導航:首頁 > 研究方法 > 重要的分析方法

重要的分析方法

發布時間:2022-12-21 13:39:16

1. 財務分析最主要的分析方法

財務最主要的分析方法有三種:比較分析法包括水平分析比較法和縱向比較分析法。
比率分析法是財務分析最重要的方法。
趨勢分析法既可用於對會計報表的整體分析;也可以對某些主要指標的發展趨勢進行分析。

2. 常用統計分析方法有哪些

1、對比分析法

對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。

2、分組分析法

分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。

根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。

3、預測分析法

預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。

最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。

5、AB測試分析法

AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。

例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。

3. 管理學中的幾種分析方法

1、職能主義範式

注重研究客觀事實和社會產物,將客觀存在的社會現象作為研究起點,重視對社會規律進行科學概括,試圖尋求社會現象間的相關關系或因果關系;以承認存在著一個擁有特定價值觀、信仰、規范和角色的外部世界為前提,集中研究現實內容本身或實質

2、詮釋型範式

運用直覺判斷和個人洞察力獲取知識,它著重個人的主觀感受,認為社會現象實際上為個人主觀經驗。因此,以個人的感官和良知來研究事物,著重社會所創造出來的實體,探討個人的主觀經歷、表現出來的意義和語言解釋等。

3、人本主義範式

指承認人的價值和尊嚴,把人看作是衡量一切的尺度,或以人性、人的有限性和人的利益為主題的任何管理學範式。人本主義範式強調,人的潛能是管理所能開發的最重要的資源或資本。管理就等於人,人能夠開發自身。

(3)重要的分析方法擴展閱讀:

管理學的研究內容:

1、從生產力方面:研究如何合理配置組織中的人、財、物,使各要素充分發揮作用的問題;研究如何根據組織目標的要求和社會的需要,合理地使用各種資源,以求得最佳的經濟效益和社會效益的問題。

2、從生產關系方面:研究如何正確處理組織中人與人之間的相互關系問題;研究如何建立和完善組織機構以及各種管理體制等問題;研究如何激勵組織內成員,從而最大限度地調動各方面的積極性和創造性,為實現組織目標而服務。

3、從上層建築方面:研究如何使組織內部環境與其外部環境相適應的問題;研究如何使組織的規章制度與社會的政治、經濟、法律、道德等上層建築保持一致的問題,從而維持正常的生產關系,促進生產力的發展。

參考資料來源:網路—管理學

4. 數據分析的幾種常用方法21-10-27

幾種常見的數據分析分析方法:
1.周期性分析(基礎分析)
What :主要是從日常雜亂的數據中,發現周期性出現的現象,而從避免或改善問題的發生。常見的兩種周期:自然周期和生命周期。
需要注意的點:雖然周期性分析主要針對時間序列,但不全是,例如公眾號的文章閱讀走勢不僅和日期(工作日或周末)相關,也和文章類型相關。
例如:銷售中3,6,9,12月,由於績效考核出現的峰值
            重點節假日對和交付的影響
            產品銷售的季節性影響(例如北方下半年的採暖產品,入夏空調的銷售旺季等)
How: 自然後期的時間維度,根據分析的需求,可從年(同環比,業績達成、和行業趨勢對比),月(淡旺季、銷售進度、生產預測),周(一般較少),日(工作日,非工作日的差異分析),時(時間分布,工作時段,上下班高峰,晚上,主要和大眾消費行為分析相關)進行展開
生命周期一種常見的分析就「商品生命周期」,商品銷量隨上市時間的變化,通過時間軸+指標走勢組合出來的。這種分析對快消品或者產品迭代速度很快的商品(典型如手機)是比較重要的,可以用於監控產品的市場表現,對照市場活動可以量化活動效果以及產品線的經營情況,如持續跟進,則可針對性的提出產品上市的建議。

2.矩陣分析(重要分析方法)
矩陣分析是數據分析中非常重要的分析方法。主要解決分析領域的一個非常致命的核心問題:「到底指標是多少,才算好」。
平均數是一個非常常用的數據維度,但是單一維度,並不能充分評價好壞。例如考核銷售,如果只考核業務銷售業績,那麼業務人員一定會傾向賣利潤低的引流產品。那種利潤高,價格高,不容易賣的利潤型產品就沒人賣了,最後銷售越多,公司的利潤反而下降了。這個時候通過兩個維度:銷售規模和銷售利潤,構建交叉矩陣,就能將業務業績進行更有效的區分。

