⑴ 多元統計分析法主要包括
多元統計分析方法主要包括線性回歸分析方法、判別分析方法、聚類分析方法、主成份分析方法、因子分析方法、對應分析方法、典型相關分析方法以及片最小二乘回歸分析方法等。
《多元統計分析方法》是2009年上海格致出版社出版的圖書,作者是(德)巴克豪斯。本書主要講解了多元統計分析中最常見的九種方法。
簡介
多元統計分析是從經典統計學中發展起來的一個分支,是一種綜合分析方法,它能夠在多個對象和多個指標互相關聯的情況下分析它們的統計規律,很適合農業科學研究的特點。主要內容包括多元正態分布及其抽樣分布、多元正態總體的均值向量和協方差陣的假設檢驗。
多元方差分析、直線回歸與相關、多元線性回歸與相關(Ⅰ)和(Ⅱ)、主成分分析與因子分析、判別分析與聚類分析、Shannon信息量及其應用。簡稱多元分析。當總體的分布是多維(多元)概率分布時,處理該總體的數理統計理論和方法。數理統計學中的一個重要的分支學科。
⑵ 多元統計分析概述
後期會把每一章的學習筆記鏈接加上
多元統計分析 是研究多個隨機變數之間相互依賴關系及其內在統計規律的一門學科
在統計學的基本內容匯總,只考慮一個或幾個因素對一個觀測指標(變數)的影響大小的問題,稱為 一元統計分析 。
若考慮一個或幾個因素對兩個或兩個以上觀測指標(變數)的影響大小的問題,或者多個觀測指標(變數)的相互依賴關系,既稱為 多元統計分析 。
有兩大類,包括:
將數據歸類,找出他們之間的聯系和內在規律。
構造分類模型一般採用 聚類分析 和 判別分析 技術
在眾多因素中找出各個變數中最佳的子集合,根據子集合所包含的信心描述多元系統的結果及各個因子對系統的影響,舍棄次要因素,以簡化系統結構,認識系統的內核(有點做單細胞降維的意思)
可採用 主成分分析 、 因子分析 、 對應分析 等方法。
多元統計分析的內容主要有: 多元數據圖示法 、 多元線性相關 與 回歸分析 、 判別分析 、 聚類分析 、 主成分分析 、 因子分析 、 對應分析 及 典型相關分析 等。
多元數據是指具有多個變數的數據。如果將每個變數看作一個隨機向量的話,多個變數形成的數據集將是一個隨機矩陣,所以多元數據的基本表現形式是一個矩陣。對這些數據矩陣進行數學表示是我們的首要任務。也就是說,多元數據的基本運算是矩陣運算,而R語言是一個優秀的矩陣運算語言,這也是我們應用它的一大優勢。
直觀分析即圖示法,是進行數據分析的重要輔助手段。例如,通過兩變數的散點圖可以考察異常的觀察值對樣本相關系數的影響,利用矩陣散點圖可以考察多元之間的關系,利用多元箱尾圖可以比較幾個變數的基本統計量的大小差別。
相關分析就是通過對大量數字資料的觀察,消除偶然因素的影響,探求現象之間相關關系的密切程度和表現形式。在經濟系統中,各個經濟變數常常存在內在的關系。例如,經濟增長與財政收人、人均收入與消費支出等。在這些關系中,有一些是嚴格的函數關系,這類關系可以用數學表達式表示出來。還有一些是非確定的關系,一個變數產生變動會影響其他變數,使其產生變化。這種變化具有隨機的特性,但是仍然遵循一定的規律。函數關系很容易解決,而那些非確定的關系,即相關關系,才是我們所關心的問題。
回歸分析研究的主要對象是客觀事物變數間的統計關系。它是建立在對客觀事物進行大量實驗和觀察的基礎上,用來尋找隱藏在看起來不確定的現象中的統計規律的方法。回歸分析不僅可以揭示自變數對因變數的影響大小,還可以用回歸方程進行預測和控制。回歸分析的主要研究范圍包括:
(1) 線性回歸模型: 一元線性回歸模型 , 多元線性回歸模型 。
(2) 回歸模型的診斷: 回歸模型基本假設的合理性,回歸方程擬合效果的判定,選擇回歸函數的形式。
(3) 廣義線性模型: 含定性變數的回歸 , 自變數含定性變數 , 因變數含定性變數 。
(4) 非線性回歸模型: 一元非線性回歸 , 多元非線性回歸 。
在實際研究中,經常遇到一個隨機變數隨一個或多個非隨機變數的變化而變化的情況,而這種變化關系明顯呈非線性。怎樣用一個較好的模型來表示,然後進行估計與預測,並對其非線性進行檢驗就成為--個重要的問題。在經濟預測中,常用多元回歸模型反映預測量與各因素之間的依賴關系,其中,線性回歸分析有著廣泛的應用。但客觀事物之間並不一定呈線性關系,在有些情況下,非線性回歸模型更為合適,只是建立起來較為困難。在實際的生產過程中,生產管理目標的參量與加工數量存在相關關系。隨著生產和加工數量的增加,生產管理目標的參量(如生產成本和生產工時等)大多不是簡單的線性增加,此時,需採用非線性回歸分析進行分析。
鑒於統計模型的多樣性和各種模型的適應性,針對因變數和解釋變數的取值性質,可將統計模型分為多種類型。通常將自變數為定性變數的線性模型稱為 一般線性模型 ,如實驗設計模型、方差分析模型; 將因變數為非正態分布的線性模型稱為 廣義線性模型 ,如 Logistic回歸模型 、 對數線性模型 、 Cox比例風險模型 。
1972年,Nelder對經典線性回歸模型作了進一步的推廣,建立了統一的理論和計算框架,對回歸模型在統計學中的應用產生了重要影響。這種新的線性回歸模型稱為廣義線性模型( generalized linear models,GLM)。
廣義線性模型是多元線性回歸模型的推廣,從另一個角度也可以看作是非線性模型的特例,它們具有--些共性,是其他非線性模型所不具備的。它與典型線性模型的區別是其隨機誤差的分布 不是正態分布 ,與非線性模型的最大區別則在於非線性模型沒有明確的隨機誤差分布假定,而廣義線性模型的 隨機誤差的分布是可以確定的 。廣義線性模型 不僅包括離散變數,也包括連續變數 。正態分布也被包括在指數分布族裡,該指數分布族包含描述發散狀況的參數,屬於雙參數指數分布族。
