㈠ 離子色譜法測定水中氨氮含量的標准檢驗方法
請參考這篇文獻《離子色譜法測定水中氨氮含量》
【題名】離子色譜法測定水中氨氮含量
【作者】楊文英 王艷春
【機構】北京市通州區疾病預防控制中心,北京101100
【刊名】《中國衛生檢驗雜志》 2005年第15卷第11期,1338-1339頁
【關鍵詞】離子色譜法 氨氮 水
【文摘】目的:用離子色譜法測定水中的氨氮含量。方法:採用DX-120型離子色譜儀,選用IonPac CS12A分離柱,淋洗液為20mmol/L甲烷磺酸,流速為0.60ml/min,電導檢測器。結果:氨氮濃度在0.04—2.0mg/L范圍內具有較好的線性關系,相關系數為0.9997,檢出限為0.010mg/L。測定方法具有較好的精密度和准確度,相對標准偏差為0.82%,加標回收率在 95.2%-107.0%之間。在Na^+離子濃度不影響氨氮測定的條件下,與納氏試劑分光光度法做對比實驗,兩種方法測定結果無顯著性差異。結論:該方法操作簡便、快速、無污染,可用於水中氨氮含量的分析。
建議您可以到行業內專業的網站進行交流學習!
分析測試網路網這塊做得不錯,氣相、液相、質譜、光譜、葯物分析、化學分析、食品分析。這方面的專家比較多,基本上問題都能得到解答,有問題可去那提問,網址網路搜下就有。
㈡ 離子色譜儀 用來測什麼
離子色譜主要用於環境樣品的分析,包括地面水、飲用水、雨水、生活污水和工業廢水、酸沉降物和大氣顆粒物等樣品中的陰、陽離子,與微電子工業有關的水和試劑中痕量雜質的分析。
離子色譜是高效液相色譜的一種,故又稱高效離子色譜(HPIC)或現代離子色譜,其有別於傳統離子交換色譜柱色譜的主要是樹脂具有很高的交聯度和較低的交換容量,進樣體積很小,用柱塞泵輸送淋洗液通常對淋出液進行在線自動連續電導檢測。
(2)離子色譜儀數據分析方法擴展閱讀
離子色譜儀的工作過程
輸液泵將流動相以穩定的流速( 或壓力) 輸送至分析體系,,在色譜柱之前通過進樣器將樣品導入, 流動相將樣品帶入色譜柱, 在色譜柱中各組分被分離, 並依次隨流動相流至檢測器, 抑制型離子色譜則在電導檢測器之前增加一個抑制系統。
即用另一個高壓輸液泵將再生液輸送到抑制器, 在抑制器中, 流動相的背景電導被降低。然後將流出物導入電導檢測池。檢測到的信號送至數據系統記錄、處理或保存。非抑制型離子色譜儀不用抑制器和輸送再生液的高壓泵。因此儀器的結構相對要簡單得多, 價格也要便宜很多。
㈢ 碘量的測定 高效離子色譜法
1 范圍
本方法規定了地球化學勘查試樣中碘含量的測定方法。
本方法適用於水系沉積物及土壤試料中碘量的測定。
本方法檢出限(3S):0.2μg/g碘。
本方法測定范圍:0.6μg/g~500μg/g碘。
2 規范性引用文件
下列文件中的條款通過本方法的本部分的引用而成為本部分的條款。
下列不注日期的引用文件,其最新版本適用於本方法。
GB/T 20001.4 標准編寫規則 第4部分:化學分析方法。
GB/T 14505 岩石和礦石化學分析方法總則及一般規定。
GB 6379 測試方法的精密度通過實驗室間試驗確定標准測試方法的重復性和再現性。
GB/T 14496—93 地球化學勘查術語。
3 方法提要
試料用(Na2CO3∶ZnO=3∶2)混合試劑混勻,經燒結後用水浸取,浸取液用氫型陽離子交換樹脂靜態交換分離大量基體(陽離子)後,用抗壞血酸將碘酸根還原成碘離子,將試液注入儀器,在[c(NaNO3)=0.015mol/L]硝酸鈉淋洗液攜帶下,流入陰離子分離柱(HPIC-AG5+HPIC-AS5)。在分離柱中,經洗提與交換使碘離子與其他陰離子分離,然後經過電化學檢測器,測定碘離子在銀工作電極上產生氧化反應而產生的電流值。由記錄器記錄碘離子濃度的峰高值,同時測定工作曲線上各個碘離子濃度的峰高值,並在相應的工作曲線上,分別查得試液中碘含量以計算碘量。
4 試劑
除非另有說明,在分析中僅使用確認為分析純的試劑和去離子水(電導率<1μS/cm)。
4.1 無水乙醇
4.2 碳酸鈉和氧化鋅混合試劑
碳酸鈉(優級純)和氧化鋅(優級純)按3∶2的比例充分混勻後備用。
4.3 硫酸(ρ1.84g/mL)
4.4 硫酸溶液[c(1/2H2SO4)=2mo1/L]
移取42mL硫酸(4.3)緩慢地加到700mL水中,攪勻備用。
4.5 732型陽離子交換樹脂(50~100網目)
