㈠ 用過草銨膦的草莓大棚對種植草莓有影響嗎
最好不要噴到草莓,草銨膦是殺葉的。
露地栽培時草莓吸肥可分為四個階段:
1、定植後至完成自然休眠在4個月的生長期中,由於植株休眠,而對養分吸收相對較低。根據植株干物質分析,此期氮、磷、鉀的吸收比例為1:0.34:0.3,吸收氮素最多。
4、開花坐果至果實成熟植株對氮的吸收比例降低,磷、鉀吸收量增加,氮、磷、鉀吸收。比例為1:0.37:1.72,鉀的吸收比例達到高峰。
㈡ 有哪位大神用過液相色譜儀(離子色譜法)測定土壤的銨態氮和硝態氮啊具體的步驟和過程是什麼啊膜拜~~
離子色譜法嘛,檢測器是電導檢測器CDD,硝酸根,亞硝酸根離子在陰離子交換色譜柱中的保留時間是不一樣的,另外,銨根離子是陽離子,在該色譜柱無法保留,只能換陽離子交換色譜柱來做吧。
我上面說的都是理論,至於怎麼做的,可以自己研究。
㈢ 草銨膦怎麼用效果最好
小編記得,2016年12月底,草銨膦登記證有216個;2017年5月份草銨膦登記證有251個;2017年7月份草銨膦登記證有280個;到了現在(2018年4月)草銨膦登記證有451個(在有效期內)。看來按照這個增長速度,到了百草枯水劑退市整2年時,草銨膦的登記證超過500個不成問題!
在草銨膦單劑含量方面,200g/L(包括18%)和10%是最常見的,而80%和88%含量的草銨膦劑型都是可溶粒劑。
在草銨膦劑型方面,可溶粒劑對於山區使用來說配製更方便,攜帶也更方便。另外,因為乙羧氟草醚和乙氧氟草醚難溶於水易溶於有機溶劑,所以在與草銨膦復配後做成了可分散油懸浮、微乳劑和可濕性粉劑。
在草銨膦復配方面,草銨膦與草甘膦的配比大都為1:3(40%)或1:5(30%)。與乙羧氟草醚和乙氧氟草醚復配的劑型為可分散油懸浮、微乳劑和可濕性粉劑,小編也在市場上見過該類產品,他們在宣傳上大多是「莖葉處理和土壤封閉」進行定位的。另外的復配還有丙炔氟草胺、2甲4氯和高效氟吡甲禾靈。
4.注意事項及問題反饋
(1)草銨膦在土壤中的降解
有資料表明,在貴州和廣西未使用過草銨膦的土壤中,草銨膦的半衰期分別為1.4天和1.5天。(200g/L草銨膦制劑用量10500g/hm2,有效成分用量2100g a.i./hm2)3天後草銨膦的降解率達到80%以上,5天後草銨膦的降解率達到90%,7天後草銨膦的降解率達到99%,14天後草銨膦的降解率幾乎等於100%。
草銨膦在土表幾乎不發生光解作用,屬土壤表面難光解的農葯品種,在大多數土壤中淋溶不超過15cm。而草銨膦在土壤中的降解主要是由土壤中的微生物完成的,消毒後的土壤中微生物較少,對草銨膦的降解能力要弱一些,所以消毒後的土壤在使用草銨膦後要等待更長的時間再進行操作。
(2)大棚使用草銨膦
大棚因具有局部小生態氣候的特點,其與外部的溫度濕度等條件不同,另外土壤中的菌落平衡也區別於大棚外。2016年和2017年的市場中就發生了「大棚移栽草莓草銨膦葯害」,「大棚葡萄葉片草銨膦葯害」,「大棚西瓜長勢受挫草銨膦葯害」等情況。在此,小編認為發生大棚草銨膦葯害的原因為:一是大棚內的溫濕度沒有控制好,施葯後未通風造成了葯液的蒸發回落;二是大棚內移栽前使用草銨膦未等待適合的時長,造成土壤中未被降解掉的低量草銨膦對某些敏感的移栽作物根系產生了葯害。一般來說,草銨膦在使用後是2-3天即可播種或移栽,但是對於大棚內使用草銨膦來說,至少得等待5天以上的時間再進行操作(特別是大棚內移栽),另外在大棚內行間使用草銨膦後要及時的通風,防止因棚內溫濕度掌控不好而出現的葯液蒸發回落。不是說大棚內就不能用草銨膦,只是在使用方法上要區別於室外施用。
(3)草銨膦的低溫和抗性問題
我們知道,在低溫低濕條件下,雜草葉片表面的角質層和蠟質層較「硬」較「厚」,氣孔也不易打開,這就使得草銨膦不易滲透過角質層和蠟質層進入雜草體內,即不易被雜草吸收。另外,由前文草銨膦的毒理我們可知,草銨膦只具有一個作用位點,所以其也有抗性問題的發生,特別是在南方等地,就有報道了抗性牛筋草和抗性小飛蓬等雜草的出現(使用單劑草銨膦目測防效低於50%)和草銨膦對高齡蘆葦、水花生和通泉草等草相效果不好的事件。
針對上述問題反饋,目前的應對方案為:噴葯的時候要「打濕打透」,水量要足,打完葯劑後就像是淋過雨一樣;如果低溫或者草齡較大或者草量密時,就要酌情加大草銨膦的用量,(200g/L小草100mL/15L水,大草至少150mL以上)並加入具有滲透作用的助劑,施葯噴頭要壓低。針對個別草相,除了加大草銨膦單劑的用量外,還可以因地制宜的加入其他除草劑配著打草。例如可以結合成本,加入氯氟吡氧乙酸、乙羧氟草醚、乙氧氟草醚、2甲4氯針對闊葉草;加入高效氟吡甲禾靈、精喹禾靈、烯草酮針對尖葉草;另外,還可以復配草甘膦、撲草凈等其他類別的除草劑,以保證除草效果,增加草銨膦產品的使用壽命。
文章來源:抗性雜草解決方案僅供分享學習,如有不當請聯系小編刪除,謝謝支持!