判別分析是多元統計分析中用於 判別樣本所屬類型 的一種統計分析方法。所謂判別分析法,是在已知的分類之下,一旦有新的樣品時,可以利用此法選定一個判別標准,以判定將該新樣品放置於哪個類別中。判別分析的目的是對已知分類的數據建立由數值指標構成的 分類規則 ,然後把這樣的規則應用到未知分類的樣品中去分類。例如,我們獲得了患胃炎的病人和健康人的一些化驗指標,就可以從這些化驗指標中發現兩類人的區別。把這種區別表示為一個判別公式,然後對那些被懷疑患胃炎的人就可以根據其化驗指標用判別公式來進行輔助診斷。
聚類分析是研究 物以類聚 的--種現代統計分析方法。過去人們主要靠經驗和專業知識作定性分類處理,很少利用數學方法,致使許多分類帶有主觀性和任意性,不能很好地揭示客觀事物內在的本質差別和聯系,特別是對於多因素、多指標的分類問題,定性分類更難以實現准確分類。為了克服定性分類的不足,多元統計分析逐漸被引人到數值分類學中,形成了聚類分析這個分支。
聚類分析是一種分類技術,與多元分析的其他方法相比,該方法較為粗糙,理論上還不完善,但應用方面取得了很大成功。 聚類分析 與 回歸分析 、 判別分析 一起被稱為多元分析的三個主要方法。
在實際問題中,研究多變數問題是經常遇到的,然而在多數情況下,不同變數之間有一定相關性,這必然增加了分析問題的復雜性。主成分分析就是一種 通過降維技術把多個指標化為少數幾個綜合指標 的統計分析方法。如何將具有錯綜復雜關系的指標綜合成幾個較少的成分,使之既有利於對問題進行分析和解釋,又便於抓住主要矛盾作出科學的評價,此時便可以用主成分分析方法。
因子分析是主成分分析的推廣,它也是一種把多個變數化為少數幾個綜合變數的多元分析方法,但其目的是 用有限個不可觀測的隱變數來解釋原變數之間的相關關系 。主成分分析通過線性組合將原變數綜合成幾個主成分,用較少的綜合指標來代替原來較多的指標(變數)。在多元分析中,變數間往往存在相關性,是什麼原因使變數間有關聯呢? 是否存在不能直接觀測到的但影響可觀測變數變化的公共因子呢?
因子分析就是尋找這些公共因子的統計分析方法,它是 在主成分的基礎上構築若干意義較為明確的公因子,以它們為框架分解原變數,以此考察原變數間的聯系與區別 。例如,在研究糕點行業的物價變動中,糕點行業品種繁多、多到幾百種甚至上千種,但無論哪種樣式的糕點,用料不外乎麵粉、食用油、糖等主要原料。那麼,麵粉、食用油、糖就是眾多糕點的公共因子,各種糕點的物價變動與麵粉、食用油、糖的物價變動密切相關,要了解或控制糕點行業的物價變動,只要抓住麵粉、食用油和糖的價格即可。
對應分析又稱為相應分析,由法國統計學家J.P.Beozecri於 1970年提出。對應分析是在因子分析基礎之上發展起來的一種多元統計方法,是Q型和R型因子分析的聯合應用。在經濟管理數據的統計分析中,經常要處理三種關系,即 樣品之間的關系(Q型關系)、變數間的關系(R型關系)以及樣品與變數之間的關系(對應型關系) 。例如,對某一行業所屬的企業進行經濟效益評價時,不僅要研究經濟效益指標間的關系,還要將企業按經濟效益的好壞進行分類,研究哪些企業與哪些經濟效益指標的關系更密切一些,為決策部門正確指導企業的生產經營活動提供更多的信息。這就需要有一種統計方法, 將企業(樣品〉和指標(變數)放在一起進行分析、分類、作圖,便於作經濟意義.上的解釋 。解決這類問題的統計方法就是對應分析。
在相關分析中,當考察的一組變數僅有兩個時,可用 簡單相關系數 來衡量它們;當考察的一組變數有多個時,可用 復相關系數 來衡量它們。大量的實際問題需要我們把指標之間的聯系擴展到兩組變數,即 兩組隨機變數之間的相互依賴關系 。典型相關分析就是用來解決此類問題的一種分析方法。它實際上是 利用主成分的思想來討論兩組隨機變數的相關性問題,把兩組變數間的相關性研究化為少數幾對變數之間的相關性研究,而且這少數幾對變數之間又是不相關的,以此來達到化簡復雜相關關系的目的 。
典型相關分析在經濟管理實證研究中有著廣泛的應用,因為許多經濟現象之間都是多個變數對多個變數的關系。例如,在研究通貨膨脹的成因時,可把幾個物價指數作為一組變數,把若干個影響物價變動的因素作為另一組變數,通過典型相關分析找出幾對主要綜合變數,結合典型相關系數對物價上漲及通貨膨脹的成因,給出較深刻的分析結果。
多維標度分析( multidimensional scaling,MDS)是 以空間分布的形式表現對象之間相似性或親疏關系 的一種多元數據分析方法。1958年,Torgerson 在其博士論文中首次正式提出這一方法。MDS分析多見於市場營銷,近年來在經濟管理領域的應用日趨增多,但國內在這方面的應用報道極少。多維標度法通過一系列技巧,使研究者識別構成受測者對樣品的評價基礎的關鍵維數。例如,多維標度法常用於市場研究中,以識別構成顧客對產品、服務或者公司的評價基礎的關鍵維數。其他的應用如比較自然屬性(比如食品口味或者不同的氣味),對政治候選人或事件的了解,甚至評估不同群體的文化差異。多維標度法 通過受測者所提供的對樣品的相似性或者偏好的判斷推導出內在的維數 。一旦有數據,多維標度法就可以用來分析:①評價樣品時受測者用什麼維數;②在特定情況下受測者可能使用多少維數;③每個維數的相對重要性如何;④如何獲得對樣品關聯的感性認識。