先用水浸泡,清洗數遍。然後將樹脂裝入直徑約1.5cm、長約30cm的玻璃柱中,頂端與梨形分液漏斗銜接。於分液漏斗中加入150mL硫酸溶液(4.4),以約 1.5mL/min流速流經交換柱,流畢。用水以同樣流速流經交換柱,直至流出液洗至無硫酸根。再生的樹脂以真空抽濾至干,裝瓶備用。收集已經用本法靜態交換過的陽離子交換樹脂,可用上述步驟再生後,繼續使用。
4.6 抗壞血酸溶液[ρ(C6H8O)=15g/L]
稱取0.15g抗壞血酸溶於10mL水中。用時配製。
4.7 氫氧化鈉溶液[c(NaOH)=0.1mol/L]
稱取4.0g氫氧化鈉溶於100mL水中。用時配製。
4.8 硝酸鈉溶液[c(NaNO3)=0.015 mol/L]
稱取1.275g硝酸鈉[含Ag<100ng]溶於1000mL水中。用時配製。
4.9 碘標准溶液
4.9.1 碘標准溶液Ⅰ[ρ(I-)=100μg/mL]稱取0.1308g已於105℃乾燥1h的高純碘化鉀,置於250mL燒杯中,加水溶解,並加入2mL氫氧化鈉溶液(4.7),用水稀釋至1000mL容量瓶中,搖勻。
4.9.2 碘標准溶液Ⅱ[ρ(I-)=10μg/mL]移取10.0mL碘標准溶液Ⅰ(4.9.1),置於100mL容量瓶中,加入1.0mL氫氧化鈉溶液(4.7),用水稀釋至刻度,搖勻。
4.9.3 碘標准溶液Ⅲ[ρ(I-)=1.0μg/mL]移取10.0mL碘標准溶液Ⅱ(4.9.2),置於100mL容量瓶中,加入1.0mL氫氧化鈉溶液(4.7),用水稀釋至刻度,搖勻。用時配製。
5 儀器及材料
5.1 DIONEX-2020i離子色譜儀
5.2 DIONEX分離柱
HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)
5.3 安培檢測器
5.4 銀工作電極
5.5 記錄器
量程1mV~10mV
6 分析步驟
6.1 試料
試料粒徑應小於0.097mm,在60℃乾燥2h,置乾燥器中,備用。
試料量 稱取0.1g~0.5g試料,精確至0.0002g。
6.2 空白實驗
隨同試料分析全過程做兩份空白試驗。
6.3 質量控制
選取同類型水系沉積物或土壤一級標准物質2個~4個樣品,隨同試料同時分析。
6.4 測定
6.4.1 稱取試料(6.1)置於預先盛有1.5g碳酸鈉-氧化鋅混合熔劑(4.2)的瓷坩堝中,攪勻並均勻覆蓋1.5g碳酸鈉和氧化鋅混合熔劑(4.2),置於馬弗爐中,自低溫升溫至750℃,保持750℃0.5h後取出冷卻,將熔塊倒入100mL燒杯中,用熱水洗凈坩堝,加幾滴無水乙醇及20mL水,煮沸,冷卻,將溶液連同沉澱一起移入50mL比色管中,用水稀釋至刻度,搖勻,放置澄清。
6.4.2 吸取5.0mL清液(6.4.1)置於50mL干燒杯中,加入0.1mL抗壞血酸溶液(4.6)搖勻,加5g陽離子交換樹脂(4.5)。在靜態交換過程中需搖動2次~3次,直至溶液呈微酸性後再放置30min(總共約需2h)。
6.4.3 用注射器吸出3mL經靜態交換後的制備溶液(6.4.2),置於10mL乾的小燒杯中,用氫氧化鈉溶液(4.7)將試液調至pH 7~8之間(約需用氫氧化鈉(4.7)0.15mL)。
6.4.4 按儀器工作條件(見附錄A),將儀器調試好,待基線穩定後,用注射器吸取1.0mL清液(6.4.3),注入儀器(進樣閥),經交換柱並流經安培檢測器,由記錄器記錄碘離子濃度的峰高值,同時測量工作曲線上各個碘離子濃度的峰高值。從工作曲線上查得相應的碘量。
註:每測試5個試液後,應校對檢查測量工作曲線上某一碘濃度的峰高值是否發生偏倚,以監控儀器的穩定性,提高測量的准確性。
6.4.5 工作曲線的繪制。分別移取0.0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL碘離子標准溶液(4.9.3),置於一組50mL容量瓶中,加入0.20mL氫氧化鈉溶液(4.7),用水稀釋至刻度,搖勻。以下操作按(6.4.4)節進行。測量完畢,以碘離子濃度為橫坐標,峰高值為縱坐標,繪制碘的工作曲線。
7 分析結果的計算
按下列公式計算碘的含量:
區域地球化學勘查樣品分析方法
式中:ρ——從工作曲線上查得試料溶液中碘的濃度,ng/mL;ρ0——從工作曲線上查得空白試驗溶液中碘的濃度,ng/mL;V——制備溶液總體積,mL;m——試料質量,g;1.07——稀釋因子(由6.4.2和6.4.3步驟中加入的抗壞血酸和氫氧化鈉所引起測量液的體積變化)。