㈣ 請說明下液相色譜的原理以及操作時候的注意點
原理:
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送(最高輸送壓力可達4.9´107Pa);色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬);同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
特點
1.高壓:液相色譜法以液體為流動相(稱為載液),液體流經色譜柱,受到阻力較大,為了迅速地通過色譜柱,必須對載液施加高壓。一般可達150~350×105Pa。
2. 高速:流動相在柱內的流速較經典色譜快得多,一般可達1~10ml/min。高效液相色譜法所需的分析時間較之經典液相色譜法少得多,一般少於 1h 。
3. 高效:近來研究出許多新型固定相,使分離效率大大提高。
4.高靈敏度:高效液相色譜已廣泛採用高靈敏度的檢測器,進一步提高了分析的靈敏度。如熒光檢測器靈敏度可達10-11g。另外,用樣量小,一般幾個微升。
5.適應范圍寬:氣相色譜法與高效液相色譜法的比較:氣相色譜法雖具有分離能力好,靈敏度高,分析速度快,操作方便等優點,但是受技術條件的限制,沸點太高的物質或熱穩定性差的物質都難於應用氣相色譜法進行分析。而高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。對於高沸點、熱穩定性差、相對分子量大(大於 400 以上)的有機物(這些物質幾乎佔有機物總數的 75% ~ 80% )原則上都可應用高效液相色譜法來進行分離、分析。 據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
高效液相色譜按其固定相的性質可分為高效凝膠色譜、疏水性高效液相色譜、反相高效液相色譜、高效離子交換液相色譜、高效親和液相色譜以及高效聚焦液相色譜等類型。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似。其不同之處是高效液相色譜靈敏、快速、解析度高、重復性好,且須在色譜儀中進行。
高效液相色譜法的主要類型及其分離原理
根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型:
1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography)
流動相和固定相都是液體。流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。達到平衡時,服從於下式:
式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。
b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。現在應用很廣泛(70~80%)。
2 .液 — 固色譜法
流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下:
Xm + nSa ====== Xa + nSm
式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時:
K=[Xa][Sm]/[Xm][Sa]
式中:K為吸附平衡常數。[討論:K越大,保留值越大。]
3 .離子交換色譜法(Ion-exchange Chromatography)
IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下:
X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中)
當交換達平衡時:
KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]
分配系數為:
DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]
[討論:DX與保留值的關系]
凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。
4 .離子對色譜法(Ion Pair Chromatography)
離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。其原理可用下式表示:
X+水相 + Y-水相 === X+Y-有機相
式中:X+水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X+Y---形成的離子對化合物。
當達平衡時:
KXY = [X+Y-]有機相/[ X+]水相[Y-]水相
根據定義,分配系數為:
DX= [X+Y-]有機相/[ X+]水相= KXY [Y-]水相
[討論:DX與保留值的關系]
離子對色譜法(特別是反相)發解決了以往難以分離的混合物的分離問題,諸如酸、鹼和離子、非離子混合物,特別是一些生化試樣如核酸、核苷、生物鹼以及葯物等分離。
5 .離子色譜法(Ion Chromatography)
用離子交換樹脂為固定相,電解質溶液為流動相。以電導檢測器為通用檢測器,為消除流動相中強電解質背景離子對電導檢測器的干擾,設置了抑制柱。試樣組分在分離柱和抑制柱上的反應原理與離子交換色譜法相同。
以陰離子交換樹脂(R-OH)作固定相,分離陰離子(如Br-)為例。當待測陰離子Br-隨流動相(NaOH)進入色譜柱時,發生如下交換反應(洗脫反應為交換反應的逆過程):
抑制柱上發生的反應:
R-H+ + Na+OH- === R-Na+ + H2O
R-H+ + Na+Br- === R-Na+ + H+Br-
可見,通過抑制柱將洗脫液轉變成了電導值很小的水,消除了本底電導的影響;試樣陰離子Br-則被轉化成了相應的酸H+Br-,可用電導法靈敏的檢測。
離子色譜法是溶液中陰離子分析的最佳方法。也可用於陽離子分析。
6 .空間排阻色譜法(Steric Exclusion Chromatography)
空間排阻色譜法以凝膠 (gel) 為固定相。它類似於分子篩的作用,但凝膠的孔徑比分子篩要大得多,一般為數納米到數百納米。溶質在兩相之間不是靠其相互作用力的不同來進行分離,而是按分子大小進行分離。分離只與凝膠的孔徑分布和溶質的流動力學體積或分子大小有關。試樣進入色譜柱後,隨流動相在凝膠外部間隙以及孔穴旁流過。在試樣中一些太大的分子不能進入膠孔而受到排阻,因此就直接通過柱子,首先在色譜圖上出現,一些很小的分子可以進入所有膠孔並滲透到顆粒中,這些組分在柱上的保留值最大,在色譜圖上最後出現。
高效液相色譜儀主要有進樣系統、輸液系統、.分離系統、檢測系統和數據處理系統,下面將分別敘述其各自的組成與特點。
1.進樣系統
一般採用隔膜注射進樣器或高壓進樣間完成進樣操作,進樣量是恆定的。這對提高分析樣品的重復性是有益的。
2.輸液系統
該系統包括高壓泵、流動相貯存器和梯度儀三部分。高壓泵的一般壓強為l.47~4.4X107Pa,流速可調且穩定,當高壓流動相通過層析柱時,可降低樣品在柱中的擴散效應,可加快其在柱中的移動速度,這對提高解析度、回收樣品、保持樣品的生物活性等都是有利的。流動相貯存錯和梯度儀,可使流動相隨固定相和樣品的性質而改變,包括改變洗脫液的極性、離子強度、PH值,或改用競爭性抑制劑或變性劑等。這就可使各種物質(即使僅有一個基團的差別或是同分異構體)都能獲得有效分離。
3.分離系統
該系統包括色譜柱、連接管和恆溫器等。色譜柱一般長度為10~50cm(需要兩根連用時,可在二者之間加一連接管),內徑為2~5mm,由"優質不銹鋼或厚壁玻璃管或鈦合金等材料製成,住內裝有直徑為5~10μm粒度的固定相(由基質和固定液構成).固定相中的基質是由機械強度高的樹脂或硅膠構成,它們都有惰性(如硅膠表面的硅酸基因基本已除去)、多孔性(孔徑可達1000?)和比表面積大的特點,加之其表面經過機械塗漬(與氣相色譜中固定相的制備一樣),或者用化學法偶聯各種基因(如磷酸基、季胺基、羥甲基、苯基、氨基或各種長度碳鏈的烷基等)或配體的有機化合物。因此,這類固定相對結構不同的物質有良好的選擇性。例如,在多孔性硅膠表面偶聯豌豆凝集素(PSA)後,就可以把成纖維細胞中的一種糖蛋白分離出來。
另外,固定相基質粒小,柱床極易達到均勻、緻密狀態,極易降低渦流擴散效應。基質粒度小,微孔淺,樣品在微孔區內傳質短。這些對縮小譜帶寬度、提高解析度是有益的。根據柱效理論分析,基質粒度小,塔板理論數N就越大。這也進一步證明基質粒度小,會提高解析度的道理。
再者,高效液相色譜的恆溫器可使溫度從室溫調到60C,通過改善傳質速度,縮短分析時間,就可增加層析柱的效率。
4.檢測系統
高效液相色譜常用的檢測器有紫外檢測器、示差折光檢測器和熒光檢測器三種。
(1)紫外檢測器
該檢測器適用於對紫外光(或可見光)有吸收性能樣品的檢測。其特點:使用面廣(如蛋白質、核酸、氨基酸、核苷酸、多肽、激素等均可使用);靈敏度高(檢測下限為10-10g/ml);線性范圍寬;對溫度和流速變化不敏感;可檢測梯度溶液洗脫的樣品。
(2)示差折光檢測器
凡具有與流動相折光率不同的樣品組分,均可使用示差折光檢測器檢測。目前,糖類化合物的檢測大多使用此檢測系統。這一系統通用性強、操作簡單,但靈敏度低(檢測下限為10-7g/ml),流動相的變化會引起折光率的變化,因此,它既不適用於痕量分析,也不適用於梯度洗脫樣品的檢測。
(3)熒光檢測器
凡具有熒光的物質,在一定條件下,其發射光的熒光強度與物質的濃度成正比。因此,這一檢測器只適用於具有熒光的有機化合物(如多環芳烴、氨基酸、胺類、維生素和某些蛋白質等)的測定,其靈敏度很高(檢測下限為10-12~10-14g/ml),痕量分析和梯度洗脫作品的檢測均可採用。
(5)數據處理系統
該系統可對測試數據進行採集、貯存、顯示、列印和處理等操作,使樣品的分離、制備或鑒定工作能正確開展。
操作注意要點:
1). 首先對流動相進行過濾,根據需要選擇不同的濾膜,一般為有機系和水系,常用的孔徑為0.20um和0.45um。
2). 對抽濾後的流動相進行超聲脫氣10-20分鍾。
3). 正常情況下,儀器首先用甲醇沖洗10-20分鍾,然後再進入測試用流動相(如流動相為緩沖試劑,則要二次重蒸水沖洗10-20分鍾,直至色譜柱中有機相沖凈為止) 。
4). 一般情況下,流動相沖洗20-30分鍾後,儀器方可穩定,最重要的是儀器基線走後,方可進樣測試。
5). 同時進兩針標樣,將其結果相比較,其結果的比值在0.98-1.02之間後,就可以正式進行樣品的測試了。
6). 樣品測試結束後,就要進行色譜儀及色譜柱的清洗和維護。如流動相為緩沖試劑,同樣也要用重蒸水清洗10-20分鍾,方可用有機相進行保護,否則,有損色譜柱。
7). 關機時,先關計算機,再關液相色譜。
8). 填寫登記本,由負責人簽字。
注意事項:
1). 流動相均需色譜純度,水用20M的去離子水。脫氣後的流動相要小心振動盡量不引起氣泡。
2). 柱子是非常脆弱的,第一次做的方法,先不要讓液體過柱子。
3). 所有過柱子的液體均需嚴格的過濾。
4). 壓力不能太大,最好不要超過150kgf/cm2 .
