導航:首頁 > 研究方法 > 多元統計分析方法pdf

多元統計分析方法pdf

發布時間:2022-12-16 12:55:10

❶ 多元統計!!!急求!

1. 因子分析模型

因子分析法是從研究變數內部相關的依賴關系出發,把一些具有錯綜復雜關系的變數歸結為少數幾個綜合因子的一種多變數統計分析方法。它的基本思想是將觀測變數進行分類,將相關性較高,即聯系比較緊密的分在同一類中,而不同類變數之間的相關性則較低,那麼每一類變數實際上就代表了一個基本結構,即公共因子。對於所研究的問題就是試圖用最少個數的不可測的所謂公共因子的線性函數與特殊因子之和來描述原來觀測的每一分量。

因子分析的基本思想:
把每個研究變數分解為幾個影響因素變數,將每個原始變數分解成兩部分因素,一部分是由所有變數共同具有的少數幾個公共因子組成的,另一部分是每個變數獨自具有的因素,即特殊因子

因子分析模型描述如下:

(1)X = (x1,x2,…,xp)¢是可觀測隨機向量,均值向量E(X)=0,協方差陣Cov(X)=∑,且協方差陣∑與相關矩陣R相等(只要將變數標准化即可實現)。

(2)F = (F1,F2,…,Fm)¢ (m<p)是不可測的向量,其均值向量E(F)=0,協方差矩陣Cov(F) =I,即向量的各分量是相互獨立的。

(3)e = (e1,e2,…,ep)¢與F相互獨立,且E(e)=0, e的協方差陣∑是對角陣,即各分量e之間是相互獨立的,則模型:

x1 = a11F1+ a12F2 +…+a1mFm + e1

x2 = a21F1+a22F2 +…+a2mFm + e2

………

xp = ap1F1+ ap2F2 +…+apmFm + ep

稱為因子分析模型,由於該模型是針對變數進行的,各因子又是正交的,所以也稱為R型正交因子模型。

其矩陣形式為: x =AF + e .

其中:

x=,A=,F=,e=

這里,

(1)m £ p;

(2)Cov(F,e)=0,即F和e是不相關的;

(3)D(F) = Im ,即F1,F2,…,Fm不相關且方差均為1;

D(e)=,即e1,e2,…,ep不相關,且方差不同。

我們把F稱為X的公共因子或潛因子,矩陣A稱為因子載荷矩陣,e 稱為X的特殊因子。

A = (aij),aij為因子載荷。數學上可以證明,因子載荷aij就是第i變數與第j因子的相關系數,反映了第i變數在第j因子上的重要性。

2. 模型的統計意義

模型中F1,F2,…,Fm叫做主因子或公共因子,它們是在各個原觀測變數的表達式中都共同出現的因子,是相互獨立的不可觀測的理論變數。公共因子的含義,必須結合具體問題的實際意義而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之間以及特殊因子與所有公共因子之間都是相互獨立的。模型中載荷矩陣A中的元素(aij)是為因子載荷。因子載荷aij是xi與Fj的協方差,也是xi與Fj的相關系數,它表示xi依賴Fj的程度。可將aij看作第i個變數在第j公共因子上的權,aij的絕對值越大(|aij|£1),表明xi與Fj的相依程度越大,或稱公共因子Fj對於xi的載荷量越大。為了得到因子分析結果的經濟解釋,因子載荷矩陣A中有兩個統計量十分重要,即變數共同度和公共因子的方差貢獻。

因子載荷矩陣A中第i行元素之平方和記為hi2,稱為變數xi的共同度。它是全部公共因子對xi的方差所做出的貢獻,反映了全部公共因子對變數xi的影響。hi2大表明x的第i個分量xi對於F的每一分量F1,F2,…,Fm的共同依賴程度大。

將因子載荷矩陣A的第j列( j =1,2,…,m)的各元素的平方和記為gj2,稱為公共因子Fj對x的方差貢獻。gj2就表示第j個公共因子Fj對於x的每一分量xi(i= 1,2,…,p)所提供方差的總和,它是衡量公共因子相對重要性的指標。gj2越大,表明公共因子Fj對x的貢獻越大,或者說對x的影響和作用就越大。如果將因子載荷矩陣A的所有gj2 ( j =1,2,…,m)都計算出來,使其按照大小排序,就可以依此提煉出最有影響力的公共因子。

3. 因子旋轉

建立因子分析模型的目的不僅是找出主因子,更重要的是知道每個主因子的意義,以便對實際問題進行分析。如果求出主因子解後,各個主因子的典型代表變數不很突出,還需要進行因子旋轉,通過適當的旋轉得到比較滿意的主因子。

