導航:首頁 > 研究方法 > 配方法第一步是什麼

配方法第一步是什麼

發布時間:2023-01-10 18:44:23

❶ 用配方法解方程的詳細步驟是什麼

配方法解方程的一般步驟

(1)化二次項系數為1,即方程兩邊同時除以二次項系數.

(2)移項,使方程左邊為二次項和一次項,右邊為常數項.

(3)要在方程兩邊各加上一次項系數一半的平方.(註:一次項系數是帶符號的)

(4)方程變形為

配方法

❷ 配方法解一元二次方程的一般步驟是什麼

用配方法解一元二次方程的步驟:

①把原方程化為一般形式;

②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;

③方程兩邊同時加上一次項系數一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數;

⑤進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。

(2)配方法第一步是什麼擴展閱讀:

配方法的其他運用:求最值。示例說明如下:

已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。

分析:將y用含x的式子來表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²。

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4。

❸ 用配方法解一元二次方程的步驟是什麼

用配方法解一元二次方程的一般步驟:

1、把原方程化為的形式;

2、將常數項移到方程的右邊;方程兩邊同時除以二次項的系數,將二次項系數化為1;

3、方程兩邊同時加上一次項系數一半的平方;

4、再把方程左邊配成一個完全平方式,右邊化為一個常數;

5、若方程右邊是非負數,則兩邊直接開平方,求出方程的解;若右邊是一個負數,則判定此方程無實數解。

(3)配方法第一步是什麼擴展閱讀:

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x+y)²=x²+ 2xy+y²的形式,可推出2xy= (b/a)x,因此y=b/2a。等式兩邊加上y²= (b/2a)²。

例分解因式:x²-4x-12

解:x²-4x-12=x²-4x+4-4-12

=(x-2)²-16

=(x -6)(x+2)

求拋物線的頂點坐標

【例】求拋物線y=3x²+6x-3的頂點坐標。

解:y=3(x²+2x-1)=3(x²+2x+1-1-1)=3(x+1)²-6

所以這條拋物線的頂點坐標為(-1,-6)

❹ 配方法解一元二次方程步驟是什麼

配方法:將一元二次方程配成(x+m)^2=n的形式,再利用直接開平方法求解的方法。

①把原方程化為一般形式;

②方程兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊;

③方程兩邊同時加上一次項系數一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數;

⑤進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。

(4)配方法第一步是什麼擴展閱讀:

一元二次方程成立必須同時滿足三個條件:

①是整式方程,即等號兩邊都是整式,方程中如果有分母;且未知數在分母上,那麼這個方程就是分式方程,不是一元二次方程,方程中如果有根號,且未知數在根號內,那麼這個方程也不是一元二次方程(是無理方程)。

②只含有一個未知數;

③未知數項的最高次數是2。

❺ 數學配方法的基本步驟是什麼

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。由於問題中的完全平方具有(x + y)2 = x2 + 2xy + y2的形式,可推出2xy = (b/a)x,因此y = b/2a。

等式兩邊加上y2 = (b/2a)2,可得:這個表達式稱為二次方程的求根公式。

解方程:在一元二次方程中,配方法其實就是把一元二次方程移項之後,在等號兩邊都加上一次項系數絕對值一半的平方。

【例】解方程:2x²+6x+6=4

分析:原方程可整理為:x²+3x+3=2,通過配方可得(x+1.5)²=1.25通過開方即可求解。

解:2x²+6x+6=4

<=>(x+1.5)²=1.25

x+1.5=1.25的平方根

求最值

【例】已知實數x,y滿足x²+3x+y-3=0,則x+y的最大值為____。

分析:將y用含x的式子來表示,再代入(x+y)求值。

解:x²+3x+y-3=0<=>y=3-3x-x²,

代入(x+y)得x+y=3-2x-x²=-(x²+2x-3)=-[(x+1)²-4]=4-(x+1)²。

由於(x+1)²≥0,故4-(x+1)²≤4.故推測(x+y)的最大值為4,此時x,y有解,故(x+y)的最大值為4。

❻ 配方法的基本步驟

1、第一步:把原方程化為一般式

把原方程化為一般形式,也就是aX²+bX+c=0(a≠0)的形式。

2、第二步:系數化為1

把方程的兩邊同除以二次項系數,使二次項系數為1,並把常數項移到方程右邊。

3、第三步:把方程兩邊平方

將方程兩邊同時加上一次項系數一半的平方,把左邊配成一個完全平方式,右邊化為一個常數項。

4、第四步:開平方求解

進一步通過直接開平方法求出方程的解,如果右邊是非負數,則方程有兩個實根;如果右邊是一個負數,則方程有一對共軛虛根。


概述

在基本代數中,配方法是一種用來把二次多項式化為一個一次多項式的平方與一個常數的和的方法。這種方法是把以下形式的多項式化為以上表達式中的系數a、b、c、d和e,它們本身也可以是表達式,可以含有除x以外的變數。

配方法通常用來推導出二次方程的求根公式:我們的目的是要把方程的左邊化為完全平方。

閱讀全文

與配方法第一步是什麼相關的資料

熱點內容
迷宮的使用方法 瀏覽:754
氣舍穴最佳取穴方法 瀏覽:570
風管連接可以採取哪些方法 瀏覽:450
紅棗用什麼方法做效果好 瀏覽:946
窗口的關閉按鈕在哪裡設置方法 瀏覽:87
回憶性散文一般常用的敘述方法 瀏覽:282
房門對衛生間門解決方法 瀏覽:604
一年級什麼是口算方法 瀏覽:876
宮頸糜爛度的治療方法 瀏覽:948
科學種植致富的方法 瀏覽:540
靈卡預測最簡單方法 瀏覽:370
微信轉移通訊錄在哪裡設置方法 瀏覽:366
旅行備用手機使用方法 瀏覽:673
課堂游戲互動屬於什麼教學方法 瀏覽:434
食用粘液的使用方法 瀏覽:70
手機指紋解鎖的正確方法 瀏覽:558
防水地漏的安裝方法圖解 瀏覽:77
月亮餐的製作方法視頻 瀏覽:248
小熊電烤箱使用方法 瀏覽:203
治療宮頸炎最好方法 瀏覽:663