5). 因為緩沖試劑遇有機溶劑,會結晶,有損色譜柱,所以,每次由有機相變流動相或流動相變有機相均需用蒸餾水清洗。
㈤ 草莓的農葯殘留檢測,草莓是什麼季節的水果
1、檢測方法:草莓的農葯殘留檢測方法包括光譜法、酶抑製法、色譜法(包括氣相色譜法、高效液相色譜法、超臨界流體色譜法、氣相色譜-質譜聯用法、液相色譜-質譜聯用法)、快速檢測技術等。2、草莓成熟時間:春季種植的草莓,一般在當年的6-8月份左右成熟採收,秋季種植的草莓,一般在第二年的2-4月份成熟採收。
一、草莓的農葯殘留檢測
1、檢測方法
農葯殘留檢測方法包括光譜法、酶抑製法、色譜法、快速檢測技術,其中色譜法包括氣相色譜法、氣相色譜-質譜聯用法、高效液相色譜法、液相色譜-質譜聯用法、超臨界流體色譜法。
2、草莓農葯殘留檢測指標
(1)殺蟲劑
①阿維菌素的殘留限量指標為0.02mg/kg,吡蟲啉的殘留限量指標為0.5mg/kg,毒死蜱的殘留限量指標為0.3mg/kg,氟啶蟲胺腈的殘留限量指標為0.5mg/kg,氟醯脲的殘留限量指標為0.5mg/kg。
②二嗪磷的殘留限量指標為0.1mg/kg,甲氰菊酯的殘留限量指標為2mg/kg,甲氧蟲醯肼的殘留限量指標為2mg/kg,氯菊酯的殘留限量指標為1mg/kg,馬拉硫磷的殘留限量指標為1mg/kg。
③噻嗪酮的殘留限量指標為3mg/kg,溴氰菊酯的殘留限量指標為0.2mg/kg,伊維菌素的殘留限量指標為0.1mg/kg,倍硫磷的殘留限量指標為0.05mg/kg,苯線磷的殘留限量指標為0.02mg/kg。
④敵百蟲的殘留限量指標為0.2mg/kg,敵敵畏的殘留限量指標為0.2mg/kg,對硫磷的殘留限量指標為0.01mg/kg,氟蟲腈的殘留限量指標為0.02mg/kg,甲胺磷的殘留限量指標為0.05mg/kg。
⑤甲拌磷的殘留限量指標為0.01mg/kg,甲基對硫磷的殘留限量指標為0.02mg/kg,甲基硫環磷的殘留限量指標為0.03mg/kg,甲基異柳磷的殘留限量指標為0.01mg/kg,久效磷的殘留限量指標為0.03mg/kg。
⑥克百威的殘留限量指標為0.02mg/kg,氯唑磷的殘留限量指標為0.01mg/kg,滅多威的殘留限量指標為0.2mg/kg,氰戊菊酯的殘留限量指標為0.2mg/kg,殺蟲脒的殘留限量指標為0.01mg/kg。
⑦殺撲磷的殘留限量指標為0.05mg/kg,殺螟硫磷的殘留限量指標為0.5mg/kg,水胺硫磷的殘留限量指標為0.05mg/kg,涕滅威的殘留限量指標為0.02mg/kg,辛硫磷的殘留限量指標為0.05mg/kg。
⑧溴氰蟲醯胺的殘留限量指標為4mg/kg,氧化樂果的殘留限量指標為0.02mg/kg,乙醯甲胺磷的殘留限量指標為0.5mg/kg,治螟磷的殘留限量指標為0.01mg/kg,毒殺芬的殘留限量指標為為0.05mg/kg,滅蟻靈的殘留限量指標為0.01mg/kg。
(2)殺菌劑
①百菌清的殘留限量指標為5mg/kg,苯氟磺胺的殘留限量指標為10mg/kg,苯菌酮的殘留限量指標為0.6mg/kg,吡噻菌胺的殘留限量指標為3mg/kg,吡唑醚菌酯的殘留限量指標為2mg/kg。
②丙森鋅的殘留限量指標為5mg/kg,代森銨的殘留限量指標為5mg/kg,代森聯的殘留限量指標為5mg/kg,代森錳鋅的殘留限量指標為5mg/kg,啶醯菌胺的殘留限量指標為3mg/kg。
③多菌靈的殘留限量指標為0.5mg/kg,粉唑醇的殘留限量指標為1mg/kg,氟吡菌醯胺的殘留限量指標為0.4mg/kg,氟菌唑的殘留限量指標為2mg/kg,福美雙的殘留限量指標為5mg/kg。
④福美辛的殘留限量指標為5mg/kg,腐霉利的殘留限量指標為10mg/kg,咯菌腈的殘留限量指標為3mg/kg,環醯菌胺的殘留限量指標為10mg/kg,甲苯氟磺胺的殘留限量指標為5mg/kg。
⑤腈菌唑的殘留限量指標為1mg/kg,克菌丹的殘留限量指標為15mg/kg,氯苯嘧啶醇的殘留限量指標為1mg/kg,咪唑菌酮的殘留限量指標為0.04mg/kg,醚菌酯的殘留限量指標為2mg/kg。
⑥嘧菌環胺的殘留限量指標為2mg/kg,嘧菌酯的殘留限量指標為10mg/kg,嘧霉胺的殘留限量指標為7mg/kg,滅菌丹的殘留限量指標為5mg/kg,嗪氨靈的殘留限量指標為1mg/kg。
⑦三唑醇的殘留限量指標為0.7mg/kg,三唑酮的殘留限量指標為0.7mg/kg,四氟醚唑的殘留限量指標為3mg/kg,戊菌唑的殘留限量指標為0.1mg/kg,烯醯嗎啉的殘留限量指標為0.05mg/kg。
⑧硝苯菌酯的殘留限量指標為0.3mg/kg,抑霉唑的殘留限量指標為2mg/kg。
(3)殺蟎劑
①苯丁錫的殘留限量指標為10mg/kg,丁氟蟎酯的殘留限量指標為0.6mg/kg,聯苯肼酯的殘留限量指標為2mg/kg,聯苯菊酯的殘留限量指標為1mg/kg,螺蟎酯的殘留限量指標為2mg/kg。
②噻蟎酮的殘留限量指標為0.5mg/kg,溴蟎酯的殘留限量指標為2mg/kg,唑蟎酯的殘留限量指標為為0.8mg/kg,內吸磷的殘留限量指標為0.02mg/kg。
(4)除草劑
①草銨膦的殘留限量指標為0.3mg/kg,敵草快的殘留限量指標為0.0.5mg/kg,噻草酮的殘留限量指標為3mg/kg,百草枯的殘留限量指標為0.01mg/kg,草甘膦的殘留限量指標為0.1mg/kg,硝磺草酮的殘留限量指標為0.01mg/kg。
②2,4-D以及2,4-D鈉鹽的殘留限量指標為0.1mg/kg。
二、草莓是什麼季節的水果
1、草莓成熟時間
如果是春季種植的草莓,一般在當年的6-8月份左右成熟採收。如果是秋季種植的草莓,一般在第二年的2-4月份成熟採收。
2、草莓生長周期
(1)萌芽期:春季地溫穩定在2-5℃時,草莓根系開始生長,並隨著地溫逐漸升高而長出新根(根系比地上部分早7-10天)。
(2)現蕾期:地上部分生長30天左右出現花蕾。等到新莖長出三片葉而第四片葉尚未長出時,花序於第四片葉的托葉鞘內顯露,後續花序梗伸長,整個花序露出。
(3)結果期:花蕾現蕾至第一朵花開花大約需要15天,而從開花至果實成熟又需要30天左右(花期一般持續20天左右)。
(4)旺盛生長期:漿果採收後,植株進入旺盛生長期。腋芽大量發生匍匐莖,新莖分枝生長迅速,基部發生不定根,形成新的根系,並形成新的植株。