旋轉的方法有很多,正交旋轉(orthogonal rotation)和斜交旋轉(oblique rotation)是因子旋轉的兩類方法。最常用的方法是最大方差正交旋轉法(Varimax)。進行因子旋轉,就是要使因子載荷矩陣中因子載荷的平方值向0和1兩個方向分化,使大的載荷更大,小的載荷更小。因子旋轉過程中,如果因子對應軸相互正交,則稱為正交旋轉;如果因子對應軸相互間不是正交的,則稱為斜交旋轉。常用的斜交旋轉方法有Promax法等。

4.因子得分

因子分析模型建立後,還有一個重要的作用是應用因子分析模型去評價每個樣品在整個模型中的地位,即進行綜合評價。例如地區經濟發展的因子分析模型建立後,我們希望知道每個地區經濟發展的情況,把區域經濟劃分歸類,哪些地區發展較快,哪些中等發達,哪些較慢等。這時需要將公共因子用變數的線性組合來表示,也即由地區經濟的各項指標值來估計它的因子得分。

設公共因子F由變數x表示的線性組合為:

Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m

該式稱為因子得分函數,由它來計算每個樣品的公共因子得分。若取m=2,則將每個樣品的p個變數代入上式即可算出每個樣品的因子得分F1和F2,並將其在平面上做因子得分散點圖,進而對樣品進行分類或對原始數據進行更深入的研究。

但因子得分函數中方程的個數m小於變數的個數p,所以並不能精確計算出因子得分,只能對因子得分進行估計。估計因子得分的方法較多,常用的有回歸估計法,Bartlett估計法,Thomson估計法。

(1)回歸估計法

F = X b = X (X ¢X)-1A¢ = XR-1A¢ (這里R為相關陣,且R = X ¢X )。

(2)Bartlett估計法

Bartlett估計因子得分可由最小二乘法或極大似然法導出。

F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X

(3)Thomson估計法

在回歸估計法中,實際上是忽略特殊因子的作用,取R = X ¢X,若考慮特殊因子的作用,此時R = X ¢X+W,於是有:

F = XR-1A¢ = X (X ¢X+W)-1A¢

這就是Thomson估計的因子得分,使用矩陣求逆演算法(參考線性代數文獻)可以將其轉換為:

F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢

5. 因子分析的步驟

因子分析的核心問題有兩個:一是如何構造因子變數;二是如何對因子變數進行命名解釋。因此,因子分析的基本步驟和解決思路就是圍繞這兩個核心問題展開的。

(i)因子分析常常有以下四個基本步驟:

(1)確認待分析的原變數是否適合作因子分析。

(2)構造因子變數。

(3)利用旋轉方法使因子變數更具有可解釋性。

(4)計算因子變數得分。

(ii)因子分析的計算過程:

(1)將原始數據標准化,以消除變數間在數量級和量綱上的不同。

(2)求標准化數據的相關矩陣;

(3)求相關矩陣的特徵值和特徵向量;

(4)計算方差貢獻率與累積方差貢獻率;

(5)確定因子:

設F1,F2,…, Fp為p個因子,其中前m個因子包含的數據信息總量(即其累積貢獻率)不低於80%時,可取前m個因子來反映原評價指標;

(6)因子旋轉:

若所得的m個因子無法確定或其實際意義不是很明顯,這時需將因子進行旋轉以獲得較為明顯的實際含義。

(7)用原指標的線性組合來求各因子得分:

採用回歸估計法,Bartlett估計法或Thomson估計法計算因子得分。

(8)綜合得分

以各因子的方差貢獻率為權,由各因子的線性組合得到綜合評價指標函數。

F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm )

此處wi為旋轉前或旋轉後因子的方差貢獻率。

(9)得分排序:利用綜合得分可以得到得分名次。

在採用多元統計分析技術進行數據處理、建立宏觀或微觀系統模型時,需要研究以下幾個方面的問題:

· 簡化系統結構,探討系統內核。可採用主成分分析、因子分析、對應分析等方法,在眾多因素中找出各個變數最佳的子集合,從子集合所包含的信息描述多變數的系統結果及各個因子對系統的影響。「從樹木看森林」,抓住主要矛盾,把握主要矛盾的主要方面,舍棄次要因素,以簡化系統的結構,認識系統的內核。

· 構造預測模型,進行預報控制。在自然和社會科學領域的科研與生產中,探索多變數系統運動的客觀規律及其與外部環境的關系,進行預測預報,以實現對系統的最優控制,是應用多元統計分析技術的主要目的。在多元分析中,用於預報控制的模型有兩大類。一類是預測預報模型,通常採用多元線性回歸或逐步回歸分析、判別分析、雙重篩選逐步回歸分析等建模技術。另一類是描述性模型,通常採用聚類分析的建模技術。

· 進行數值分類,構造分類模式。在多變數系統的分析中,往往需要將系統性質相似的事物或現象歸為一類。以便找出它們之間的聯系和內在規律性。過去許多研究多是按單因素進行定性處理,以致處理結果反映不出系統的總的特徵。進行數值分類,構造分類模式一般採用聚類分析和判別分析技術。

