數據進行比較,從數量上展示和闡明研討目標的規劃巨細,水平高低,速度快慢等相對數值,通過相同維度下的目標比照,能夠發現,找出事務在不同階段的問題。常見的比照辦法包括:時間比照,空間比照,標准比照。


三、漏斗剖析


轉化漏斗剖析是事務剖析的基本模型,最常見的是把最終的轉化設置為某種意圖的實現,最典型的便是完成買賣。但也能夠是其他任何意圖的實現,比方一次運用app的時間超越10分鍾。


關於數據分析必備的方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

閱讀全文

與數據分析的基本方法有哪些相關的資料

熱點內容
初期腦梗的鍛煉方法 瀏覽:743
荀子主張的教學方法 瀏覽:190
降低眼睛度數的最有效方法有哪些 瀏覽:530
拉籃的連接方法 瀏覽:226
快速祛痘印方法勤敷面膜可以嗎 瀏覽:190
感冒用什麼方法好得快 瀏覽:944
中邪後有哪些破解方法 瀏覽:725
升降兒童學習椅安裝的正確方法是 瀏覽:689
茶具套裝安裝方法視頻 瀏覽:338
左馬盤河最簡單的方法視頻 瀏覽:20
老公出軌怎麼辦最好解決方法 瀏覽:750
大米炒熟食用方法 瀏覽:586
什麼方法能解決脹肚 瀏覽:641
土方法去害蟲方法視頻 瀏覽:867
如何糾正弓背的正確方法 瀏覽:821
馬賽族的訓練方法 瀏覽:267
老年人房顫的治療方法 瀏覽:80
教孩子算術方法總忘記怎麼回事 瀏覽:81
血管穿孔怎麼治療方法 瀏覽:715
割包莖什麼方法 瀏覽:40