(5)花芽分化期:旺盛生長期後,在低溫、短日照環境下(日平均溫度為15-20℃,光照時長10-12小時),草莓開始花芽分化。
(6)休眠期:花芽形成後,草莓進入休眠期。此時植株葉片少,葉片面積小,呈匍匐生長。
㈥ 草銨膦樣品含量計算
草銨膦是內吸性滅生型除草劑,主要用於作物行間或蔬菜倒茬迅速除草,因為其比草甘膦速度快,比百草枯除草徹底不返青而受到用戶的喜愛,但如果誤噴到作物上,作物會死亡,並且因為草銨膦有內吸性,所以作物體內也會有殘留,當然這只是極端的舉例。
㈦ 甘草的甘草酸含量如何測定
用液相色譜法測定。
生葯分析方法:將甘草製成粉末,取該粉末約0.5克,精密稱定,置入容量為50毫升的離心管內,加流動相25毫升,裝上迴流冷凝管後,在85℃的水浴上加熱15分鍾,冷卻後進行離心分離,將上清液移置50毫升的容量瓶中。殘渣再加流動相提取兩次,每次加10毫升振搖5分鍾,離心分離,將其上清液並入上述容量瓶中,最後加流動相至刻度,作為樣品溶液。
另外,取甘草酸單銨鹽對照品約0.06克,精密稱定,置入50毫升的容量瓶中,加流動相溶解後調至刻度。准確量取該液25毫升置入50毫升容量瓶中,加流動相調至刻度,作為對照品溶液。
准確取樣品溶液和對照品溶液各10微升注入高效液相色譜儀中,按上述色譜條件進行分析,測定各溶液中甘草酸的峰面積,並由此計算樣品中甘草酸含量,甘草酸單銨鹽換算成甘草酸的換算系數為0.9797。對三個不同產地的甘草樣品進行分析,測得甘草酸的含量如表2:
表2 樣品分析結果
㈧ 高效液相色譜儀原理及操作步驟
1. 高效液相色譜儀原理
高效液相色譜儀原理 高效液相色譜儀的使用和原理分析
高效液相色譜法(HPLC)是目前應用廣泛的分離、分析、純化有機化合物(包括能通過化學反應轉變為有機化合物的無機物)的有效方法之一。
在已知的有機化合物中,約有80%能用高效液相色譜法分離、分析,而且由於此法條件溫和,不破壞樣品,因此特別適合高沸點、難氣化揮發、熱穩定性差的有機化合物和生命物質。HPLC系統一般由輸液泵、進樣器、色譜柱、檢測器、數據記錄及處理裝置等組成。
其中輸液泵、色譜柱、檢測器是關鍵部位。有的儀器還有梯度洗脫裝置、在線脫氣機、自動進樣器、與柱或保護住、柱溫控制器等,現代HPLC儀還有微機控制系統,進行自動化儀器控制和數據處理。
制備型HPLC儀還備有自動餾分收集裝置。目前常見的HPLC儀生產廠家國外有Waters 公司、Agilent 公司(原HP公司)、島津公司等,國內有上海伍豐科學儀器有限公司,上海禾工科學儀器有限公司,大連依利特公司、北京創新通恆、北京溫分等。
一、輸液泵1.泵的構造和性能輸液泵是HPLC系統中最重要的部件之一。泵的性能好壞直接影響到整個質量和分析結果的可靠性。
輸液泵應具備如下性能:①流量穩定,其RSD應小於0.5%,這關繫到定性定量的准確性;②流量范圍寬,分析型應在0.1~10ml/min范圍內連續調,制備型應能達到100ml/min;③輸出壓力高,一般應能達到150~300KG/CM2:④液缸容積小;⑤密封性能好,耐腐蝕。泵的種類很多,按輸液性質可分為恆壓泵和恆流泵。
恆流泵按結構又可分為螺旋注射泵、柱塞往復泵和隔往復泵。恆壓泵受柱陰影響,流量不穩定;螺旋泵缸體太大,這兩種泵己被淘汰目前應用最多的是柱塞往復泵。
柱塞往復泵的液缸容積小,可至0.1ml,因此易於清洗和更換流動相,特別適合於再循環和梯度洗脫;改變電機轉速能方便地調節流量,流量不受柱壓影響;泵壓可達400KG/CM2。ADW主要缺點是輸出的脈沖性較大,現多彩採用雙泵系統來克服。
雙泵按連接方式可分為並聯式和串聯式,一般說來並聯泵的流量重現性較好(RSD為0.1%左右,串聯泵為0.2~0.3%),但出現故障的機會較多(因多了單向閥),價格也較貴。二、進樣器一般HPLC分析常用六通進樣閥(以美國RHEODYNE公司的7725和7725I型最常見),其關鍵部件由圓形密封墊子(轉子)和固定底座(定子)組成。
耐高壓(35~40MPA),進樣量准確,重復性好(0.5%),操作方便。六通閥進樣方式有部分裝液法和完全裝液法兩種。
①用部分裝液法進樣時,進樣量應不大於定量環體積的50%(最多75%),並要求每次進樣體積准確、相同。此法進樣的准確度和重復性決定於注器取樣的熟練程度,而且易產生由進樣引起的峰展寬。
②用完全裝液法進樣時,進樣量應不小於定量環體積的5~10倍9最少3倍,這樣才能完全置換定量環內和流動相,消除管壁效應,確保進樣的准確度及重復性。三、色譜柱色譜是一種分離分析手段,分離是核心,因此擔負分離作用的色譜柱是色譜系統的心臟。
對色譜柱的要求是柱效高、選擇性好,分析速度快等。市售的用於HPLC的各種微粒填料好多孔硅膠以及以硅膠為基質的鍵合相、氧化鋁、有機聚合物微球(包括離子交換樹脂)、多孔碳等,其粒度一般為3,5,7,10UM等,柱效理論值可達5~16萬/米。
對於一般的分析只需5000塔板數的柱效;對於同系物分析,只要500即可;對於較難的分離物質對則可採用高達2萬的柱子,因此一般10~30CM左右的柱長就能滿足復雜混合物分析的需要。柱效受柱內外因素影響,為使色譜柱達到最佳效率,除柱外死體積要小外,不要有合理的柱結構(盡可能減少填充床以外的死體積)及裝填技術。
即使最好的裝填技術,在柱中心部位和沿管壁部位的填充情況總是不一樣的,靠近管壁的部位比較疏鬆,易產生溝流,流速較快,影響沖洗劑的流形,使譜帶加寬,這就是管壁效應。這種管壁區大約是從管壁向內算起30倍料徑的厚度。
在一般的液相色譜系統中,柱外效應對柱效的影響遠遠大於管壁效應。四、檢測器HPLC的檢測器分為兩類:通用型檢測器和專用型檢測器。
1.通用型檢測器可連續測量色譜柱的流出物的全部特性變化,通常採用差分測量法,這類檢測器包括示差折光檢測器、介電常數檢測器、電導檢測器等,通用檢測器適用范圍廣,但由於對流動相有響應,因此易受溫度變化、流動相和組分的變化的影響,雜訊和漂移都比較大,靈敏度較低,不能用梯度洗脫。2.專用型檢測器用以測量被分離樣品組分某種特性的變化。
這類檢測器對樣品中組分的某種物理或化學性質敏感,而這一性質是流動相所不具備的,或至少在操作條件下不顯示。這類檢測器包括紫外檢測器、熒光檢測器、放射性檢測器等。
高效液相色譜儀的工作原理?