20世紀七八十年代,是現代科學評價蓬勃興起的年代,在此期間產生了很多種評價方法,如ELECTRE法、多維偏好分析的線性規劃法(LINMAP)、層次分析法(AHP)、數據包絡分析法(EDA)及逼近於理想解的排序法(TOPSIS)等,這些方法到現在已經發展得相對完善了,而且它們的應用也比較廣泛。
而我國現代科學評價的發展則是在20世紀八九十年代,對評價方法及其應用的研究也取得了很大的成效,把綜合評價方法應用到了國民經濟各個部門,如可持續發展綜合評價、小康評價體系、現代化指標體系及國際競爭力評價體系等。
多指標綜合評價方法具有以下特點: 包含若干個指標,分別說明被評價對象的不同方面 ;評價方法最終要 對被評價對象作出一個整體性的評判,用一個總指標來說明被評價對象的一般水平 。
目前常用的綜合評價方法較多, 如綜合評分法、綜合指數法、秩和比法、層次分析法、TOPSIS法、模糊綜合評判法、數據包絡分析法 等。
R -- 永遠滴神~
⑶ 統計學屬於數學類的專業嗎
統計學屬於數學類的專業。
統計學主要通過利用大量數據進行量化分析,總結出一些經驗規律,做出後期推斷和預測,從而為相關決策提供依據和參考,其不僅僅是統計數字,還包含了調查、收集、分析、預測等,應用范圍十分廣泛。
課程體系:《C/C++程序設計》《數理統計學》《保險會計學》《初等數論》《應用多元統計分析》《統計學概論》《金融建模》《風險理論分析》《復變與積分變換》《宏觀經濟統計分析》 。
就業的單位有:銀行、證券公司、信託投資公司、保險公司等各種金融機構以及國家部委、企業、咨詢公司和學校等。
就業前景:
隨著大數據時代的來臨,統計學和數據分析更是發生了革命性的變化。各行各業都產生了大量的數據。這些數據都需要用統計方法進行挖掘分析應用,才能成為有價值的信息資產。計算機和大數據為統計學帶來了廣闊的市場前景,帶火了統計學專業,統計學的熱潮已從研究生蔓延到本科。
以上內容參考:網路——統計學
⑷ 多元統計分析與統計分析的區別是什麼差不多嗎
多元統計分析是從經典統計學中發展起來的一個分支,是一種綜合分析方法,它能夠在多個對象和對個指標互相關聯的情況下分析它們的統計規律,很適合農業科學研究的特點。主要內容包括多元正態分布及其抽樣分布、多元正態總體的均值向量和協方差陣的假設檢驗、多元方差分析、直線回歸與相關、多元線性回歸與相關(Ⅰ)和(Ⅱ)、主成分分析與因子分析、判別分析與聚類分析、Shannon信息量及其應用。簡稱多元分析。當總體的分布是多維(多元)概率分布時,處理該總體的數理統計理論和方法。數理統計學中的一個重要的分支學科
統計分析是指運用統計方法及與分析對象有關的知識,從定量與定性的結合上進行的研究活動。它是繼統計設計、統計調查、統計整理之後的一項十分重要的工作,是在前幾個階段工作的基礎上通過分析從而達到對研究對象更為深刻的認識。它又是在一定的選題下,集分析方案的設計、資料的搜集和整理而展開的研究活動。系統、完善的資料是統計分析的必要條件
⑸ 多元統計分析方法的作用是什麼
多元統計分析方法的作用使實際工作者利用多元統計分析方法解決實際問題更簡單方便。
如果每個個體有多個觀測數據,或者從數學上說,如果個體的觀測數據能表為P維歐幾里得空間的點,那麼這樣的數據叫做多元數據,而分析多元數據的統計方法就叫做多元統計分析,它是數理統計學中的一個重要的分支學科。
典型相關分析
它是尋求兩組變數各自的線性函數中相關系數達到最大值的一對,這稱為第一對典型變數,還可以求第二對,第三對,等等,這些成對的變數,彼此是不相關的。各對的相關系數稱為典型相關系數。通過這些典型變數所代表的實際含意,可以找到這兩組變數間的一些內在聯系。典型相關分析雖然30年代已經出現,但至今未能廣泛應用。
⑹ 統計分析數據時有哪些數學方法
一般來說,一些簡單的加總,平均應該夠用。。。
再學的深一點就是線性回歸分析,方差分析,主成分分析與典型相關分析 ,判別分析 ,聚類分析 等多元統計分析···
⑺ 多元統計分析的先修課程是不是統計學呢
是的,多元統計學的學習需要有較好的 概率論 數理統計(基本統計)理論,當然也需要高等數學的一定基礎,還要有統計軟體的了解。建議先學完統計學,在選多元統計,否則學不明白,純粹就混個學分了。
⑻ 多元統計分析可以通過計量分析做嗎
多元統計分析可以通過計量分析做。
多元統計分析是從經典統計學中發展起來的一個分支,是一種綜合分析方法,它能夠在多個對象和多個指標互相關聯的情況下分析它們的統計規律,很適合農業科學研究的特點,主要內容包括多元正態分布及其抽樣分布、多元正態總體的均值向量和協方差陣的假設檢驗、多元方差分析、直線回歸與相關、多元線性回歸與相關主成分分析與因子分析、判別分析與聚類分析、信息量及其應用。
多元統計分析
研究客觀事物中多個變數或多個因素之間相互依賴的統計規律性,在它的重要基礎之一是多元正態分析,又稱多元分析,如果每個個體有多個觀測數據,或者從數學上說,如果個體的觀測數據能表為維歐幾里得空間的點,那麼這樣的數據叫做多元數據,而分析多元數據的統計方法就叫做多元統計分析。
⑼ 統計學方法有哪些
一、描述統計
描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析和離中趨勢分析和相關分析三大部分。
集中趨勢分析:集中趨勢分析主要靠平均數、中數、眾數等統計指標來表示數據的集中趨勢。例如被試的平均成績多少?是正偏分布還是負偏分布?