舉個簡單的例子,一個銷售團隊,10名銷售一個月內開發的客戶數量,產生的總業績用矩陣分析法進行分析(具體數據略):
第一步:先對客戶數量、業績求平均值
第二步:利用平均值,對每個銷售人員的客戶數量、業績進行分類
第三步:區分出多客戶+高業績,少客戶+高業績,多客戶+低業績,少客戶+低業績四類

矩陣分析把關鍵業務目標拆分為兩個維度,每個維度進行高低分類,進而可以對目標進行更加立體的描述。維度高低分類多採用 平均值作為參考 值。
注意:有兩個場景,是不適合用矩陣分析法:
一:有極大/極小值影響了平均值的時候,一般出現極大/極小值的時候,可以用: 分層分析法 。
二:兩個指標高度相關的時候,例如用戶消費金額與消費頻次,兩個指標天生高度相關,此時數據分布會集中在某一個或兩個區域,矩陣分析法的業務解讀能力接近0,可採用 相關分析法

3.結構分析
What: 結構分析是將分析的目標,向下分解,主要用於發現問題。
例如銷售分析,可以按照區域—省—市 一級級的分解,分解之後可以更好的看出影響銷售業績的影響因素在哪個位置。
 結構分析可以有多個維度,取決於我們需要分析的方向。例如還是銷售分析,可以從產品構成進行拆解,也可用從業務形態拆解
How:如何進行結構分析?
第一步:定出要分析的關鍵指標(一般是業績、用戶量、DAU、利潤等等)
第二步:了解關鍵指標的構成方式(比如業績,由哪些用戶、哪些商品、哪些渠道組成)
第三步:跟蹤關鍵指標的走勢,了解指標結構變化情況
第四步:在關鍵指標出現明顯上升/下降的時候,找到變化最大的結構分類,分析問題
注意:結構分析的不足
結構分析法是一種:知其然,不知其所以然的方法。只適用於發現問題,不能解答問題

4.分層分析
What: 分層分析,是為了應對 平均值失效 的場景。典型的平均值失效例如平均工資,很多人都被「代表」。這個時候需要把收入群體分成幾類,例如土豪,普通百姓,窮光蛋等,後面進行分析時就比較清楚了。業內也有一些不同的叫法,比如應用於商品的,叫ABC分類,應用於用戶的,叫用戶分層,應用於業務的,叫二八法則。本質都是一回事。
How:如何進行分層分析
1.明確分層對象和分層指標
    例如:想區分用戶消費力,分層對象就是:用戶,分層指標就是:消費金額
               想區分商品銷售額,分層對象就是:商品,分層指標就是:銷售金額
                想區分部銷售額,分層對象就是:分部,分層指標就是:銷售收入
2.查看數據,確認是否需要分層。分層是應對平均值失效的情況的,存在極值影響的情況,則適合分層。
3.設定分層的層級。最好的解決辦法是老闆拍板,其次可以用「二八原則」,以上述銷售業績分層為例,可以先從高到低排序,然後把累積業績佔80%的人選出來,作為「第1層級(優等)」,其他的歸為「第2層級(次等)」。有時如果顆粒度不夠,也可以用「二四六八十」法則」。
如何應用分層
分層的最大作用是幫我們看清楚:到底誰是主力 ,誰是吊車尾。從而指導業務,從人海戰術向精兵簡政思考。
根據分層的結果找出差距,進而提出(假設)差異背後可能的原因,通過其它方式進行
應用 :客戶分析,目前系統中客戶超5000個,為了更好的了解客戶結構,可以通過分層分析的方法對這5000個客戶進行分層,分層的方式通過年銷售規模,可以按照累計規模排序,一般採用4-6個層級,每個層級可以給一個標簽。例如王者客戶,腰部客戶,mini客戶等。分層後,便可以針對性的進行分析,例如客戶層級的銷售佔比,變動,各層級客戶的銷售構成,結合其它方法就可以有較全面的分析

