A. 數據處理與分析的步驟是怎麼樣
第一步:確定客戶的數據需求
比較典型的場景是我們需要針對企業的數據進行分析,比如公司通常會有銷售數據、用戶數據、運營數據、產品生產數據……需要從這些數據里獲得哪些有用的信息,對策略的制定進行指導呢?又比如需要做的是一份市場調研或者行業分析,那麼需要知道獲得關於這個行業的哪些信息。
第二步:根據客戶需求進行數據採集
採集來自網路爬蟲、結構化數據、本地數據、物聯網設備、人工錄入五個數據源的數據,為客戶提供定製化數據採集。目的是根據客戶的需求,定製數據採集,構建單一數據源。
第三步:數據預處理
現實世界中數據大體上都是不完整,不一致的臟數據,無法直接進行數據分析,或分析結果差強人意。數據預處理有多種方法:數據清理,數據集成,數據變換,數據歸約等。把這些影響分析的數據處理好,才能獲得更加精確地分析結果。
第四步:數據分析與建模
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷,以便採取適當行動。
數據模型是對信息系統中客觀事物及其聯系的數據描述,它是復雜的數據關系之間的一個整體邏輯結構圖。數據模型不但提供了整個組織藉以收集數據的基礎,它還與組織中其他模型一起,精確恰當地記錄業務需求,並支持信息系統不斷地發展和完善,以滿足不斷變化的業務需求。
第五步:數據可視化及數據報告的撰寫
分析結果最直接的結果是統計量的描述和統計量的展示。數據分析報告不僅是分析結果的直接呈現,還是對相關情況的一個全面的認識。
B. 數學建模主要有哪些分析方法
2常用的建模方法(I)初等數學法。主要用於一些靜態、線性、確定性的模型。例如,席位分配問題,學生成績的比較,一些簡單的傳染病靜態模型。(2)數據分析法。從大量的觀測數據中,利用統計方法建立數學模型,常見的有:回歸分析法,時序分析法。(3)模擬和其他方法。主要有計算機模擬(是一種統計估計方法,等效於抽樣試驗,可以離散系統模擬和連續系統模擬),因子試驗法(主要是在系統上做局部試驗,根據試驗結果進行不斷分析修改,求得所需模型結構),人工現實法(基於對系統的了解和所要達到的目標,人為地組成一個系統)。(4)層次分析法。主要用於有關經濟計劃和管理、能源決策和分配、行為科學、軍事科學、軍事指揮、運輸、農業、教育、人才、醫療、環境等領域,以便進行決策、評價、分析、預測等。該方法關鍵的一步是建立層次結構模型。
C. 數學建模中有什麼好的數據處理方法,尤其是量大的數據
你是要做統計嗎?對大量數據的處理統計,spss是個很強大的統計軟體,只要你將excel中的數據導入spss,然後選擇你要處理的方式,軟體自動幫你解決。至於lingo,是做優化的好幫手,而MATLAB雖然也具有統計處理數據的功能,但是沒有spss強大,不過用來解微分方程是很合適的。
另外,如果你不會用spss,覺得學起來麻煩,那就用excel吧,其實excel的功能也是很強大的,處理數據很方便。我一般是先用excel對數據做一些初級的處理,比如排序啊,求和統計,平均數之類的,如果要做回歸分析或者聚類分析等等,我就會用spss來做,這個用起來很方便。
D. 數學建模方法和步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
E. 數據分析建模的方法
數據分析建模的方法是選擇分析模型,訓練分析模型,評估分析模型。
基於收集到的業務需求、數據需求等信息,研究決定選擇具體的模型,如行為事件分析、漏斗分析、留存分析、分布分析、點擊分析、用戶行為分析、分群分析、屬性分析等模型,以便更好地切合具體的應用場景和分析需求。每個數據分析模型的模式基本是固定的,但其中存在一些不確定的參數變數或要素在裡面,通過其中的變數或要素適應變化多端的應用需求,這樣模型才會有通用性。企業需要通過訓練模型找到最合適的參數或變數要素,並基於真實的業務數據來確定最合適的模型參數。
數據是事實或觀察的結果,是對客觀事物的邏輯歸納,是用於表示客觀事物的未經加工的原始素材。數據可以是連續的值,比如聲音、圖像,稱為模擬數據,也可以是離散的,如符號、文字,稱為數字數據。
F. 數據倉庫數據建模的幾種思路