高效液相色譜儀工作原理;高壓泵將貯液罐的流動相經進樣器送入色譜柱中,然後從檢測器的出口流出,這時整個系統就被流動相充滿。當欲分離樣品從進樣器進入時,流經進樣器的流動相將其帶入色譜柱中進行分離,分離後不同組分依先後順序進入檢測器,記錄儀將進入檢測器的信號記錄下來,得到液相色譜圖。
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送,色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬),同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
(8)草銨膦普通液相分析方法擴展閱讀
高效液相色譜儀配置高壓二元泵或者低壓四元泵,而泵的沖程體積以及混合器的體積大小,均會對色譜基線噪音水平產生影響,特別是在梯度洗脫的時候。一般地泵的沖程體積越小以及混合器的體積相對越大,由輸液造成的脈沖相對越小,對於梯度變化的響應能力越高,基線越平緩,
在應用二元泵的時,需要注意的是,當二元混合中的其中一元流動相的比例小於5%的時候,特別是在使用正相等度洗脫對一些醫葯中間體及終產品進行手性拆分的時候,最好使用單泵預混合的方式。避免由於泵在低比例時泵液精度相對較差,而導致色譜基線出現沖程相關峰,
參考資料來源;搜狗網路--高效液相色譜儀
高效液相色譜儀的基本工作原理
高效液相色譜儀的基本工作原理
高效液相色譜儀的系統由儲液器、泵、進樣器、色譜柱、檢測器、記錄儀等幾部分組成。儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相) 內, 由於樣品溶液中的各組分在兩相中具有不同的分配系數, 在兩相中作相對運動時, 經過反復多次的吸附- 解吸的分配過程, 各組分在移動速度上產生較大的差別, 被分離成單個組分依次從柱內流出, 通過檢測器時, 樣品濃度被轉換成電信號傳送到記錄儀,數據以圖譜形式列印出來。
HPLC原理是什麼
原理: 儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相)內,由於樣品溶液中的各組分在兩相中具有不同的分配系數,在兩相中作相對運動時,經過反復多次的吸附-解吸的分配過程,各組分在移動速度上產生較大的差別。
被分離成單個組分依次從柱內流出,通過檢測器時,樣品濃度被轉換成電信號傳送到記錄儀,數據就可以以圖譜形式列印出來,以便研究人員分析。 (8)草銨膦普通液相分析方法擴展閱讀: 高效液相色譜法(High Performance Liquid Chromatography \ HPLC)又稱「高壓液相色譜」、「高速液相色譜」、「高分離度液相色譜」、「近代柱色譜」等。
①高壓:流動相為液體,流經色譜柱時,受到的阻力較大,為了能迅速通過色譜柱,必須對載液加高壓。 ②高速:分析速度快、載液流速快,較經典液體色譜法速度快得多,通常分析一個樣品在15~30分鍾,有些樣品甚至在5分鍾內即可完成,一般小於1小時。
③高效:分離效能高。可選擇固定相和流動相以達到最佳分離效果,比工業精餾塔和氣相色譜的分離效能高出許多倍。
④高靈敏度:紫外檢測器可達0.01ng,進樣量在μL數量級。 ⑤應用范圍廣:百分之七十以上的有機化合物可用高效液相色譜分析,特別是高沸點、大分子、強極性、熱穩定性差化合物的分離分析,顯示出優勢。
⑥柱子可反復使用:用一根柱子可分離不同化合物 ⑦樣品量少、容易回收:樣品經過色譜柱後不被破壞,可以收集單一組分或做制備。 此外高效液相色譜還有色譜柱可反復使用、樣品不被破壞、易回收等優點,但也有缺點,與氣相色譜相比各有所長,相互補充。
高效液相色譜的缺點是有「柱外效應」。在從進樣到檢測器之間,除了柱子以外的任何死空間(進樣器、柱接頭、連接管和檢測池等)中,如果流動相的流型有變化,被分離物質的任何擴散和滯留都會顯著地導致色譜峰的加寬,柱效率降低。
高效液相色譜檢測器的靈敏度不及氣相色譜。 HPLC使用的色譜柱是很細的(1~6 mm),所用固定相的粒度也非常小(幾μm到幾十μm),所以流動相在柱中流動受到的阻力很大,在常壓下,流動相流速十分緩慢,柱效低且費時。
為了達到快速、高效分離,必須給流動相施加很大的壓力,以加快其在柱中的流動速度。為此,須用高壓泵進行高壓輸液。
高壓、高速是高效液相色譜的特點之一。HPLC使用的高壓泵應滿足下列條件: a. 流量恆定,無脈動,並有較大的調節范圍(一般為1~10 mL/min); b. 能抗溶劑腐蝕; c. 有較高的輸液壓力;對一般分離,60*10^5Pa的壓力就滿足了,對高效分離,要求達到150~300*10^5Pa。
⑴往復式柱塞泵 當柱塞推入缸體時,泵頭出口(上部)的單向閥打開,同時,流動相進入的單向閥(下部)關閉,這時就輸出少量的流體。 反之,當柱塞向外拉時,流動相入口的單向閥打開,出口的單向閥同時關閉,一定量的流動相就由其儲液器吸入缸體中。
這種泵的特點是不受整個色譜體系中其餘部分阻力稍有變化的影響,連續供給恆定體積的流動相。 ⑵氣動放大泵 其工作原理是:壓力為 p1 的低壓氣體推動大面積( SA )活塞A ,則在小面積( SB )活塞 B 輸出壓力增大至 p2 的液體。
壓力增大的倍數取決於 A 和 B 兩活塞的面積比,如果 A 與 B 的面積之比為 50 : 1 ,則壓力為 5 * Pa 的氣體就可得到壓力為 250*Pa 的輸出液體。這是一種恆壓泵。
參考資料:網路——高效液相色譜。
HPLC儀的工作原理是什麼?