8 精密度
碘量的精密度見表1。
表1 精密度[w(I-),10-6]
附 錄 A
(資料性附錄)
A.1 儀器工作條件
見表 A.1。
表A.1 儀器工作條件
A.2 電極活化步驟
首先將分離柱從色譜儀上取下,再用一個聯接器把淋洗液出口管與電化學池進口管連接,然後用注射器取5mL碘離子標准溶液ρ(I)=10.00 mg/L分兩次注入儀器,由淋洗液帶入電化學池。兩次時間間隔為5min。
註:電極活化只是在電極拋光後才需要。
附 錄 B
(資料性附錄)
B.1 從實驗室間試驗結果得到的統計數據和其他數據
如表B.1。
本方法精密度協作試驗數據是由多個實驗室進行方法合作研究所提供的結果進行統計分析得到的。
表B.1中不需要將各濃度的數據全部列出,但至少列出了3個或3個以上濃度所統計的參數。
B.1.1 列出了試驗結果可接受的實驗室個數(即除了經平均值及方差檢驗後,屬界外值而被舍棄的實驗室數據)。
B.1.2 列出了方法的相對誤差參數,計算公式為,公式中為多個實驗室測量平均值;x0為一級標准物質的標准值。
B.1.3 列出了方法的精密度參數,計算公式為,公式中Sr為重復性標准差、SR為再現性標准差。為了與GB/T20001.4所列參數的命名一致,本方法精密度表列稱謂為「重復性變異系數」及「再現性變異系數」。
B.1.4 列出了方法的相對准確度參數。相對准確度是指測定值(平均值)占真值的百分比。
表B.1 I統計結果表
附加說明
本方法由中國地質調查局提出。
本方法由武漢綜合岩礦測試中心技術歸口。
本方法由安徽省地質實驗研究所負責起草。
本方法主要起草人:佘小林。
本方法精密度協作試驗由武漢綜合岩礦測試中心江寶林、葉家瑜組織實施。
㈣ 離子色譜法測定鋰、鈉、鉀、鈣、鎂、銨
方法提要
水樣中陽離子Li+、Na+、NH+4、K+、Mg2+、Ca2+,隨鹽酸淋洗液進入陽離子分離柱,根據離子交換樹脂對各陽離子的不同親和程度進行分離。經分離後的各組分流經抑制系統,將強電解質的淋洗液轉換為弱電解溶液,降低了背景電導。流經電導檢測器系統,測量各離子組分的電導率。以相對保留時間和色譜峰(面積)定性和定量。
本法用電導檢測器,在3~300μS測量量程,可達到線性范圍分別為:Li+0.02~27mg/L;Na+0.06~90mg/L;K+0.16~225mg/L。10~300μS量程為:Mg2+1.2~35mg/L;Ca2+1.7~360mg/L。
儀器和裝置
離子色譜儀(電導檢測器)。
陽離子分離柱/保護柱(IopacCS12,CS14或同類產品)。
抑制器系統(抑制柱、膜抑制器或自動再生電解抑制器)。
濾膜(0.2μm)和過濾器。
試劑
本法需用電導率小於1μS/cm的純水配製標准溶液和淋洗液。
淋洗液 鹽酸c(HCl)=20mmol/L。
再生液 四甲基氫氧化銨c(CH3)4NOH=100mmol/L稱取36.5g四甲基氫氧化銨,置於100mL容量瓶中,加水至刻度。
鈉(Na+) 標准儲備溶液ρ(Na+)=1.00mg/mL稱取0.5084g經500℃灼燒1h,並在乾燥器中冷卻0.5h的NaCl,置於200mL容量瓶中,加入水溶解後稀釋至刻度,搖勻。
鉀(K+) 標准儲備溶液ρ(K+)=1.00mg/mL稱取0.4457g經500℃灼燒1h並在乾燥器中冷卻0.5h的K2SO4,置於200mL容量瓶中,加入水溶解後稀釋至刻度,搖勻。
鋰(Li+) 標准儲備溶液ρ(Li+)=1.00mg/mL稱取1.0648gLi2CO3置於200mL容量瓶中,加少量水濕潤,逐滴加入(1+1)HCl,使碳酸鋰完全溶解,再過量2滴。加入水至刻度,搖勻。
圖81.65 種陽離子的色譜圖
鈣(Ca2+)標准儲備溶液ρ(Ca2+)=1.00mg/mL稱取0.4994g經105℃乾燥的CaCO3置於200mL燒杯中,加入少量純水,逐漸加入(1+1)HCl,待完全溶解後,再加入過量(1+1)HCl。煮沸驅除二氧化碳,定量地轉移至200mL容量瓶中,加入純水溶解後稀釋至刻度。
鎂(Mg2+)標准儲備溶液ρ(Mg2+)=1.00mg/mL稱取0.7836g氯化鎂(MgCl2)置於200mL容量瓶中,加入純水溶解後稀釋至刻度。
陽離子混合標准溶液根據選定的測量范圍,分別吸取適量各組分的標准儲備溶液,定容至一定體積,以mg/L表示各組分濃度。
分析步驟
開啟離子色譜儀,調節淋洗液和再生液流速,使儀器達到平衡,並指示穩定的基線。