離中趨勢分析:離中趨勢分析主要靠全距、四分差、平均差、方差(協方差:用來度量兩個隨機變數關系的統計量)、標准差等統計指標來研究數據的離中趨勢。例如,我們想知道兩個教學班的語文成績中,哪個班級內的成績分布更分散,就可以用兩個班級的四分差或百分點來比較。
相關分析:相關分析探討數據之間是否具有統計學上的關聯性。這種關系既包括兩個數據之間的單一相關關系——如年齡與個人領域空間之間的關系,也包括多個數據之間的多重相關關系——如年齡、抑鬱症發生率、個人領域空間之間的關系;既包括A大B就大(小),A小B就小(大)的直線相關關系,也可以是復雜相關關系(A=Y-B*X);既可以是A、B變數同時增大這種正相關關系,也可以是A變數增大時B變數減小這種負相關,還包括兩變數共同變化的緊密程度——即相關系數。實際上,相關關系唯一不研究的數據關系,就是數據協同變化的內在根據——即因果關系。獲得相關系數有什麼用呢?簡而言之,有了相關系數,就可以根據回歸方程,進行A變數到B變數的估算,這就是所謂的回歸分析,因此,相關分析是一種完整的統計研究方法,它貫穿於提出假設,數據研究,數據分析,數據研究的始終。
例如,我們想知道對監獄情景進行什麼改造,可以降低囚徒的暴力傾向。我們就需要將不同的囚舍顏色基調、囚舍綠化程度、囚室人口密度、放風時間、探視時間進行排列組合,然後讓每個囚室一種實驗處理,然後用因素分析法找出與囚徒暴力傾向的相關系數最高的因素。假定這一因素為囚室人口密度,我們又要將被試隨機分入不同人口密度的十幾個囚室中生活,繼而得到人口密度和暴力傾向兩組變數(即我們討論過的A、B兩列變數)。然後,我們將人口密度排入X軸,將暴力傾向分排入Y軸,獲得了一個很有價值的圖表,當某典獄長想知道,某囚舍擴建到N人/間囚室,暴力傾向能降低多少。我們可以當前人口密度和改建後人口密度帶入相應的回歸方程,算出擴建前的預期暴力傾向和擴建後的預期暴力傾向,兩數據之差即典獄長想知道的結果。
推論統計:
推論統計是統計學乃至於心理統計學中較為年輕的一部分內容。它以統計結果為依據,來證明或推翻某個命題。具體來說,就是通過分析樣本與樣本分布的差異,來估算樣本與總體、同一樣本的前後測成績差異,樣本與樣本的成績差距、總體與總體的成績差距是否具有顯著性差異。例如,我們想研究教育背景是否會影響人的智力測驗成績。可以找100名24歲大學畢業生和100名24歲初中畢業生。採集他們的一些智力測驗成績。用推論統計方法進行數據處理,最後會得出類似這樣兒的結論:「研究發現,大學畢業生組的成績顯著高於初中畢業生組的成績,二者在0.01水平上具有顯著性差異,說明大學畢業生的一些智力測驗成績優於中學畢業生組。」
其中,如果用EXCEL 來求描述統計。其方法是:工具-載入宏-勾選"分析工具庫",然後關閉Excel然後重新打開,工具菜單就會出現"數據分析"。描述統計是「數據分析」內一個子菜單,在做的時候,記得要把方格輸入正確。最好直接點選。
2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
二、假設檢驗
1、參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。
1)U驗 :使用條件:當樣本含量n較大時,樣本值符合正態分布
2)T檢驗 使用條件:當樣本含量n較小時,樣本值符合正態分布
A 單樣本t檢驗:推斷該樣本來自的總體均數μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;
B 配對樣本t檢驗:當總體均數未知時,且兩個樣本可以配對,同對中的兩者在可能會影響處理效果的各種條件方面扱為相似;
C 兩獨立樣本t檢驗:無法找到在各方面極為相似的兩樣本作配對比較時使用。
2、非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。
A 雖然是連續數據,但總體分布形態未知或者非正態;
B 體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
三、信度分析
介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。
方法:(1)重測信度法編輯:這一方法是用同樣的問卷對同一組被調查者間隔一定時間重復施測,計算兩次施測結果的相關系數。顯然,重測信度屬於穩定系數。重測信度法特別適用於事實式問卷,如性別、出生年月等在兩次施測中不應有任何差異,大多數被調查者的興趣、愛好、習慣等在短時間內也不會有十分明顯的變化。如果沒有突發事件導致被調查者的態度、意見突變,這種方法也適用於態度、意見式問卷。由於重測信度法需要對同一樣本試測兩次,被調查者容易受到各種事件、活動和他人的影響,而且間隔時間長短也有一定限制,因此在實施中有一定困難。
(2)復本信度法編輯:讓同一組被調查者一次填答兩份問卷復本,計算兩個復本的相關系數。復本信度屬於等值系數。復本信度法要求兩個復本除表述方式不同外,在內容、格式、難度和對應題項的提問方向等方面要完全一致,而在實際調查中,很難使調查問卷達到這種要求,因此採用這種方法者較少。
(3)折半信度法編輯:折半信度法是將調查項目分為兩半,計算兩半得分的相關系數,進而估計整個量表的信度。折半信度屬於內在一致性系數,測量的是兩半題項得分間的一致性。這種方法一般不適用於事實式問卷(如年齡與性別無法相比),常用於態度、意見式問卷的信度分析。在問卷調查中,態度測量最常見的形式是5級李克特(Likert)量表(李克特量表(Likert scale)是屬評分加總式量表最常用的一種,屬同一構念的這些項目是用加總方式來計分,單獨或個別項目是無意義的。它是由美國社會心理學家李克特於1932年在原有的總加量表基礎上改進而成的。該量表由一組陳述組成,每一陳述有"非常同意"、"同意"、"不一定"、"不同意"、"非常不同意"五種回答,分別記為5、4、3、2、1,每個被調查者的態度總分就是他對各道題的回答所得分數的加總,這一總分可說明他的態度強弱或他在這一量表上的不同狀態。)。進行折半信度分析時,如果量表中含有反意題項,應先將反意題項的得分作逆向處理,以保證各題項得分方向的一致性,然後將全部題項按奇偶或前後分為盡可能相等的兩半,計算二者的相關系數(rhh,即半個量表的信度系數),最後用斯皮爾曼-布朗(Spearman-Brown)公式:求出整個量表的信度系數(ru)。