5.漏斗分析(待補充)

6.指標拆解(待補充)

7.相關性分析(待補充)
What :兩個(或多個)因素之間的關系。例如員工人數與銷售額,市場推廣與銷售業績,天氣和銷售表現等
            很多因素我們直觀的感覺到之間有聯系,相互影響,但具體的關系是什麼,如何產品影響的,可以通相關性分析來量化。
例如,客戶開拓中拜訪客戶的次數和客戶成交是否有關系?
           拜訪次數多,表明客戶也感興趣,所以成功幾率大
           拜訪這么多,客戶還不成交,成功幾率不大
            客戶成交和拜訪關系不太大,主要看你是否能打動他
How :兩種聯系:直接關系,間接關系
直接關系 :整體指標與部分指標的關系——結構分析,例如銷售業績與各中心的業績
                  主指標與子指標的關系——拆解分析,例如總銷售規模和客戶數量與客戶銷售規模
                   前後步驟間的關系——漏斗分析:例如銷售目標和項目覆蓋率,儲備率,簽約等因素間的關系
        聯系中,指標之間出現一致性的變化,基本是正常,如果出現相反的變動,則需要關注,這可能是問題所在
間接關系 :要素之間沒有直接的聯系,但存在邏輯上的連接。例如推廣多了,知名度上市,進而銷售額上升。
                  由於關系非顯性,需要通過處理進行評價,常用的就是散點圖和excel中的相關系數法
在明確相關性後,就可以通過改變其中一個變數來影響和控制另一個變數的發展。
注意:相關性分析也存在很大的局限。主要體現在相關性並不等同因果性。例如十年前你在院子里種了一顆樹,你發現樹每天的高度和中國近十年GDP的增速高度相關,然後這兩者間並沒有什麼實質性的聯系。此次相關性分析過程中一定注意要找到關聯的邏輯自洽。

8.標簽分析(待補充)

9.

5. 在解決實際問題時常用的分析方法有哪些

目前在實際工作中,通常採用的分析方法有五種:

1、對比分析法

也叫比較分析法,是通過實際數與基數的對比來提示實際數與基數之間的差異,藉以了解經濟活動的成績和問題的一種分析方法。在科學探究活動中,常常用到對比分析法,這種分析法與等效替代法相似。對比法, 戲劇常用的一種主要藝術手法。一般有三種對比:人物對比、場面對比、細節對比。

2、因素分析法

又稱經驗分析法,是一種定性分析方法。該方法主要指根據價值工程對象選擇應考慮的各種因素,憑借分析人員的知識和經驗集體研究確定選擇對象。該方法簡單易行,要求價值工程人員對產品熟悉,經驗豐富,在研究對象彼此相差較大或時間緊迫的情況下比較適用,缺點是無定量分析、主觀影響大。

因素分析法是利用統計指數體系分析現象總變動中各個因素影響程度的一種統計分析方法,包括連環替代法、差額分析法、指標分解法等。 因素分析法是現代統計學中一種重要而實用的方法,它是多元統計分析的一個分支。使用這種方法能夠使研究者把一組反映事物性質、狀態、特點等的變數簡化為少數幾個能夠反映出事物內在聯系的、固有的、決定事物本質特徵的因素。

因素分析法的最大功用,就是運用數學方法對可觀測的事物在發展中所表現出的外部特徵和聯系進行由表及裡、由此及彼、去粗取精、去偽存真的處理,從而得出客觀事物普遍本質的概括。其次,使用因素分析法可以使復雜的研究課題大為簡化,並保持其基本的信息量。

3、相關分析法

揭示某一礦區鑽孔自然彎曲趨勢的另一方法是進行相關分析,又稱回歸分析,即利用數理統計原理,求出反映鑽孔自然彎曲趨勢的回歸方程。通常設孔深為自變數,頂角和方位角為因變數,建立相關關系式這兩個相關關系式就代表鑽孔頂角和鑽孔方位角隨孔深而變化的規律。