校準。根據所選擇的量程,將陽離子混合標准溶液和兩次等比稀釋的三種不同濃度的陽離子混合標准溶液依次進樣。記錄峰高或峰面積,繪制校準曲線。
將水樣經0.2μm濾膜過濾注入進樣系統,記錄色譜峰高或峰面積。各種陽離子的質量濃度(mg/L)在標准曲線上直接查得。
各種陽離子的測定范圍(mg/L)見表81.8及色譜圖81.6。
表81.8 各種陽離子在不同量程的參考測定濃度
續表
㈤ 離子色譜儀 用來測什麼
離子色譜(Ion Chromatography,簡稱IC)是近年來分析化學領域中發展最快的分析方法之一,可測定各種類陰離子和陽離子,離子色譜對陰離子的分析是分析化學中一項新的突破.離子色譜是高效液相色譜(HPLC)技術的一種,主要分離和檢測離子型、極性和部分弱極性的化合物.IC操作簡單,樣品分析重現性好;經過稀釋、過濾後即可以測定多種樣品,如:多價態可氧化元素(NO2- 、 NO3-、SO32-、SO42-) 等;淋洗液體系簡單,對環境污染小;離子色譜的檢測方法較多,有電導、電化學(安培法)、紫外、熒光等檢測器;此外,還具有高選擇性、靈敏、快速且多種離子同時測定的優點.檢測對象和內容:離子色譜技術現已逐步向多功能、多用途方面發展,從分析常見的陰、陽離子,發展到分析多種復雜有機分子.可測定各類陰離子和陽離子,尤其在陰離子測定方面獨具優勢,並能分析部分醇、醛、芳香胺、氨基酸、酚、有機酸、糖類和蛋白質等.主要應用領域:能源、環境、食品、醫療衛生、農業、水文地質、化工冶金、半導體、電鍍、造紙、紡織和生產質量控制等方面.是測陰離子的.
㈥ 氯量及溴量的測定 高效離子色譜法
1 范圍
本方法規定了地球化學勘查試樣中氯和溴含量的測定方法。
本方法適用於水系沉積物及土壤試料中氯量和溴量的測定。
本方法檢出限(3S):10μg/g氯,0.3μg/g溴。
本方法測定范圍:30μg/g~20000μg/g氯,0.9μg/g~600μg/g溴。
2 規范性引用文件
下列文件中的條款通過本方法的本部分的引用而成為本部分的條款。
下列不注日期的引用文件,其最新版本適用於本方法。
GB/T 20001.4 標准編寫規則 第4部分:化學分析方法。
GB/T 14505 岩石和礦石化學分析方法總則及一般規定。
GB 6379 測試方法的精密度通過實驗室間試驗確定標准測試方法的重復性和再現性。
GB/T 14496—93 地球化學勘查術語。
3 方法提要
試料用(Na2CO3:ZnO=3:2)混勻,經燒結後用水浸取,浸取液用氫型陽離子交換樹脂靜態交換分離大量基體(陽離子)後,將試液注入儀器,在[c(NaHCO3)=0.0028mol/L-c(1/2NaCO3)=0.0044mol/L]淋洗液攜帶下,流入陰離子分離柱(HPIC-AG3+HPIC-AS3),經洗提與交換使氯離子與其他陰離子分離,然後流經陰離子抑制器,以降低淋洗液的背景電導;再流經電導檢測器,測定氯離子電導率。在[c(NaNO3)=0.015mol/L]的淋洗液攜帶下,流入陰離子分離柱(HPIC-AG5+HPIC-AS5),經洗提與交換使溴離子與其他陰離子分離,然後流經電化學檢測器,測定溴離子在銀工作電極上產生氧化反應而產生的電流值。由記錄器分別記錄各離子濃度的峰高值,同時測定工作曲線上各個氯離子和溴離子濃度的峰高值,並在相應工作曲線上,分別查得試液中各離子含量,計算氯量和溴量。
4 試劑
除非另有說明,在分析中僅使用確認為分析純的試劑和去離子水(電導率<1μS/cm)。
4.1 無水乙醇
4.2 碳酸鈉和氧化鋅混合熔劑
碳酸鈉(優級純)和氧化鋅(優級純)按3∶2的比例充分混勻備用。
4.3 硫酸(ρ 1.84g/mL)
4.4 硫酸溶液Ⅰ[c(1/2H2SO4)=2mol/L]
移取42mL硫酸(4.3)緩慢地加入700mL水中,攪勻。
4.5 硫酸溶液Ⅱ[c(1/2H2SO4)=0.025mol/L]
准確分取12.5mL的硫酸溶液Ⅰ(4.4)於1000mL水中,攪勻。
4.6 732型陽離子交換樹脂(50~100網目)
先用水浸泡,清洗數遍,然後將樹脂裝入直徑約1.5cm、長約30cm的玻璃柱中,頂端與梨形分液漏斗銜接。在分液漏斗中加入150mL硫酸溶液Ⅰ(4.4),以約 1.5mL/min流速流經交換柱,流畢。用水以同樣流速流經交換柱,直至流出液洗至無硫酸根。再生的樹脂以真空抽濾至干,裝瓶備用。收集已經用本法靜態交換過的陽離子交換樹脂,可用上述步驟再生後,繼續使用。