(4)α信度系數法編輯:Cronbach
α信度系數是目前最常用的信度系數,其公式為:
α=(k/(k-1))*(1-(∑Si^2)/ST^2)
其中,K為量表中題項的總數, Si^2為第i題得分的題內方差, ST^2為全部題項總得分的方差。從公式中可以看出,α系數評價的是量表中各題項得分間的一致性,屬於內在一致性系數。這種方法適用於態度、意見式問卷(量表)的信度分析。
總量表的信度系數最好在0.8以上,0.7-0.8之間可以接受;分量表的信度系數最好在0.7以上,0.6-0.7還可以接受。Cronbach 's alpha系數如果在0.6以下就要考慮重新編問卷。
檢査測量的可信度,例如調查問卷的真實性。
分類:
1、外在信度:不同時間測量時量表的一致性程度,常用方法重測信度
2、內在信度;每個量表是否測量到單一的概念,同時組成兩表的內在體項一致性如何,常用方法分半信度。
四、列聯表分析
列聯表是觀測數據按兩個或更多屬性(定性變數)分類時所列出的頻數表。
簡介:一般,若總體中的個體可按兩個屬性A、B分類,A有r個等級A1,A2,…,Ar,B有c個等級B1,B2,…,Bc,從總體中抽取大小為n的樣本,設其中有nij個個體的屬性屬於等級Ai和Bj,nij稱為頻數,將r×c個nij排列為一個r行c列的二維列聯表,簡稱r×c表。若所考慮的屬性多於兩個,也可按類似的方式作出列聯表,稱為多維列聯表。
列聯表又稱交互分類表,所謂交互分類,是指同時依據兩個變數的值,將所研究的個案分類。交互分類的目的是將兩變數分組,然後比較各組的分布狀況,以尋找變數間的關系。
用於分析離散變數或定型變數之間是否存在相關。
列聯表分析的基本問題是,判明所考察的各屬性之間有無關聯,即是否獨立。如在前例中,問題是:一個人是否色盲與其性別是否有關?在r×с表中,若以pi、pj和pij分別表示總體中的個體屬於等級Ai,屬於等級Bj和同時屬於Ai、Bj的概率(pi,pj稱邊緣概率,pij稱格概率),「A、B兩屬性無關聯」的假設可以表述為H0:pij=pi·pj,(i=1,2,…,r;j=1,2,…,с),未知參數pij、pi、pj的最大似然估計(見點估計)分別為行和及列和(統稱邊緣和)
為樣本大小。根據K.皮爾森(1904)的擬合優度檢驗或似然比檢驗(見假設檢驗),當h0成立,且一切pi>0和pj>0時,統計量的漸近分布是自由度為(r-1)(с-1) 的Ⅹ分布,式中Eij=(ni·nj)/n稱為期望頻數。當n足夠大,且表中各格的Eij都不太小時,可以據此對h0作檢驗:若Ⅹ值足夠大,就拒絕假設h0,即認為A與B有關聯。在前面的色覺問題中,曾按此檢驗,判定出性別與色覺之間存在某種關聯。
需要注意:
若樣本大小n不很大,則上述基於漸近分布的方法就不適用。對此,在四格表情形,R.A.費希爾(1935)提出了一種適用於所有n的精確檢驗法。其思想是在固定各邊緣和的條件下,根據超幾何分布(見概率分布),可以計算觀測頻數出現任意一種特定排列的條件概率。把實際出現的觀測頻數排列,以及比它呈現更多關聯跡象的所有可能排列的條件概率都算出來並相加,若所得結果小於給定的顯著性水平,則判定所考慮的兩個屬性存在關聯,從而拒絕h0。
對於二維表,可進行卡方檢驗,對於三維表,可作Mentel-Hanszel分層分析。
列聯表分析還包括配對計數資料的卡方檢驗、行列均為順序變數的相關檢驗。
五、相關分析
研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
1、單相關: 兩個因素之間的相關關系叫單相關,即研究時只涉及一個自變數和一個因變數;
2、復相關 :三個或三個以上因素的相關關系叫復相關,即研究時涉及兩個或兩個以上的自變數和因變數相關;
3、偏相關:在某一現象與多種現象相關的場合,當假定其他變數不變時,其中兩個變數之間的相關關系稱為偏相關。
六、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
分類
1、單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系
2、多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3、多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
4、協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,使之影響了分祈結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法,
七、回歸分析
分類:
1、一元線性回歸分析:只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布。
2、多元線性回歸分析
使用條件:分析多個自變數與因變數Y的關系,X與Y都必須是連續型變數,因變數y或其殘差必須服從正態分布 。
1)變呈篩選方式:選擇最優回歸方程的變里篩選法包括全橫型法(CP法)、逐步回歸法,向前引入法和向後剔除法
2)橫型診斷方法:
A 殘差檢驗: 觀測值與估計值的差值要艱從正態分布
B 強影響點判斷:尋找方式一般分為標准誤差法、Mahalanobis距離法
C 共線性診斷:
• 診斷方式:容忍度、方差擴大因子法(又稱膨脹系數VIF)、特徵根判定法、條件指針CI、方差比例
• 處理方法:增加樣本容量或選取另外的回歸如主成分回歸、嶺回歸等
3、Logistic回歸分析
線性回歸模型要求因變數是連續的正態分布變里,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況
分類:
Logistic回歸模型有條件與非條件之分,條件Logistic回歸模型和非條件Logistic回歸模型的區別在於參數的估計是否用到了條件概率。
4、其他回歸方法 非線性回歸、有序回歸、Probit回歸、加權回歸等
八、聚類分析
聚類與分類的不同在於,聚類所要求劃分的類是未知的。
聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。
從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。
聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。而且聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。聚類分析還可以作為其他演算法(如分類和定性歸納演算法)的預處理步驟。
定義:
依據研究對象(樣品或指標)的特徵,對其進行分類的方法,減少研究對象的數目。
各類事物缺乏可靠的歷史資料,無法確定共有多少類別,目的是將性質相近事物歸入一類。
各指標之間具有一定的相關關系。
聚類分析(cluster
analysis)是一組將研究對象分為相對同質的群組(clusters)的統計分析技術。聚類分析區別於分類分析(classification
analysis) ,後者是有監督的學習。
變數類型:定類變數、定量(離散和連續)變數
樣本個體或指標變數按其具有的特性進行分類,尋找合理的度量事物相似性的統計量。
1、性質分類:
Q型聚類分析:對樣本進行分類處理,又稱樣本聚類分祈使用距離系數作為統計量衡量相似度,如歐式距離、極端距離、絕對距離等
R型聚類分析:對指標進行分類處理,又稱指標聚類分析使用相似系數作為統計量衡量相似度,相關系數、列聯系數等
2、方法分類:
1)系統聚類法:適用於小樣本的樣本聚類或指標聚類,一般用系統聚類法來聚類指標,又稱分層聚類
2)逐步聚類法:適用於大樣本的樣本聚類
3)其他聚類法:兩步聚類、K均值聚類等
九、判別分析
1、判別分析:根據已掌握的一批分類明確的樣品建立判別函數,使產生錯判的事例最少,進而對給定的一個新樣品,判斷它來自哪個總體
2、與聚類分析區別
1)聚類分析可以對樣本逬行分類,也可以對指標進行分類;而判別分析只能對樣本
2)聚類分析事先不知道事物的類別,也不知道分幾類;而判別分析必須事先知道事物的類別,也知道分幾類
3)聚類分析不需要分類的歷史資料,而直接對樣本進行分類;而判別分析需要分類歷史資料去建立判別函數,然後才能對樣本進行分類
3、進行分類 :
1)Fisher判別分析法 :
以距離為判別准則來分類,即樣本與哪個類的距離最短就分到哪一類,適用於兩類判別;
以概率為判別准則來分類,即樣本屬於哪一類的概率最大就分到哪一類,適用於
適用於多類判別。
2)BAYES判別分析法 :
BAYES判別分析法比FISHER判別分析法更加完善和先進,它不僅能解決多類判別分析,而且分析時考慮了數據的分布狀態,所以一般較多使用;
十、主成分分析
介紹:主成分分析(Principal
Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。
在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。
主成分分析首先是由K.皮爾森(Karl Pearson)對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。
將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。
原理:在用統計分析方法研究多變數的課題時,變數個數太多就會增加課題的復雜性。人們自然希望變數個數較少而得到的信息較多。在很多情形,變數之間是有一定的相關關系的,當兩個變數之間有一定相關關系時,可以解釋為這兩個變數反映此課題的信息有一定的重疊。主成分分析是對於原先提出的所有變數,將重復的變數(關系緊密的變數)刪去多餘,建立盡可能少的新變數,使得這些新變數是兩兩不相關的,而且這些新變數在反映課題的信息方面盡可能保持原有的信息。
設法將原來變數重新組合成一組新的互相無關的幾個綜合變數,同時根據實際需要從中可以取出幾個較少的綜合變數盡可能多地反映原來變數的信息的統計方法叫做主成分分析或稱主分量分析,也是數學上用來降維的一種方法。
缺點: 1、在主成分分析中,我們首先應保證所提取的前幾個主成分的累計貢獻率達到一個較高的水平(即變數降維後的信息量須保持在一個較高水平上),其次對這些被提取的主成分必須都能夠給出符合實際背景和意義的解釋(否則主成分將空有信息量而無實際含義)。
2、主成分的解釋其含義一般多少帶有點模糊性,不像原始變數的含義那麼清楚、確切,這是變數降維過程中不得不付出的代價。因此,提取的主成分個數m通常應明顯小於原始變數個數p(除非p本身較小),否則維數降低的「利」可能抵不過主成分含義不如原始變數清楚的「弊」。
十一、因子分析
一種旨在尋找隱藏在多變數數據中、無法直接觀察到卻影響或支配可測變數的潛在因子、並估計潛在因子對可測變數的影響程度以及潛在因子之間的相關性的一種多元統計分析方法
與主成分分析比較:
相同:都能夠起到治理多個原始變數內在結構關系的作用
不同:主成分分析重在綜合原始變適的信息.而因子分析重在解釋原始變數間的關系,是比主成分分析更深入的一種多元統計方法
用途:
1)減少分析變數個數
2)通過對變數間相關關系探測,將原始變數進行分類
十二、時間序列分析
動態數據處理的統計方法,研究隨機數據序列所遵從的統計規律,以用於解決實際問題;時間序列通常由4種要素組成:趨勢、季節變動、循環波動和不規則波動。
主要方法:移動平均濾波與指數平滑法、ARIMA橫型、量ARIMA橫型、ARIMAX模型、向呈自回歸橫型、ARCH族模型
時間序列是指同一變數按事件發生的先後順序排列起來的一組觀察值或記錄值。構成時間序列的要素有兩個:其一是時間,其二是與時間相對應的變數水平。實際數據的時間序列能夠展示研究對象在一定時期內的發展變化趨勢與規律,因而可以從時間序列中找出變數變化的特徵、趨勢以及發展規律,從而對變數的未來變化進行有效地預測。
時間序列的變動形態一般分為四種:長期趨勢變動,季節變動,循環變動,不規則變動。
時間序列預測法的應用:
系統描述:根據對系統進行觀測得到的時間序列數據,用曲線擬合方法對系統進行客觀的描述;
系統分析:當觀測值取自兩個以上變數時,可用一個時間序列中的變化去說明另一個時間序列中的變化,從而深入了解給定時間序列產生的機理;
預測未來:一般用ARMA模型擬合時間序列,預測該時間序列未來值;
決策和控制:根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
特點:
假定事物的過去趨勢會延伸到未來;
預測所依據的數據具有不規則性;
撇開了市場發展之間的因果關系。
