導航:首頁 > 研究方法 > 數據分析方法

數據分析方法

發布時間:2022-01-17 20:15:04

『壹』 數據分析必備的方法有哪些

一、細分剖析


細分剖析是數據剖析的根底,單一維度下的目標數據信息價值很低。細分辦法能夠分為兩類,一類是逐步剖析,比方:來北京市的訪客可分為向陽,海淀等區;另一類是維度穿插,如:來自付費SEM的新訪客。


細分用於處理一切問題。比方漏斗轉化,實際上便是把轉化進程依照過程進行細分,流量途徑的剖析和評價也需要很多的用到細分辦法。


二、比照剖析


比照剖析主要是指將兩個彼此聯系的目標數據進行比較,從數量上展示和闡明研討目標的規劃巨細,水平高低,速度快慢等相對數值,通過相同維度下的目標比照,能夠發現,找出事務在不同階段的問題。常見的比照辦法包括:時間比照,空間比照,標准比照。


三、漏斗剖析


轉化漏斗剖析是事務剖析的基本模型,最常見的是把最終的轉化設置為某種意圖的實現,最典型的便是完成買賣。但也能夠是其他任何意圖的實現,比方一次運用app的時間超越10分鍾。


關於數據分析必備的方法有哪些,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『貳』 數據分析常用的4大分析方法

1. 描述型分析:發生了什麼?


這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。


例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。


2. 診斷型分析:為什麼會發生?


描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。


良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。


3. 預測型分析:可能發生什麼?


預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。


預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。


4. 指令型分析:需要做什麼?


數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。


關於數據分析常用的4大分析方法的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『叄』 數據分析方法有哪些

常用的數據分析方法有:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析。

1、聚類分析(Cluster Analysis)

聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。

2、因子分析(Factor Analysis)

因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。

3、相關分析(Correlation Analysis)

相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。

4、對應分析(Correspondence Analysis)

對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。

5、回歸分析

研究一個隨機變數Y對另一個(X)或一組(X1,X2,?,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。

6、方差分析(ANOVA/Analysis of Variance)

又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。

想了解更多關於數據分析的信息,推薦到CDA數據認證中心看看,CDA(Certified Data Analyst),即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。

『肆』 常用的數據分析方法是什麼

1. 描述型分析


這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。


例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。


2. 診斷型分析


描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。


良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。


3. 預測型分析


預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。


預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。


4. 指令型分析


數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。

『伍』 數據分析方法

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

『陸』 數據分析方法都有哪些

大家都知道,每個人都有自己的想法,在數據分析領域也是一樣的。不同的數據分析師對於數據分析的方法都有自己的見解,而數據分析的方法中最重要的作用就是能夠把某一事物的數據轉化成平常人都能夠清楚明白的見解,如果做到了這些,我們可以說這就是一個成功的數據分析師。那麼對於數據分析師來說,使用一些工具可以更好地理解和分析數據的價值,有一個完整的數據分析體系是一個至關重要的事情,而常用的四種數據分析方法有:描述型分析、診斷型分析、預測型分析和指令型分析。那麼這些數據分析方法具體是什麼內容呢?下面我們就簡單的給大家介紹一下。
首先我們說一下描述型分析,描述性分析就是表達發生了什麼?我們在分析事情之前,首先會考慮發生了什麼?這樣我們才會有目標的分析事情,而描述型分析就是這樣的,描述型分析師一個比較常見的分析方法, 在很多業務中用描述性分析進行對企業的重要指標個業務進行衡量,通過利用可視化工具能夠有效的挖掘所提供信息的價值。
然後我們說一說診斷型分析,診斷性分析就是表達為什麼會發生?當我們發現的事情發生的開始,我們就要對事情進行進一步的研究,探究事情發生的原因。於是就需要描述性的數據分析的下一步步驟,那就是診斷型分析,而診斷分析能夠使數據分析師深入的分析數據,這樣才能夠有機會去獲得數據的核心內容。
接著我們說一下預測型分析,預測性分析就是表達可能發生什麼?當我們分析完了事情發生的原因,需要對事情的進行預判,很多的事情都是有預兆性質的,所以我們需要對事情進行預測性分析,預測型分析主要就是用於進行預測分析,事情未來發生的可能性可以轉變成一種可以量化的值,或者是預估事情發生的時間,可以使用各種可變的數據進行預測,在不確定的環境下,預測性分析可以做出更好的決定,很多領域都用到了預測模型。
而指令型分析就是表達需要做什麼?上述提到的三種分析都是對於事情的分析,但不是對於解決事情做出分析,我們對事情的分析的目的就是為解決事情,通過用戶的實際情況確定最佳的解決方案,這樣才能夠為事情做出最適合的解決方案。這種分析就是指令性分析。
通過上面對數據分析方法的描述,相信大家已經了解了數據分析方法了吧?大家在進行數據分析的時候用到上面提到的數據分析方法,這樣才能夠對於某種事情進行分析,同時在大家進行分析的時候可以根據上面的順序進行分析,這樣才能夠分析出一個比較准確地結果,希望大家能夠熟練運用好這些數據分析方法。

『柒』 常用的數據分析方法有哪些

①對比分析法

通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。


②分組分析法


分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。


③預測分析法


預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。


④漏斗分析法


漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。


⑤AB測試分析法


AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

閱讀全文

與數據分析方法相關的資料

熱點內容
路基施工方法有哪些 瀏覽:158
簡便疊衣服闊腿褲的方法省空間 瀏覽:493
議論文要寫解決方法嗎 瀏覽:920
雨傘怎麼折是最簡單的方法 瀏覽:848
vlookup函數查找出錯解決方法 瀏覽:683
經緯儀測繪法測地圖的方法步驟 瀏覽:727
多種方法測量微小長度的變化量 瀏覽:25
手機號算年齡方法用的什麼基數 瀏覽:939
檸檬汁最簡單的方法怎麼做 瀏覽:494
18米高散熱器安裝連接方法 瀏覽:430
家裡養貓最佳方法 瀏覽:134
保險費率釐定方法中最常用的方法 瀏覽:883
堆堆的製作方法視頻 瀏覽:660
移民的解決方法 瀏覽:912
藏手機游戲方法 瀏覽:615
清理手機灰塵的好方法視頻 瀏覽:388
煙草花葉病毒解決方法 瀏覽:839
供水器水壓低解決方法 瀏覽:489
馬蘭頭食用方法 瀏覽:832
貴州污泥的檢測方法 瀏覽:303