4.7 碳酸氫鈉-碳酸鈉溶液[c(NaHCO3)-c(1/2Na2CO3)=0.0028mo1/L-0.0044mol/L]
稱取碳酸氫鈉(優級純)0.2352g和碳酸鈉(優級純)0.2332g溶於1000mL水中。用時配製。
4.8 硝酸鈉溶液[c(NaNO3)=0.015mo1/L]
稱取1.275g硝酸鈉[含Ag<100 ng]溶於1000mL水中。用時配製。
4.9 氯標准溶液
4.9.1 氯標准溶液I[ρ(Cl-)=1.000mg/mL]稱取1.6485g已在500℃灼燒1h後的高純氯化鈉,置於 250mL燒杯中,加水溶解後,移入1000mL容量瓶中,用水稀釋至刻度,搖勻。
4.9.2 氯標准溶液Ⅱ[ρ(Cl-)=100μg/mL]移取10.0mL氯標准溶液Ⅰ(4.9.1),置於100mL容量瓶中,用水稀釋至刻度,搖勻。
4.9.3 氯標准溶液Ⅲ[ρ(Cl-)=5.0μg/mL]移取5.0mL氯標准溶液Ⅱ(4.9.2),置於100mL容量瓶中,用水稀釋至刻度,搖勻。
4.10 溴標准溶液
4.10.1 溴標准溶液Ⅰ[ρ(Br-)=100μg/mL]稱取0.1489g已於105℃乾燥1h後的高純溴化鉀,置於 250mL燒杯中,加水溶解後,移入1000mL容量瓶中,用水稀釋至刻度,搖勻。
4.10.2 溴標准溶液Ⅱ[ρ(Br-)=10μg/mL]移取10.0mL溴標准溶液Ⅰ(4.10.1),置於100mL容量瓶中,用水稀釋至刻度,搖勻。
4.10.3 溴標准溶液Ⅲ[ρ(Br-)=1.0μg/mL]移取10.0mL溴標准溶液Ⅱ(4.10.2),置於100mL容量瓶中,用水稀釋至刻度,搖勻。
5 儀器及材料
5.1 DIONEX-2020i離子色譜儀
5.2 DIONEX分離柱 HPIC-AG3(4mm×50mm),HPIC-AS3(4mm×250mm);HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)
5.3 抑制器DIONEX ASRS-ULTRA4-mm
5.4 電導檢測器
5.5 安培檢測器
5.6 銀工作電極
5.7 記錄器
量程1mV~10mV。
6 分析步驟
6.1 試料
試料粒徑應小於0.097mm,在60℃乾燥2h,置乾燥器中,備用。
試料量 依據元素含量,稱取0.1g~0.5g試料,精確至0.0002g。
6.2 空白實驗
隨同試料分析全過程做兩份空白試驗。
6.3 質量控制
選取同類型水系沉積物或土壤一級標准物質2個~4個樣品,隨同試料同時分析。
6.4 測定
6.4.1 依據各元素的含量,稱取試料(6.1)置於預先盛有1.5g碳酸鈉和氧化鋅混合熔劑(4.2)的磁坩堝中,攪勻後,並均勻覆蓋1.5g碳酸鈉和氧化鋅混合熔劑(4.2);置於低溫馬弗爐中,自低溫升溫至800℃,保持800℃ 0.5h後取出冷卻;將熔塊倒入100mL燒杯中,用熱水洗凈坩堝,加20mL水及幾滴無水乙醇,煮沸,冷卻,將溶液連同沉澱一起移入50mL比色管中,用水稀釋至刻度,搖勻後放置澄清。
6.4.2 吸取5.0mL清液(6.4.1)置於50mL干燒杯中,加5g陽離子交換樹脂(4.6),靜態交換2h,在靜態交換過程中須搖動2次~3次。
6.4.3 按儀器工作條件(見附錄A),將儀器調試好,待基線穩定後,用注射器吸取1.0mL清液(6.4.2),注入儀器(進樣閥),經分離柱再流經電導檢測器,由記錄器記錄氯離子濃度的峰高值,同時測量工作曲線上各個氯離子濃度的峰高值,從工作曲線查得相應的氯量。
6.4.4 按儀器工作條件(見附錄B),將儀器調試好,待基線穩定後,用注射器吸取1.0mL清液(6.4.2),注入儀器(進樣閥),經分離柱再由安培檢測器測量,由記錄器記錄溴離子濃度的峰高值,同時測量工作曲線上各個溴離子濃度的峰高值,從工作曲線查得相應的溴量。
註:每測試5個試液後,應校對檢查測量工作曲線是否發生偏倚,以監控儀器的穩定性,提高測量的准確性。
6.4.5 工作曲線的繪制
6.4.5.1 分別移取0.0mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL氯標准溶液Ⅲ(4.9.3),置於一組10mL燒杯中,分別加入5.00mL、4.50mL、4.00mL、3.00mL、2.00mL、1.00mL、0.00mL水至5mL,搖勻。以下操作按(6.4.3)節進行。測量完畢,以氯離子濃度為橫坐標,峰高值為縱坐標,繪制氯的工作曲線。