①時間序列分析預測法是根據市場過去的變化趨勢預測未來的發展,它的前提是假定事物的過去會同樣延續到未來。事物的現實是歷史發展的結果,而事物的未來又是現實的延伸,事物的過去和未來是有聯系的。市場預測的時間序列分析法,正是根據客觀事物發展的這種連續規律性,運用過去的歷史數據,通過統計分析,進一步推測市場未來的發展趨勢。市場預測中,事物的過去會同樣延續到未來,其意思是說,市場未來不會發生突然跳躍式變化,而是漸進變化的。
時間序列分析預測法的哲學依據,是唯物辯證法中的基本觀點,即認為一切事物都是發展變化的,事物的發展變化在時間上具有連續性,市場現象也是這樣。市場現象過去和現在的發展變化規律和發展水平,會影響到市場現象未來的發展變化規律和規模水平;市場現象未來的變化規律和水平,是市場現象過去和現在變化規律和發展水平的結果。
需要指出,由於事物的發展不僅有連續性的特點,而且又是復雜多樣的。因此,在應用時間序列分析法進行市場預測時應注意市場現象未來發展變化規律和發展水平,不一定與其歷史和現在的發展變化規律完全一致。隨著市場現象的發展,它還會出現一些新的特點。因此,在時間序列分析預測中,決不能機械地按市場現象過去和現在的規律向外延伸。必須要研究分析市場現象變化的新特點,新表現,並且將這些新特點和新表現充分考慮在預測值內。這樣才能對市場現象做出既延續其歷史變化規律,又符合其現實表現的可靠的預測結果。
②時間序列分析預測法突出了時間因素在預測中的作用,暫不考慮外界具體因素的影響。時間序列在時間序列分析預測法處於核心位置,沒有時間序列,就沒有這一方法的存在。雖然,預測對象的發展變化是受很多因素影響的。但是,運用時間序列分析進行量的預測,實際上將所有的影響因素歸結到時間這一因素上,只承認所有影響因素的綜合作用,並在未來對預測對象仍然起作用,並未去分析探討預測對象和影響因素之間的因果關系。因此,為了求得能反映市場未來發展變化的精確預測值,在運用時間序列分析法進行預測時,必須將量的分析方法和質的分析方法結合起來,從質的方面充分研究各種因素與市場的關系,在充分分析研究影響市場變化的各種因素的基礎上確定預測值。
需要指出的是,時間序列預測法因突出時間序列暫不考慮外界因素影響,因而存在著預測誤差的缺陷,當遇到外界發生較大變化,往往會有較大偏差,時間序列預測法對於中短期預測的效果要比長期預測的效果好。因為客觀事物,尤其是經濟現象,在一個較長時間內發生外界因素變化的可能性加大,它們對市場經濟現象必定要產生重大影響。如果出現這種情況,進行預測時,只考慮時間因素不考慮外界因素對預測對象的影響,其預測結果就會與實際狀況嚴重不符。
⑽ 多元統計分析的簡介
multivariate statistical analysis
研究客觀事物中多個變數(或多個因素)之間相互依賴的統計規律性。它的重要基礎之一是多元正態分析。又稱多元分析 。 如果每個個體有多個觀測數據,或者從數學上說, 如果個體的觀測數據能表為 P維歐幾里得空間的點,那麼這樣的數據叫做多元數據,而分析多元數據的統計方法就叫做多元統計分析 。 它是數理統計學中的一個重要的分支學科。20世紀30年代,R.A.費希爾,H.霍特林,許寶碌以及S.N.羅伊等人作出了一系列奠基性的工作,使多元統計分析在理論上得到迅速發展。50年代中期,隨著電子計算機的發展和普及 ,多元統計分析在地質 、氣象、生物、醫學、圖像處理、經濟分析等許多領域得到了廣泛的應用 ,同時也促進了理論的發展。各種統計軟體包如SAS,SPSS等,使實際工作者利用多元統計分析方法解決實際問題更簡單方便。重要的多元統計分析方法有:多重回歸分析(簡稱回歸分析)、判別分析、聚類分析、主成分分析、對應分析、因子分析、典型相關分析、多元方差分析等。
早在19世紀就出現了處理二維正態總體(見正態分布)的一些方法,但系統地處理多維概率分布總體的統計分析問題,則開始於20世紀。人們常把1928年維夏特分布的導出作為多元分析成為一個獨立學科的標志。20世紀30年代,R.A.費希爾、H.霍特林、許寶祿以及S.N.羅伊等人作出了一系列奠基性的工作,使多元統計分析在理論上得到了迅速的進展。40年代,多元分析在心理、教育、生物等方面獲得了一些應用。由於應用時常需要大量的計算,加上第二次世界大戰的影響,使其發展停滯了相當長的時間。50年代中期,隨著電子計算機的發展和普及,它在地質、氣象、標准化、生物、圖像處理、經濟分析等許多領域得到了廣泛的應用,也促進了理論的發展。
多元分析發展的初期,主要討論如何把一元正態總體的統計理論和方法推廣到多元正態總體。多元正態總體的分布由兩組參數,即均值向量μ(見數學期望)和協方差矩陣(簡稱協差陣)∑ (見矩)所決定,記為Np(μ,∑)(p為分布的維數,故又稱p維正態分布或p 維正態總體)。設X1,X2,…,Xn為來自正態總體Np(μ,∑)的樣本,則μ和∑的無偏估計(見點估計)分別是
和
分別稱之為樣本均值向量和樣本協差陣,它們是在各種多元分析問題中常用的統計量。樣本相關陣R 也是一個重要的統計量,它的元素為
其中υij為樣本協差陣S的元素。S的分布是維夏特分布,它是一元統計中的Ⅹ2分布的推廣。
另一典型問題是:假定兩個多維正態分布協差陣相同,檢驗其均值向量是否相同。設樣本X1,X2,…,Xn抽自正態總體Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要檢驗假設H 0:μ1=μ2(見假設檢驗)。在一元統計中使用t統計量(見統計量)作檢驗;在多元分析中則用T2統計量,
,其中,
,
·
,T2的分布稱為T2分布。這是H.霍特林在1936年提出來的。
在上述問題中的多元與一元相應的統計量是類似的,但並非都是如此。例如,要檢驗k個正態總體的均值是否相等,在一元統計中是導致F統計量,但在多元分析中可導出許多統計量,最著名的有威爾克斯Λ統計量和最大相對特徵根統計量。研究這些統計量的精確分布和優良性是近幾十年來多元統計分析的重要理論課題。
多元統計分析有狹義與廣義之分,當假定總體分布是多元正態分布時,稱為狹義的,否則稱為廣義的。近年來,狹義多元分析的許多內容已被推廣到更廣的分布之中,特別是推廣到一種稱為橢球等高分布族之中。
按多元分析所處理的實際問題的性質分類,重要的有如下幾種。 簡稱回歸分析。其特點是同時處理多個因變數。回歸系數和常數的計算公式與通常的情況相仿,只是由於因變數不止一個,原來的每個回歸系數在此都成為一個向量。因此,關於回歸系數的檢驗要用T2統計量;對回歸方程的顯著性檢驗要用Λ統計量。