4、差額計演算法

確定引起某個經濟指標變動的各個因素的影響程度的一種計算方法。與"連續替代法"內容相同。在幾個相互聯系的因素共同影響著某一個經濟指標的情況下,可應用這一方法計算各個因素對該經濟指標發生變動的影響程度。在衡量某一因素對於一個經濟指標的影響時,假定只有這一因素變動,而其餘因素不變。確定各個因素替代順序,然後按照這一順序進行替代計算。這種方法是假定各個因素依照一定的順序發生變動而進行替代計算的, 因此分析出來的結果具有一定程度的假定性。

5、比例法

比例法亦稱「間接計演算法」。它是利用過去兩個相關經濟指標之間長期形成的穩定比率來推算確定計劃期有關指標的一種方法。

(5)重要的分析方法擴展閱讀

分析法是「綜合法」的對稱。把復雜的經濟現象分解成許多簡單組成部分,分別進行研究的方法。其實質是: 通過調查研究,找出事物的內在矛盾,並對矛盾的各個方面進行深入研究。剔除那些偶然的、非本質的東西,抽象出必然的、本質的因素,並由此得出一些反映本質的簡單規定,以把握矛盾的各個方面的特殊性。

分析法所提供的只是對於經濟現象的片面理解,它還不能從總體上、從各個部分之間的相互聯繫上來把握經濟現象。因此,在分析的基礎上,還必須運用綜合的方法,使分析得到的各個方面的本質規定,按照經濟現象內在的邏輯聯系,形成有機的體系,這樣才能全面、深刻地認識經濟現象,提出解決問題的有效辦法。

適用范圍:不易直接證明結論;從結論很顯然能推出明顯正確的條件。

6. 數據分析方法

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

7. 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

8. 數據分析常用的分析方法有哪些

1. 描述型分析


這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。


例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。


2. 診斷型分析


描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。


良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。


3. 預測型分析


預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。


預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。


4. 指令型分析


數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。

9. 問題分析的方法有哪些

問題分析的方法有:SWOT分析法和5w2h分析法。

1、SWOT分析法:它是用來確定企業自身的競爭優勢、競爭劣勢、機會和威脅,從而將公司的戰略與公司內部資源、外部環境有機地結合起來的一種科學的分析方法。

對於優勢和弱勢是內部環境的分析,機會和威脅是對於外部環境的分析。這個模型可以用於多種方面,任何和商品,貿易,競爭有關系的都適用,而人也是一種商品。這個模型可以幫助你理清現狀。

其它的方法還有馬斯洛需求理論:

生理需求:Physiological needs,也稱級別最低、最具優勢的需求,如:食物、水、空氣、性慾、健康。

安全需求:同樣屬於低級別的需求,其中包括對人身安全、生活穩定以及免遭痛苦、威脅或疾病等。

社交需求:屬於較高層次的需求,如:對友誼、愛情以及隸屬關系的需求。

尊重需求:屬於較高層次的需求,如:成就、名聲、地位和晉升機會等。尊重需求既包括對成就或自我價值的個人感覺,也包括他人對自己的認可與尊重。

自我實現需求:是最高層次的需求,包括針對於真善美至高人生境界獲得的需求,因此前面四項需求都能滿足,最高層次的需求方能相繼產生,是一種衍生性需求,如:自我實現,發揮潛能等。

閱讀全文

與重要的分析方法相關的資料

熱點內容
瑞典輕症治療方法 瀏覽:616
原始股退出計算方法 瀏覽:409
水泵間隙的測量方法 瀏覽:520
材料分析方法視頻 瀏覽:332
杜蘭特真正的訓練方法 瀏覽:318
網上買床安裝方法 瀏覽:782
奶奶教裁剪方法簡單好用 瀏覽:449
老人機簡訊中心在哪裡設置方法 瀏覽:857
化肥中氮的含量檢測方法視頻 瀏覽:79
照片如何加水印方法 瀏覽:536
有點打呼嚕有什麼好方法 瀏覽:407
如何賞析詩句方法公式 瀏覽:727
快速融化冰塊的方法 瀏覽:133
手臂痛怎麼治療方法 瀏覽:487
days360函數的使用方法 瀏覽:635
治療濕尤有效方法 瀏覽:913
小米的快捷鍵設置在哪裡設置方法 瀏覽:773
用底線思維方法解決問題 瀏覽:282
檢測方法elisa法 瀏覽:196
遠離口臭的最佳治療方法 瀏覽:688