6.4.5.2 分別移取0.0mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL、3.00mL溴標准溶液Ⅲ(4.10.3),置於一組25mL容量瓶中,用水稀釋至刻度,搖勻。以下操作按(6.4.4)節進行。測量完畢,以溴離子濃度為橫坐標,峰高值為縱坐標,繪制溴的工作曲線。
7 分析結果的計算
按公式(1)計算氯的含量,按公式(2)計算溴的含量。
區域地球化學勘查樣品分析方法
式中:P——從工作曲線上查得試料溶液中氯或溴的濃度,氯為μg/mL,溴為ng/mL;P0——從工作曲線上查得空白試驗溶液中氯或溴的濃度,氯為μg/mL,溴為ng/mL;V——制備溶液總體積,mL;m——試料質量,g。
8 精密度
氯量、溴量的精密度見表1及表2。
表1 精密度[w(Cl-),10-6]
表2 精密度[w(Br-),10-6]
附 錄 A
(資料性附錄)
A.1 測定氯的儀器工作條件
測定氯的儀器工作條件見表A.1。
表A.1 測定氯的儀器工作條件
附 錄 B
(資料性附錄)
B.1 測定溴的儀器工作條件
測定溴的儀器工作條件見表B.1
表B.1 測定溴的儀器工作條件
B.1.1 電極活化步驟 首先將分離柱從色譜儀上取下,再用一個聯接器把淋洗液出口管與電化學池進口管聯接,然後用注射器取5mL溴離子標准溶液(ρ(Br-)=1.00 mg/L)分兩次注入儀器,由淋洗液帶入電化學池。兩次時間間隔為5min。
註:電極活化只是在電極拋光後才需要。
附 錄 C
(資料性附錄)
C.1 從實驗室間試驗結果得到的統計數據和其他數據
如表C.1及表C.2。
本方法精密度協作試驗數據是由多個實驗室進行方法合作研究所提供的結果進行統計分析得到的。
表C.1及表C.2中不需要將各濃度的數據全部列出,但至少列出了3個或3個以上濃度所統計的參數。
C.1.1 列出了試驗結果可接受的實驗室個數(即除了經平均值及方差檢驗後,屬界外值而被舍棄的實驗室數據)。
C.1.2 列出了方法的相對誤差參數,計算公式為,公式中為多個實驗室測量平均值為一級標准物質的標准值。
C.1.3 列出了方法的精密度參數,計算公式為,公式中Sr為重復性標准差、SR為再現性標准差。為了與GB/T20001.4所列參數的命名一致,本方法精密度表列稱謂為「重復性變異系數」及「再現性變異系數」。
C.1.4 列出了方法的相對准確度參數。相對准確度是指測定值(平均值)占真值的百分比。
表C.1 CI統計結果表
表C.2 Br統計結果表
附加說明
本方法由中國地質調查局提出。
本方法由武漢綜合岩礦測試中心技術歸口。
本方法由安徽省地質實驗研究所負責起草。
本方法主要起草人:佘小林。
本方法精密度協作試驗由武漢綜合岩礦測試中心江寶林、葉家瑜組織實施。
㈦ 離子色譜儀可以檢測哪些離子
經過多年的發展,國產離子色譜儀技術在普通應用行業已經成熟。
在離子色譜儀的檢測數據中,常見的離子有:陰離子:氟、氯、溴、二氧化氮、磷酸根、硝酸根、硫酸根-、甲酸、乙酸、草酸等。
陽離子:鋰、鈉、銨、鉀、鈣、鎂、銅、鋅、鐵、Fe3+等。
現在大多數國家和地區都有非常嚴格的要求限制其在食品中的含量。因此,離子色譜儀不僅效率高,而且具有很高的靈敏度和准確度。
離子色譜技術從分析常見的陰、陽離子到分析多種復雜的有機分子,逐漸發展到多功能、多用途。它可以測量各種陰離子和陽離子,尤其是它在陰離子測量方面的優勢,可以分析一些醇類、醛類、芳香胺類、氨基酸、酚類、有機酸、糖類和蛋白質。
㈧ 離子色譜法測定氟化物、氯化物、硝酸鹽和硫酸鹽
方法提要
水樣中待測陰離子隨碳酸鹽-重碳酸鹽淋洗液進入離子交換柱系統(由保護柱和分離柱組成),根據分離柱對各陰離子的不同的親和度進行分離,已分離的陰離子流經陽離子交換柱或抑制器系統轉換成具高電導度的強酸,淋洗液則轉變為弱電導度的碳酸。由電導檢測器測量各陰離子組分的電導率,以相對保留時間和峰高或面積定性和定量。
本法適用於水源水中可溶性氟化物、氯化物、硝酸鹽和硫酸鹽的測定。
本法最低檢測質量濃度決定於不同進樣量和檢測器靈敏度。一般情況下,進樣50μL,電導檢測器量程為10μs時適宜的檢測范圍為:0.1~1.5mg/L(以F-計),0.15~2.5mg/L(以Cl-和NO-3-N計),0.75~12mg/L(以SO2-4計)。
儀器和裝置