數據倉庫數據建模的幾種思路主要分為一下幾種
1. 星型模式
星形模式(Star Schema)是最常用的維度建模方式。星型模式是以事實表為中心,所有的維度表直接連接在事實表上,像星星一樣。星形模式的維度建模由一個事實表和一組維表成,且具有以下特點:a. 維表只和事實表關聯,維表之間沒有關聯;b. 每個維表主鍵為單列,且該主鍵放置在事實表中,作為兩邊連接的外鍵;c. 以事實表為核心,維表圍繞核心呈星形分布;
星座模型
G. 在做數學建模題時,都有那些方法可以處理大量數據
結合數模培訓和參賽的經驗,可採用數據挖掘中的多元回歸分析,主成分分析、人工神經網路等方法在建模中的一些成功應用。以全國大學生數學建模競賽題為例,數據處理軟體Excel、Spss、Matlab在數學建模中的應用及其重要性。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模一般應用於高新技術領域和工程領域,對於尋常生活來說,並無很大的應用。而學生參與數學建模的學習和競賽主要是培養學生的數學思維、創新思維、邏輯思維、團隊協作能力和論文寫作技巧等。此外,若能在數學建模中獲獎,有利於本科、研究生等的學校申請。
數學建模的一般過程:模型准備、模型假設、模型建立、模型求解、模型分析、模型檢驗。
數學建模是一種數學的思考方法,是運用數學的語言和方法,把錯綜復雜的實際問題簡化、抽象為合理的數學結構,建立起反映實際問題的數量關系,然後利用數學的理論和方法去分析和解決問題。數學建模是數學來源於生活而有應用與生活的橋梁和紐帶。
H. 大數據建模常用方法有哪些
第一步:選擇模型或自定義模式
一般情況,模型都有一個固定的模樣和形式。但是,有些模型包含的范圍較廣,比如回歸模型,其實不是某一個特定的模型,而是一類模型。我們知道,所謂的回歸模型,其實就是自變數和因變數的一個函數關系式而已,如下表所示。因此,回歸模型的選擇,也就有了無限的可能性,回歸模型的樣子(或叫方程)可以是你能夠想到的任何形式的回歸方程。所以,從某種意義上看,你自己想出一個很少人見過的回歸方程,也可以勉強算是自定義模型了哈!
第二步:訓練模型
當模型選擇好了以後,就到了訓練模型這一步。
我們知道,之所以叫模型,這個模型大致的形狀或模式是固定的,但模型中還會有一些不確定的東東在裡面,這樣模型才會有通用性,如果模型中所有的東西都固定死了,模型的通用性就沒有了。模型中可以適當變化的部分,一般叫做參數,就比如前面回歸模型中的α、β等參數。
所謂訓練模型,其實就是要基於真實的業務數據來確定最合適的模型參數而已。模型訓練好了,也就是意味著找到了最合適的參數。一旦找到最優參數,模型就基本可用了。
第三步:評估模型
模型訓練好以後,接下來就是評估模型。
所謂評估模型,就是決定一下模型的質量,判斷模型是否有用。
前面說過,模型的好壞是不能夠單獨評估的,一個模型的好壞是需要放在特定的業務場景下來評估的,也就是基於特定的數據集下才能知道哪個模型好與壞。
第四步:應用模型
如果評估模型質量在可接受的范圍內,而且沒有出現過擬合,於是就可以開始應用模型了。
這一步,就需要將可用的模型開發出來,並部署在數據分析系統中,然後可以形成數據分析的模板和可視化的分析結果,以便實現自動化的數據分析報告。
應用模型,就是將模型應用於真實的業務場景。構建模型的目的,就是要用於解決工作中的業務問題的,比如預測客戶行為,比如劃分客戶群,等等。
五步:優化模型
優化模型,一般發生在兩種情況下:
一是在評估模型中,如果發現模型欠擬合,或者過擬合,說明這個模型待優化。
二是在真實應用場景中,定期進行優化,或者當發現模型在真實的業務場景中效果不好時,也要啟動優化。
如果在評估模型時,發現模型欠擬合(即效果不佳)或者過擬合,則模型不可用,需要優化模型。所謂的模型優化,可以有以下幾種情況:
1)重新選擇一個新的模型;
2)模型中增加新的考慮因素;
3)嘗試調整模型中的閾值到最優;
4)嘗試對原始數據進行更多的預處理,比如派生新變數。
不同的模型,其模型優化的具體做法也不一樣。比如回歸模型的優化,你可能要考慮異常數據對模型的影響,也要進行非線性和共線性的檢驗;再比如說分類模型的優化,主要是一些閾值的調整,以實現精準性與通用性的均衡。