高效液相色譜法是在經典色譜法的基礎上,引用了氣相色譜的理論,在技術上,流動相改為高壓輸送(最高輸送壓力可達4.9´107Pa);色譜柱是以特殊的方法用小粒徑的填料填充而成,從而使柱效大大高於經典液相色譜(每米塔板數可達幾萬或幾十萬);同時柱後連有高靈敏度的檢測器,可對流出物進行連續檢測。
特點 1.高壓:液相色譜法以液體為流動相(稱為載液),液體流經色譜柱,受到阻力較大,為了迅速地通過色譜柱,必須對載液施加高壓。一般可達150~350*105Pa。
2. 高速:流動相在柱內的流速較經典色譜快得多,一般可達1~10ml/min。高效液相色譜法所需的分析時間較之經典液相色譜法少得多,一般少於 1h 。
3. 高效:近來研究出許多新型固定相,使分離效率大大提高。 4.高靈敏度:高效液相色譜已廣泛採用高靈敏度的檢測器,進一步提高了分析的靈敏度。
如熒光檢測器靈敏度可達10-11g。另外,用樣量小,一般幾個微升。
5.適應范圍寬:氣相色譜法與高效液相色譜法的比較:氣相色譜法雖具有分離能力好,靈敏度高,分析速度快,操作方便等優點,但是受技術條件的限制,沸點太高的物質或熱穩定性差的物質都難於應用氣相色譜法進行分析。而高效液相色譜法,只要求試樣能製成溶液,而不需要氣化,因此不受試樣揮發性的限制。
對於高沸點、熱穩定性差、相對分子量大(大於 400 以上)的有機物(這些物質幾乎佔有機物總數的 75% ~ 80% )原則上都可應用高效液相色譜法來進行分離、分析。 據統計,在已知化合物中,能用氣相色譜分析的約佔20%,而能用液相色譜分析的約佔70~80%。
高效液相色譜按其固定相的性質可分為高效凝膠色譜、疏水性高效液相色譜、反相高效液相色譜、高效離子交換液相色譜、高效親和液相色譜以及高效聚焦液相色譜等類型。用不同類型的高效液相色譜分離或分析各種化合物的原理基本上與相對應的普通液相層析的原理相似。
其不同之處是高效液相色譜靈敏、快速、解析度高、重復性好,且須在色譜儀中進行。 高效液相色譜法的主要類型及其分離原理 根據分離機制的不同,高效液相色譜法可分為下述幾種主要類型: 1 .液 — 液分配色譜法(Liquid-liquid Partition Chromatography)及化學鍵合相色譜(Chemically Bonded Phase Chromatography) 流動相和固定相都是液體。
流動相與固定相之間應互不相溶(極性不同,避免固定液流失),有一個明顯的分界面。當試樣進入色譜柱,溶質在兩相間進行分配。
達到平衡時,服從於下式: 式中,cs—溶質在固定相中濃度;cm--溶質在流動相中的濃度; Vs—固定相的體積;Vm—流動相的體積。LLPC與GPC有相似之處,即分離的順序取決於K,K大的組分保留值大;但也有不同之處,GPC中,流動相對K影響不大,LLPC流動相對K影響較大。
a. 正相液 — 液分配色譜法(Normal Phase liquid Chromatography): 流動相的極性小於固定液的極性。 b. 反相液 — 液分配色譜法(Reverse Phase liquid Chromatography): 流動相的極性大於固定液的極性。
c. 液 — 液分配色譜法的缺點:盡管流動相與固定相的極性要求完全不同,但固定液在流動相中仍有微量溶解;流動相通過色譜柱時的機械沖擊力,會造成固定液流失。上世紀70年代末發展的化學鍵合固定相(見後),可克服上述缺點。
現在應用很廣泛(70~80%)。 2 .液 — 固色譜法 流動相為液體,固定相為吸附劑(如硅膠、氧化鋁等)。
這是根據物質吸附作用的不同來進行分離的。其作用機制是:當試樣進入色譜柱時,溶質分子 (X) 和溶劑分子(S)對吸附劑表面活性中心發生競爭吸附(未進樣時,所有的吸附劑活性中心吸附的是S),可表示如下: Xm + nSa ====== Xa + nSm 式中:Xm--流動相中的溶質分子;Sa--固定相中的溶劑分子;Xa--固定相中的溶質分子;Sm--流動相中的溶劑分子。
當吸附競爭反應達平衡時: K=[Xa][Sm]/[Xm][Sa] 式中:K為吸附平衡常數。[討論:K越大,保留值越大。
] 3 .離子交換色譜法(Ion-exchange Chromatography) IEC是以離子交換劑作為固定相。IEC是基於離子交換樹脂上可電離的離子與流動相中具有相同電荷的溶質離子進行可逆交換,依據這些離子以交換劑具有不同的親和力而將它們分離。
以陰離子交換劑為例,其交換過程可表示如下: X-(溶劑中) + (樹脂-R4N+Cl-)=== (樹脂-R4N+ X-) + Cl- (溶劑中) 當交換達平衡時: KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-] 分配系數為: DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-] [討論:DX與保留值的關系] 凡是在溶劑中能夠電離的物質通常都可以用離子交換色譜法來進行分離。 4 .離子對色譜法(Ion Pair Chromatography) 離子對色譜法是將一種 ( 或多種 ) 與溶質分子電荷相反的離子 ( 稱為對離子或反離子 ) 加到流動相或固定相中,使其與溶質離子結合形成疏水型離子對化合物,從而控制溶質離子的保留行為。
其原理可用下式表示: X+水相 + Y-水相 === X+Y-有機相 式中:X+水相--流動相中待分離的有機離子(也可是陽離子);Y-水相--流動相中帶相反電荷的離子對(如氫氧化四丁基銨、氫氧化十六烷基三甲銨等);X+Y---形成的。
液相色譜儀使用及工作原理
工作原理: 流動相通過輸液泵流經進樣閥,與樣品溶液混合,流經色譜柱,在色譜柱中進行吸附、分離,最後每一組分分別經過檢測器轉變為電訊號,在色譜工作站上出現相應的樣品峰。
液相色譜的使用: 首先對樣品進行預處理,然後進樣,進樣完畢後,清洗進樣口,每次分析結束後,清洗通道,最後關閉儀器。 (8)草銨膦普通液相分析方法擴展閱讀: 液相色譜所用基本概念:保留值、塔板數、塔板高度、分離度、選擇性等與氣相色譜一致。
液相色譜所用基本理論:塔板理論與速率方程也與氣相色譜基本一致,但由於在氣相色譜中以液體代替氣相色譜中氣體作為流動相,而液體和氣體的性質不相同。 此外,液相色譜所用的儀器設備和操作條件也與氣相色譜不同,所以,液相色譜與氣相色譜有一定的差別。
主要有以下幾力『面: ①操作條件及應用范圍不同 對於氣相色譜,是加溫操作。僅能分析在操作溫度下能汽化而不分解的物質,對高沸點化合物、非揮發性物質、熱不穩定化合物、離子型化合物及高聚物的分離、分析較為困難,致使其應用受到一定程度的限制,據統計只有大約20%的機物能用氣相色譜分析。
而液相色譜是常溫操作,不受樣品揮發度和熱穩定性的限制,它非常適合相對分子量較大,難汽化,不易揮發或對熱敏感的物質、離子型化合物和高聚物的分離分析,大約佔有機物的70%~80%。 ②液相色譜能完成難度較高的分離工作 a.氣相色譜的流動相載氣是色譜惰性的,基本不參與分配平衡過程,與樣品分子無親和作用,樣品分子主要與固定相相互作用。
而在液相色譜中流動相液體也與固定相爭奪樣品分子,為提高選擇性增加了一個因素。也可選擇不同比例的兩種或兩種以上的液體做流動相,增加分離的選擇性。
b.液相色譜固定相類型多,如離子交換色譜和排阻色譜等,作為分析時,選擇餘地大;而氣相色譜並不可能。 c.液相色譜通常在室溫下操作,較低的溫度,一般有利於色譜分離條件的選擇。
③由於液體的擴散性比氣體的小105倍,因此,溶質在液相中的傳質速率慢,柱外效應就顯得特別重要;而在氣相色譜中,由色譜柱外區域引起的擴張可以忽略不計。 ④液相色譜中,制備樣品簡單,回收樣品也比較容易,而且回收是定量的,適合於大量制備,但液相色譜尚缺乏通用的檢測器,一起比較復雜,價格昂貴。
在實際應用中,這兩種技術是相互補充的。 綜上所述,液相色譜具有柱效高,選擇性高,靈敏性高,分析速度快,重復性好,應用范圍廣等優點,該法已成為現代分析技術的主要手段之一。
目前在化學,化工,醫葯,生化,環保,農業等科學領域獲得廣泛的應用。 高效液相色譜應用非常廣泛,幾乎遍及定量定性分析的各個領域。
(1)分離混合物 高效液相色譜法只要求樣品能製成溶液,不受樣品揮發性的限制,流動相可選擇的范圍寬,固定相的種類繁多,因而可以分離熱不穩定和非揮發性的、離解的和非離解的以及各種分子量范圍的物質。 通過與試樣預處理技術相配合,高效液相色譜法所達到的高解析度和高靈敏度,可分離並同時測定性質上十分相近的物質,能夠分離復雜混合物中的微量成分。
並且隨著固定相的發展,還可在充分保持生化物質活性的條件下完成對其的分離。 (2)生化分析 由於高效液相色譜法具有高解析度、高靈敏度、速度快、色譜柱可反復利用,流出組分易收集等優點,因而被廣泛應用到生物化學、食品分析、醫葯研究、環境分析、無機分析等各種領域,並已成為解決生化分析問題最有前途的方法。
(3)儀器聯用 高效液相色譜儀與結構儀器的聯用是一個重要的發展方向。高效液相色譜一質譜聯用技術受到普遍重視,如分析氨基甲酸酯農葯和多核芳烴等:高效液相色譜一紅外光譜聯用也發展很快,如在環境污染分析測定水中的烴類等.使環境污染分析得到新的發展 參考資料:網路——液相色譜。
液相色譜儀的原理是什麼?用來干什麼?