離子色譜儀包括進樣系統,分離柱及保護柱,抑制器(交換柱抑制器、膜抑制器或自動電解抑制器)等。
過濾器及濾膜0.2μm。
陽離子交換柱(圖81.3)裝入磺化聚苯乙烯強酸性陽離子交換樹脂。
試劑
圖81.3 離子交換柱
純水(去離子或蒸餾水)待測陰離子含量應低於儀器的檢測限,並經0.2μm濾膜過濾。
淋洗液[碳酸氫鈉(1.7mmol/L)-碳酸鈉(1.8mmol/L)溶液]稱取0.5712g碳酸氫鈉(NaHCO3)和0.7632g碳酸鈉(Na2CO3)溶於純水中,稀釋至4000mL。
再生液Ⅰ(適用於非連續式再生的抑制器)0.5mol/LH2SO4介質。
再生液Ⅱ(適用於連續式再生的抑制器)25mmol/LH2SO4介質。
氟化物(F-)標准儲備溶液ρ(F-)=1mg/mL見81.14.1。
圖81.4 離子色譜圖
氯化物(Cl-)標准儲備溶液ρ(Cl-)=1mg/mL稱取1.6485g經105℃乾燥至恆量的氯化鈉(NaCl)溶於純水中,稀釋至1000mL。
硝酸鹽(NO-3)標准儲備溶液ρ(NO-3)=1mg/mL稱取7.218g經105℃乾燥至恆量的硝酸鉀(KNO3)溶於純水中,稀釋至1000mL。
硫酸鹽(SO24-)標准儲備溶液ρ(SO24-)=1mg/mL稱取1.814g經105℃乾燥至恆量的硫酸鉀(K2SO4)溶於純水中,稀釋至1000mL。
混合陰離子標准溶液(含F-5mg/L,Cl-8mg/L,NO-3-N8mg/L,SO2-440mg/L)分別吸取5.00mL、8.00mL、40.0mL上述單離子標准儲備溶液於1000mL容量瓶中,加純水至刻度,混勻。此溶液適合進樣50μL,檢測器為30μS量程圖81.4)。
分析步驟
開啟離子色譜儀,調節淋洗液及再生液流速,使儀器達到平衡,並指示穩定的基線。
根據所用的量程,將混合陰離子標准溶液及兩次等比稀釋的3種不同濃度標准溶液,依次注入進樣系統。將峰值或者峰面積繪制校準曲線。
將水樣經0.2μm濾膜過濾除去渾濁物質。對硬度高的水樣,必要時可先經過陽離子交換樹脂柱,然後再經0.2μm濾膜過濾。對含有機物水樣可先經過C18柱過濾除去。
將預處理後的水樣注入色譜儀進樣系統,記錄峰高或峰面積,直接在校準曲線上查得各種陰離子的質量濃度(mg/L)。
注意事項
1)水樣中存在較高濃度的低相對分子質量有機酸時,由於其保留時間與被測組分相似而干擾測定,用加標後測量可以幫助鑒別此類干擾。水樣中某一陰離子含量過高時,影響其他被測離子的分析,稀釋可以減弱此類干擾。
2)由於進樣量很少,操作中必須嚴格防止純水、器皿以及水樣預處理過程中的污染,以確保分析的准確性。
3)為了防止保護柱和分離柱系統堵塞,水樣必須經過0.2μm濾膜過濾。為了防止高濃度鈣、鎂離子在碳酸鹽淋洗液中沉澱,可將水樣先經過強酸性陽離子交換樹脂柱。
4)不同濃度離子同時分析時的相互干擾,或存在其他組分干擾時可採取水樣預濃縮、梯度淋洗或將流出液分部收集後再進樣的方法消除干擾,但必須對所採取的方法的精密度及准確性進行確認。
㈨ 高效離子色譜法測定碘
方法提要
試樣用碳酸鈉-氧化鋅混合熔劑混勻燒結,用水浸取,浸取液用氫型陽離子交換樹脂靜態交換分離大量基體(陽離子)後,用抗壞血酸將碘酸根還原成碘離子,以0.015mol/LNaNO3溶液為淋洗液,HPIC-AG5+HPIC-AS5為陰離子分離柱,採用電化學檢測器進行測定,測得碘量。
方法適用於水系沉積物及土壤中碘量的測定。
方法檢出限(3s):0.2μg/g。
測定范圍:0.6~500μg/g。
儀器及材料
DIONEX-2020i離子色譜儀。
DIONEX分離柱HPIC-AG5(4mm×50mm),HPIC-AS5(4mm×250mm)。
安培檢測器。
銀工作電極。
記錄器量程1~10mV。
試劑
無水乙醇。
碳酸鈉-氧化鋅混合熔劑Na2CO3(優級純)和ZnO(優級純)按(3+2)比例充分混勻。
硫酸。
硫酸溶液c(1/2H2SO4)=2mol/L移取42mLH2SO4緩慢地加到700mL水中,攪勻。
抗壞血酸溶液稱取0.15g抗壞血酸溶於10mL水中,用時配製。
氫氧化鈉溶液稱取4.0gNaOH溶於100mL水中,用時配製。
硝酸鈉溶液稱取1.2750gNaNO3(含Ag<100ng)溶於1000mL水中,用時配製。
碘標准儲備溶液ρ(I-)=100μg/mL稱取0.1308g已於105℃乾燥1h的高純碘化鉀,置於250mL燒杯中,加水溶解,並加入2mLNaOH溶液,用水稀釋至1000mL容量瓶中,搖勻。