回歸分析在地質勘探的應用中發展了一種特殊的形式,稱為趨勢面分析,它以各種元素的含量作為因變數,把它們對地理坐標進行回歸(選用一次、二次或高次的多項式),回歸方程稱為趨勢面,反映了含量的趨勢。殘差分析是趨勢面分析的重點,找出正的殘差異常大的點,在這些點附近,元素的含量特別高,這就有可能形成可採的礦位。這一方法在其他領域也有應用。 由 k個不同總體的樣本來構造判別函數,利用它來決定新的未知類別的樣品屬於哪一類,這是判別分析所處理的問題。它在醫療診斷、天氣預報、圖像識別等方面有廣泛的應用。例如,為了判斷某人是否有心臟病,從健康的人和有心臟病的人這兩個總體中分別抽取樣本,對每人各測兩個指標X1和X2,點繪如圖 。可用直線A將平面分成g1和g2兩部分,落在g1的絕大部分為健康者,落在g2的絕大部分為心臟病人,利用A的垂線方向l=(l1,l2)來建立判別函數
y=l1X1+l2X2,可以求得一常數с,使 y<с 等價於(X1,X2)落在g1,y>с等價於(X1,X2)落在g2。由此得判別規則:若,l1X1+l2X2<c
判,即此人為健康者;若,l1X1+l2X2>C
判,
即此人為心臟病人;若,l1X1+l2X2=c則為待判。此例的判別函數是線性函數,它簡單方便,在實際問題中經常使用。但有時也用非線性判別函數,特別是二次判別函數。建立判別函數和判別規則有不少准則和方法,常用的有貝葉斯准則、費希爾准則、距離判別、回歸方法和非參數方法等。
無論用哪一種准則或方法所建立的判別函數和判別規則,都可能產生錯判,錯判所佔的比率用錯判概率來度量。當總體間區別明顯時,錯判概率較小;否則錯判概率較大。判別函數的選擇直接影響到錯判概率,故錯判概率可用來比較不同方法的優劣。
變數(如上例中的X1和X2)選擇的好壞是使用判別分析的最重要的問題,常用逐步判別的方法來篩選出一些確有判別作用的變數。利用序貫分析的思想又產生了序貫判別分析。例如醫生在診斷時,先確定是否有病,然後確定是哪個系統有病,再確定是什麼性質的病等等。 又稱數值分類。聚類分析和判別分析的區別在於,判別分析是已知有多少類和樣本來自哪一類,需要判別新抽取的樣本是來自哪一類;而聚類分析則既不知有幾類,也不知樣本中每一個來自哪一類。例如,為了制定服裝標准,對 N個成年人,測量每人的身高(x1)、胸圍(x2)、肩寬(x3)、上體長(x4)、手臂長(x5)、前胸(x6)、後背(x7)、腰圍(x8)、臀圍(x9)、下體長(x10)等部位,要將這N個人進行分類,每一類代表一個號型;為了使用和裁剪的方便,還要對這些變數(x1,x2,…,x10)進行分類。聚類分析就是解決上述兩種分類問題。
設已知N個觀測值X1,X2,…,Xn,每個觀測值是一個p維向量(如上例中人的身高、胸圍等)。聚類分析的思想是將每個觀測值Xi看成p維空間的一個點,在p維空間中引入「距離」的概念,則可按各點間距離的遠近將各點(觀測值)歸類。若要對 p個變數(即指標)進行分類,常定義一種「相似系數」來衡量變數之間的親密程度,按各變數之間相似系數的大小可將變數進行分類。根據實際問題的需要和變數的類型,對距離和相似系數有不同的定義方法。
按距離或相似系數分類,有下列方法。①凝聚法:它是先將每個觀察值{Xi}看成一類,逐步歸並,直至全部觀測值並成一類為止,然後將上述並類過程畫成一聚類圖(或稱譜系圖),利用這個圖可方便地得到分類。②分解法:它是先將全部觀測值看成一類,然後逐步將它們分解為2類、3類、…、N類,它是凝聚法的逆過程。③動態聚類法:它是將觀測值先粗糙地分類,然後按適當的目標函數和規定的程序逐步調整,直至不能再調為止。
若觀察值X1,X2,…,Xn之間的次序在分類時不允許打亂,則稱為有序分類。例如在地質學中將地層進行分類,只能將互相鄰接的地層分成一類,不能打亂上下的次序。用於這一類問題中的重要方法是費希爾於1958年提出的最優分割法。
聚類分析也能用於預報洪水、暴雨、地震等災害性問題,其效果比其他統計方法好。但它在理論上還很薄弱,因為它不象其他方法那樣有確切的數學模型。 又稱主分量分析,是將多個變數通過線性變換以選出較少個數重要變數的一種方法。設原來有p個變數x1,x2,…,xp,為了簡化問題,選一個新變數z,
,
要求z盡可能多地反映p個變數的信息,以此來選擇l1,l2,…,lp,當l1,l2,…,lp選定後,稱z為x1,x2,…,xp的主成分(或主分量)。有時僅一個主成分不足以代表原來的p個變數,可用q(<p)個互不相關的呈上述形式的主成分來盡可能多地反映原p個變數的信息。用來決定諸系數的原則是,在
的約束下,選擇l1,l2,…,lp使z的方差達到最大。
在根據樣本進行主成分分析時又可分為R型分析與Q型分析。前者是用樣本協差陣(或相關陣)的特徵向量作為線性函數的系數來求主成分;後者是由樣品之間的內積組成的內積陣來進行類似的處理,其目的是尋找出有代表性的「典型」樣品,這種方法在地質結構的分析中常使用。 它是由樣本的資料將一組變數
y2,……yp)
分解為一些公共因子f與特殊因子s的線性組合,即有常數矩陣A使у=Af+s。公共因子f 的客觀內容有時是明確的,如在心理研究中,根據學生的測驗成績(指標)來分析他的反應快慢、理解深淺(公共因子);有時則是不明確的。為了尋求易於解釋的公共因子,往往對因子軸進行旋轉,旋轉的方法有正交旋轉,斜旋轉,極大變差旋轉等。
從樣本協差陣或相關陣求公共因子的方法有廣義最小二乘法、最大似然法與不加權的最小二乘法等。通常在應用中,最方便的是直接利用主成分分析所得的頭幾個主成分,它們往往是對各個指標影響都比較大的公共因子。 它是尋求兩組變數各自的線性函數中相關系數達到最大值的一對,這稱為第一對典型變數,還可以求第二對,第三對,等等,這些成對的變數,彼此是不相關的。各對的相關系數稱為典型相關系數。通過這些典型變數所代表的實際含意,可以找到這兩組變數間的一些內在聯系。典型相關分析雖然30年代已經出現,但至今未能廣泛應用。
上述的各種方法可以看成廣義多元分析的內容,在有些方法中,如加上正態性的假定,就可以討論一些更深入的問題,例如線性模型中有關線性假設檢驗的問題,在正態的假定下,就有比較系統的結果。 多元分析也可按指標是離散的還是連續的來區分,離散值的多元分析實質上與列聯表分析有很大部分是類似的,甚至是一樣的。
非數量指標數量化的理論和方法也是廣義多元分析的一個重要的研究課題。