液相色譜儀的原理: 儲液器中的流動相被高壓泵打入系統,樣品溶液經進樣器進入流動相,被流動相載入色譜柱(固定相)內,由於樣品溶液中的各組分在兩相中具有不同的分配系數,在兩相中作相對運動時,經過反復多次的吸附-解吸的分配過程,各組分在移動速度上產生較大的差別,被分離成單個組分依次從柱內流出,通過檢測器時,樣品濃度被轉換成電信號傳送到記錄儀,數據以圖譜形式列印出來。
主要用於對高沸點、難氣化合物的混合物通過色譜柱核淋洗劑並以實現分離。應用於生物化學、生物醫學、環境化學、石油化工等部門。
(8)草銨膦普通液相分析方法擴展閱讀液相色譜儀根據固定相是液體或是固體,又分為液-液色譜(LLC)及液-固色譜(LSC)。現代液相色譜儀由高壓輸液泵、進樣系統、溫度控制系統、色譜柱、檢測器、信號記錄系統等部分組成。
與經典液相柱色譜裝置比較,具有高效、快速、靈敏等特點。 高效液相色譜儀主要有進樣系統、輸液系統、分離系統、檢測系統和數據處理系統。
進樣系統一般採用隔膜注射進樣器或高壓進樣間完成進樣操作,進樣量是恆定的。這對提高分析樣品的重復性是有益的。
輸液系統該系統包括高壓泵、流動相貯存器和梯度儀三部分。高壓泵的一般壓強為l.47~4.4X10Pa,流速可調且穩定,當高壓流動相通過層析柱時,可降低樣品在柱中的擴散效應,可加快其在柱中的移動速度,這對提高解析度、回收樣品、保持樣品的生物活性等都是有利的。
分離系統該系統包括色譜柱、連接管和恆溫器等。色譜柱一般長度為10~50cm(需要兩根連用時,可在二者之間加一連接管),內徑為2~5mm,由"優質不銹鋼或厚壁玻璃管或鈦合金等材料製成,住內裝有直徑為5~10μm粒度的固定相(由基質和固定液構成)。
㈨ 常用的葯物分析方法有哪些
1、重量分析法
重量分析法是葯物分析檢測中化學分析的基礎方法,指的是稱取一定重量的試樣,用適當的方法將被測組分與試樣中其他組分分離後,轉化成一定的稱量形式,稱重,從而求得該組分含量的方法。根據分離方法的不同,重量分析法通常分為沉澱重量法、揮發重量法、提取重量法和電解重量法,其優點是直接採用分析天平稱量的數據來獲得分析結果,在分析過程中不需要標准溶液和基準物質,也就不需要容量器皿引入數據,這樣引入的誤差較小,因此分析結果准確度較高。
2、酸鹼滴定法
酸鹼滴定法在葯品分析檢測中的應用十分廣泛,是將一種已知其准確濃度的試劑溶液滴加到被測物質的溶液中,直到化學反應完全時為止,然後根據所用試劑溶液的濃度和體積可以求得被測組分的含量。作為一種化學分析方法,酸鹼滴定法在生產實際中應用非常廣泛。許多工業品如燒鹼、純鹼、硫酸銨和碳酸氫銨等,一般都採用酸鹼滴定法測定其主要成分的含量。食品工業中的原料、中間產品和成品的分析等也常用到酸鹼滴定法。
㈩ 高效液相色譜常用什麼色譜法
高效液相色譜法按分離機制的不同分為液固吸附色譜法、液液分配色譜法(正相與反相)、離子交換色譜法、離子對色譜法及分子排阻色譜法。
1.液固色譜法 使用固體吸附劑,被分離組分在色譜柱上分離原理是根據固定相對組分吸附力大小不同而分離。分離過程是一個吸附-解吸附的平衡過程。常用的吸附劑為硅膠或氧化鋁,粒度5~10μm。適用於分離分子量200~1000的組分,大多數用於非離子型化合物,離子型化合物易產生拖尾。常用於分離同分異構體。
2.液液色譜法 使用將特定的液態物質塗於擔體表面,或化學鍵合於擔體表面而形成的固定相,分離原理是根據被分離的組分在流動相和固定相中溶解度不同而分離。分離過程是一個分配平衡過程。
塗布式固定相應具有良好的惰性;流動相必須預先用固定相飽和,以減少固定相從擔體表面流失;溫度的變化和不同批號流動相的區別常引起柱子的變化;另外在流動相中存在的固定相也使樣品的分離和收集復雜化。由於塗布式固定相很難避免固定液流失,現在已很少採用。現在多採用的是化學鍵合固定相,如C18、C8、氨基柱、氰基柱和苯基柱。
液液色譜法按固定相和流動相的極性不同可分為正相色譜法(NPC)和反相色譜法(RPC)。
正相色譜法 採用極性固定相(如聚乙二醇、氨基與腈基鍵合相);流動相為相對非極性的疏水性溶劑(烷烴類如正已烷、環已烷),常加入乙醇、異丙醇、四氫呋喃、三氯甲烷等以調節組分的保留時間。常用於分離中等極性和極性較強的化合物(如酚類、胺類、羰基類及氨基酸類等)。
反相色譜法 一般用非極性固定相(如C18、C8);流動相為水或緩沖液,常加入甲醇、乙腈、異丙醇、丙酮、四氫呋喃等與水互溶的有機溶劑以調節保留時間。適用於分離非極性和極性較弱的化合物。RPC在現代液相色譜中應用最為廣泛,據統計,它占整個HPLC應用的80%左右。
隨著柱填料的快速發展,反相色譜法的應用范圍逐漸擴大,現已應用於某些無機樣品或易解離樣品的分析。為控制樣品在分析過程的解離,常用緩沖液控制流動相的pH值。但需要注意的是,C18和C8使用的pH值通常為2.5~7.5(2~8),太高的pH值會使硅膠溶解,太低的pH值會使鍵合的烷基脫落。有報告新商品柱可在pH 1.5~10范圍操作。
正相色譜法與反相色譜法比較表
正相色譜法 反相色譜法
固定相極性 高~中 中~低
流動相極性 低~中 中~高
組分洗脫次序 極性小先洗出 極性大先洗出
從上表可看出,當極性為中等時正相色譜法與反相色譜法沒有明顯的界線(如氨基鍵合固定相)。
3.離子交換色譜法 固定相是離子交換樹脂,常用苯乙烯與二乙烯交聯形成的聚合物骨架,在表面未端芳環上接上羧基、磺酸基(稱陽離子交換樹脂)或季氨基(陰離子交換樹脂)。被分離組分在色譜柱上分離原理是樹脂上可電離離子與流動相中具有相同電荷的離子及被測組分的離子進行可逆交換,根據各離子與離子交換基團具有不同的電荷吸引力而分離。
緩沖液常用作離子交換色譜的流動相。被分離組分在離子交換柱中的保留時間除跟組分離子與樹脂上的離子交換基團作用強弱有關外,它還受流動相的pH值和離子強度影響。pH值可改變化合物的解離程度,進而影響其與固定相的作用。流動相的鹽濃度大,則離子強度高,不利於樣品的解離,導致樣品較快流出。
離子交換色譜法主要用於分析有機酸、氨基酸、多肽及核酸。
4.離子對色譜法 又稱偶離子色譜法,是液液色譜法的分支。它是根據被測組分離子與離子對試劑離子形成中性的離子對化合物後,在非極性固定相中溶解度增大,從而使其分離效果改善。主要用於分析離子強度大的酸鹼物質。