碘標准溶液ρ(I-)=1.00μg/mL由碘標准儲備溶液逐級稀釋配製,補加NaOH溶液至最終0.4g/L。
732型陽離子交換樹脂(50~100目)先用水浸泡,清洗數遍。然後將樹脂裝入直徑約1.5cm、長約30cm的玻璃柱中,頂端與梨形分液漏斗銜接。於分液漏斗中加入150mLH2SO4,以約1.5mL/min流速流經交換柱,流畢。用水以同樣流速流經交換柱,直至流出液洗至無硫酸根。再生的樹脂以真空抽濾至干,裝瓶備用。收集已經用本法靜態交換過的陽離子交換樹脂,可用上述步驟再生後,繼續使用。
校準曲線
分別移取0.00mL、0.25mL、0.50mL、1.00mL、1.50mL、2.00mL、2.50mL碘標准溶液(1.00μg/mL),置於一組50mL容量瓶中,加入0.20mLNaOH溶液,用水稀釋至刻度,搖勻,配成0.000μg/mL、0.005μg/mL、0.010μg/mL、0.020μg/mL、0.030μg/mL、0.040μg/mL、0.050μg/mL的碘標准系列。
按儀器工作條件表84.64,將儀器調試好,待基線穩定後,用注射器吸取1.00mL校準系列溶液,注入儀器(進樣閥),經交換柱並流經安培檢測器,由記錄器記錄碘離子濃度的峰高值,繪制校準曲線。
表84.64 測定碘的儀器工作條件
分析步驟
稱取0.1~0.5g(精確至0.0001g)試樣(粒徑小於0.075mm,在60℃乾燥2h,置乾燥器中備用)置於預先盛有1.5gNa2CO3-ZnO混合熔劑的瓷坩堝中,攪勻並均勻覆蓋1.5gNa2CO3-ZnO混合熔劑,置於高溫爐中,自低溫升溫至750℃,保持750℃0.5h後取出冷卻。將熔塊倒入100mL燒杯中,用熱水洗凈坩堝,加幾滴無水乙醇及20mL水,煮沸,冷卻,將溶液連同沉澱一起移入50mL比色管中,用水稀釋至刻度,搖勻,放置澄清。
吸取5.00mL清液置於50mL干燒杯中,加入0.1mL抗壞血酸溶液,搖勻。加5g陽離子交換樹脂,在靜態交換過程中需搖動2~3次,直至溶液呈微酸性後再放置30min(總共約需2h)。
用注射器吸出3.00mL經靜態交換後的溶液,置於10mL乾的小燒杯中,用氫氧化鈉溶液將試液調至pH7~8(約需用0.15mLNaOH溶液)。
用注射器吸取1.00mL用氫氧化鈉調節後的清液,按校準曲線步驟操作,測得碘量。
按下式計算試樣中碘的含量:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:w(I)為碘的質量分數,μg/g;ρ為從校準曲線上查得試樣溶液中碘的濃度,μg/mL;ρ0為從校準曲線上查得空白試驗溶液中碘的濃度,μg/mL;V為制備溶液總體積,mL;m為試樣的質量,g;1.07為稀釋因子(由實驗中加入的抗壞血酸和氫氧化鈉所引起測定溶液的體積變化)。
注意事項
每分析5個試液後,應校對檢查校準曲線是否發生偏倚,以監控儀器的穩定性,提高測定的准確性。
㈩ 離子色譜儀的工作原理
離子色譜儀的工作原理:基於離子交換樹脂上可離解的離子與流動相中具有相同電荷的溶質離子之間進行的可逆交換和分析物溶質對交換劑親和力的差別而被分離。適用於親水性陰、陽離子的分離。
工作過程: 輸液泵將流動相以穩定的流速( 或壓力) 輸送至分析體系, 在色譜柱之前通過進樣器將樣品導入, 流動相將樣品帶入色譜柱,
在色譜柱中各組分被分離, 並依次隨流動相流至檢測器, 抑制型離子色譜則在電導檢測器之前增加一個抑制系統。
即用另一個高壓輸液泵將再生液輸送到抑制器, 在抑制器中, 流動相的背景電導被降低, 然後將流出物導入電導檢測池,
檢測到的信號送至數據系統記錄、處理或保存。非抑制型離子色譜儀不用抑制器和輸送再生液的高壓泵, 因此儀器的結構相對要簡單得多, 價格也要便宜很多。
(10)離子色譜儀數據分析方法擴展閱讀
高壓輸液泵將流動相以穩定的流速(或壓力)輸送至分析體系,在色譜柱之前通過進樣器將樣品導入,流動相將樣品帶入色譜柱,在色譜柱中各組分被分離,並依次隨流動相流至檢測器。
抑制型離子色譜則在電導檢測器之前增加一個抑制系統,即用另一個高壓輸液泵將再生液輸送到抑制器。在抑制器中,流動相背景電導被降低,然後將流動出物導入電導池,檢測到的信號送至數據處理系統記錄、處理或保存。
非抑制型離子色譜儀不用抑制器和輸送再生液的高壓泵,因此儀器結構相對比較簡單,價格也相對比較便宜。