I. 數據分析建模步驟有哪些
1、分類和聚類
分類演算法是極其常用的數據挖掘方法之一,其核心思想是找出目標數據項的共同特徵,並按照分類規則將數據項劃分為不同的類別。聚類演算法則是把一組數據按照相似性和差異性分為若干類別,使得同一類別數據間的相似性盡可能大,不同類別數據的相似性盡可能小。分類和聚類的目的都是將數據項進行歸類,但二者具有顯著的區別。分類是有監督的學習,即這些類別是已知的,通過對已知分類的數據進行訓練和學習,找到這些不同類的特徵,再對未分類的數據進行分類。而聚類則是無監督的學習,不需要對數據進行訓練和學習。常見的分類演算法有決策樹分類演算法、貝葉斯分類演算法等;聚類演算法則包括系統聚類,K-means均值聚類等。
2、回歸分析
回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法,其主要研究的問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。按照模型自變數的多少,回歸演算法可以分為一元回歸分析和多元回歸分析;按照自變數和因變數間的關系,又可分為線性回歸和非線性回歸分析。
3、神經網路
神經網路演算法是在現代神經生物學研究的基礎上發展起來的一種模擬人腦信息處理機制的網路系統,不但具備一般計算能力,還具有處理知識的思維、學習和記憶能力。它是一種基於導師的學習演算法,可以模擬復雜系統的輸入和輸出,同時具有非常強的非線性映射能力。基於神經網路的挖掘過程由數據准備、規則提取、規則應用和預測評估四個階段組成,在數據挖掘中,經常利用神經網路演算法進行預測工作。
4、關聯分析
關聯分析是在交易數據、關系數據或其他信息載體中,查找存在於項目集合或對象集合之間的關聯、相關性或因果結構,即描述資料庫中不同數據項之間所存在關系的規則。例如,一項數據發生變化,另一項也跟隨發生變化,則這兩個數據項之間可能存在某種關聯。關聯分析是一個很有用的數據挖掘模型,能夠幫助企業輸出很多有用的產品組合推薦、優惠促銷組合,能夠找到的潛在客戶,真正的把數據挖掘落到實處。4市場營銷大數據挖掘在精準營銷領域的應用可分為兩大類,包括離線應用和在線應用。其中,離線應用主要是基於客戶畫像進行數據挖掘,進行不同目的針對性營銷活動,包括潛在客戶挖掘、流失客戶挽留、制定精細化營銷媒介等。而在線應用則是基於實時數據挖掘結果,進行精準化的廣告推送和市場營銷,具體包括DMP,DSP和程序化購買等應用。
J. 數學建模競賽處理大量數據技巧
結合數模培訓和參賽的經驗,可採用數據挖掘中的多元回歸分析,主成分分析、人工神經網路等方法在建模中的一些成功應用。以全國大學生數學建模競賽題為例,數據處理軟體Excel、Spss、Matlab在數學建模中的應用及其重要性。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
(10)常用建模數據分析與處理方法擴展閱讀
建模過程
1、模型准備
了解問題的實際背景,明確其實際意義,掌握對象的各種信息。以數學思想來包容問題的精髓,數學思路貫穿問題的全過程,進而用數學語言來描述問題。要求符合數學理論,符合數學習慣,清晰准確。
2、模型假設
根據實際對象的特徵和建模的目的,對問題進行必要的簡化,並用精確的語言提出一些恰當的假設。
3、模型建立
在假設的基礎上,利用適當的數學工具來刻劃各變數常量之間的數學關系,建立相應的數學結構(盡量用簡單的數學工具)。
4、模型求解
利用獲取的數據資料,對模型的所有參數做出計算(或近似計算)。
5、模型分析
對所要建立模型的思路進行闡述,對所得的結果進行數學上的分析。
6、模型檢驗
將模型分析結果與實際情形進行比較,以此來驗證模型的准確性、合理性和適用性。如果模型與實際較吻合,則要對計算結果給出其實際含義,並進行解釋。如果模型與實際吻合較差,則應該修改假設,再次重復建模過程。
7、模型應用與推廣
應用方式因問題的性質和建模的目的而異,而模型的推廣就是在現有模型的基礎上對模型有一個更加全面的考慮,建立更符合現實情況的模型。