分析鹼性物質常用的離子對試劑為烷基磺酸鹽,如戊烷磺酸鈉、辛烷磺酸鈉等。另外高氯酸、三氟乙酸也可與多種鹼性樣品形成很強的離子對。
分析酸性物質常用四丁基季銨鹽,如四丁基溴化銨、四丁基銨磷酸鹽。
離子對色譜法常用ODS柱(即C18),流動相為甲醇-水或乙腈-水,水中加入3~10 mmol/L的離子對試劑,在一定的pH值范圍內進行分離。被測組分保時間與離子對性質、濃度、流動相組成及其pH值、離子強度有關。
5.排阻色譜法 固定相是有一定孔徑的多孔性填料,流動相是可以溶解樣品的溶劑。小分子量的化合物可以進入孔中,滯留時間長;大分子量的化合物不能進入孔中,直接隨流動相流出。它利用分子篩對分子量大小不同的各組分排阻能力的差異而完成分離。常用於分離高分子化合物,如組織提取物、多肽、蛋白質、核酸等。
色譜法的基本原理
利用樣品混合物中各組分理、化性質的差異,各組分程度不同的分配到互不相溶的兩相中。當兩相相對運動時,各組分在兩相中反復多次重新分配,結果使混合物得到分離。
兩相中,固定不動的一相稱固定相;移動的一相稱流動相。
分類:
根據流動相分—以氣體作流動相—氣相色譜——固定相為液體 氣-液色譜
固定相為固體 氣-固色譜
—以液體作流動相—液相色譜——固定相為液體 液-液色譜
固定相為固體 液-固色譜
—當流動相是在接近它的臨界溫度和壓力下工作的液體時——超臨界色譜
根據固定相的附著方式
—固定相裝在圓柱管中—柱色譜
—固定相塗敷在玻璃或金屬板上—薄膜色譜(平板色譜)
—液體固定相塗在紙上—紙色譜(平板色譜)
根據分離機理
—分配色譜—樣品組分的分配系數不同
—吸附色譜— 樣品組分對固定相表面吸附力不同
—體積排阻色譜—利用固定相孔徑不同,把樣品組分按分子大小分開
—離子交換色譜—不同離子與固定相商相反電荷間的作用力大小不同
根據極性
—流動相極性>固定相極性-反相色譜
—流動相極性<固定相極性-正相色譜
氣相色譜只適合分析較易揮發、且化學性質穩定的有機化合物,而HPLC則適合於分析那些用氣相色譜難以分析的物質,如揮發性差、極性強、具有生物活性、熱穩定性差的物質。所以,HPLC的應用范圍已經遠遠超過氣相色譜。
一、吸附色譜(adsorption chromatography)
又叫液固色譜法:流動相是液體,固定相是固體。
分離原理:固定相是固體吸附劑,吸附劑是多孔性微粒物質表面有吸附中心。樣品組分與流動相競爭吸附中 心。各組分的吸附能力不同,使組分在固定相中產生保留時間不同和實現分離。
固定相: 固定相通常是強極性的硅膠、氧化鋁、活性炭、聚乙烯、聚醯胺等固體吸附劑。活性硅膠最常用。
流動相: 弱極性有機溶劑或非極性溶劑與極性溶劑的混合物,如正構烷烴(己烷、戊烷、庚烷等)、二氯甲 烷/甲醇、乙酸乙酯/乙腈等。
應用: 對於極性,結構異構體分離和族分離仍是最有效的方法,如農葯異構體分離、石油中烷、烯、芳烴的 分離。 缺點是容易產生不對稱峰和拖尾現象。
二、分配色譜
原理: 固定液機械的吸附在惰性載體上,樣品分子依據他們在流動相和固定相間的溶解度不同,分別進入兩相分配而實現分離。
固定相:將一種極性或非極性固定液吸附在惰性固相載體上。如全多孔微粒硅膠吸附劑。
根據極性不同分類:正相分配色譜—固定相載體上塗布的是極性固定液;
流動相是非極性溶劑;
可分立極性較強的水溶性樣品;
弱極性組分先洗脫出來。
反相分配色譜—固定相載體上塗布的是非極性或弱極性固定液;
流動相是極性溶劑;
強極性組分先洗脫出來。
液-液分配色譜固定相中的固定液體往往容易溶解到流動相中去,所以重現性很差,且不能進行梯度洗脫,已經不大為人們所採用。
三、鍵合相色譜
考慮分配色譜法中固定液的缺點,因此將各種不同的有機關能團通過化學反應共價結合到固定相惰性載體上,固定相就不會溶解到流動相中去了。
鍵合固定相優點:○ 對極性有機溶劑有良好的化學穩定性
○使色譜柱的柱效高、壽命長
○實驗重現性好
○幾乎適於各種類相的有機化合物的分離,尤其是k』寬范圍的樣品
○可以梯度洗脫
根據極性不同分類:正相鍵合相色譜—固定相極性>流動相極性
固定相:二醇基、醚基、氰基、氨基等極性基團的有機分子。
適於分離脂榮、水溶性的極性、強極性化合物
反相鍵合相色譜—固定相極性<流動相極性
固定相:烷基、苯基等非極性有機分子。如最常用的ODS柱或C18柱就 是最典型的代表,其極性很小。
適於分離非機性、弱極性離子型樣品,
是當今液相色譜的最主要分離模式。
正相HPLC(normal phase HPLC):
是由極性固定相和非極性(或弱極性)流動相所組成的HPLC體系。其代表性的固定相是改性硅膠、氰基柱等,代表性的流動相是正己烷。吸附色譜也屬正相HPLC。
反相HPLC(reversed phase HPLC):
由非極性固定相和極性流動相所組成的液相色譜體系,與正相HPLC體系正好相反。其代表性的固定相是十八烷基鍵合硅膠(ODS柱,Octa Decyltrichloro Silane),代表性的流動相是甲醇和乙腈。
四、體積排阻色譜(SEC,size exclusion chromatograghy)
(又稱凝膠色譜和分子篩色譜)
原理: 以多孔凝膠(如葡萄糖,瓊脂糖,硅膠,聚丙烯醯胺等)作固定相,依據樣品分子量大小達到分離目 的。大分子不進入凝膠孔洞,沿多孔凝膠膠粒間隙流出,先被洗脫;小分子進入大部分凝膠孔洞, 在柱中被強滯留,後被洗脫。
根據樣品性質分類:凝膠過濾(GFC)—用於分析水溶性樣品,如多肽、蛋白、生物酶、寡聚核苷酸、多聚核 苷酸、多糖。
凝膠滲透(GPC)—用於分析脂溶性樣品,如測定高聚物的分子量。
SEC主要依據分子量大小進行分離,因此與樣品、流動相間的相互作用無關。因此不採用改變流動相的組成來改善分離度。
五、離子交換色譜
(ion exchange chromatography, IEC)
分離原理:使用表面有離子交換基團的離子交換劑作為固定相。帶負電荷的交換基團(如磺酸基和羧酸基)可以用於陽離子的分離;帶正電荷的交換基團(如季胺鹽)可以用於陰離子的分離。不同離子與交換基的作用力大小不同,在樹脂中的保留時間長短不同,從而被相互分離