如何選擇適當的方法來解決實際問題,需要對問題進行綜合考慮。對一個問題可以綜合運用多種統計方法進行分析。例如一個預報模型的建立,可先根據有關生物學、生態學原理,確定理論模型和試驗設計;根據試驗結果,收集試驗資料;對資料進行初步提煉;然後應用統計分析方法(如相關分析、逐步回歸分析、主成分分析等)研究各個變數之間的相關性,選擇最佳的變數子集合;在此基礎上構造預報模型,最後對模型進行診斷和優化處理,並應用於生產實際。
Rotated Component Matrix,就是經轉軸後的因子負荷矩陣,
當你設置了因子轉軸後,便會產生這結果。
轉軸的是要得到清晰的負荷形式,以便研究者進行因子解釋及命名。

SPSS的Factor Analysis對話框中,有個Rotation鈕,點擊便會彈出Rotation對話框,
其中有5種因子旋轉方法可選擇:

1.最大變異法(Varimax):使負荷量的變異數在因子內最大,亦即,使每個因子上具有最高載荷的變數數最少。

2.四次方最大值法(Quartimax):使負荷量的變異數在變項內最大,亦即,使每個變數中需要解釋的因子數最少。

3.相等最大值法(Equamax):綜合前兩者,使負荷量的變異數在因素內與變項內同時最大。

4.直接斜交轉軸法(Direct Oblimin):使因素負荷量的差積(cross-procts)最小化。

5.Promax 轉軸法:將直交轉軸(varimax)的結果再進行有相關的斜交轉軸。因子負荷量取2,4,6次方以產生接近0但不為0的值,藉以找出因子間的相關,但仍保有最簡化因素的特性。

上述前三者屬於「直交(正交)轉軸法」(Orthogonal Rotations),在直交轉軸法中,因子與因子之間沒有相關,因子軸之間的夾角等於90 度。後兩者屬於「斜交轉軸」(oblique rotations),表示因子與因子之間彼此有某種程度的相關,因素軸之間的夾角不是90度。

直交轉軸法的優點是因子之間提供的訊息不會重疊,受訪者在某一個因子的分數與在其他因子的分數,彼此獨立互不相關;缺點是研究迫使因素之間不相關,但這種情況在實際的情境中往往並不常存在。至於使用何種轉軸方式,須視乎研究題材、研究目的及相關理論,由研究者自行設定。

在根據結果解釋因子時,除了要看因子負荷矩陣中,因子對哪些變數呈高負荷,對哪些變數呈低負荷,還須留意之前所用的轉軸法代表的意義。

2,主成分分析(principal component analysis)

將多個變數通過線性變換以選出較少個數重要變數的一種多元統計分析方法。又稱主分量分析。在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。但是,在用統計分析方法研究這個多變數的課題時,變數個數太多就會增加課題的復雜性。人們自然希望變數個數較少而得到的信息較多。在很多情形,變數之間是有一定的相關關系的,當兩個變數之間有一定相關關系時,可以解釋為這兩個變數反映此課題的信息有一定的重疊。主成分分析是對於原先提出的所有變數,建立盡可能少的新變數,使得這些新變數是兩兩不相關的,而且這些新變數在反映課題的信息方面盡可能保持原有的信息。主成分分析首先是由K.皮爾森對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。
(1)主成分分析的原理及基本思想。
原理:設法將原來變數重新組合成一組新的互相無關的幾個綜合變數,同時根據實際需要從中可以取出幾個較少的總和變數盡可能多地反映原來變數的信息的統計方法叫做主成分分析或稱主分量分析,也是數學上處理降維的一種方法。
基本思想:主成分分析是設法將原來眾多具有一定相關性(比如P個指標),重新組合成一組新的互相無關的綜合指標來代替原來的指標。通常數學上的處理就是將原來P個指標作線性組合,作為新的綜合指標。最經典的做法就是用F1(選取的第一個線性組合,即第一個綜合指標)的方差來表達,即Var(F1)越大,表示F1包含的信息越多。因此在所有的線性組合中選取的F1應該是方差最大的,故稱F1為第一主成分。如果第一主成分不足以代表原來P個指標的信息,再考慮選取F2即選第二個線性組合,為了有效地反映原來信息,F1已有的信息就不需要再出現再F2中,用數學語言表達就是要求Cov(F1, F2)=0,則稱F2為第二主成分,依此類推可以構造出第三、第四,……,第P個主成分。
(2)步驟
Fp=a1mZX1+a2mZX2+……+apmZXp
其中a1i, a2i, ……,api(i=1,……,m)為X的協方差陣∑的特徵值多對應的特徵向量,ZX1, ZX2, ……, ZXp是原始變數經過標准化處理的值,因為在實際應用中,往往存在指標的量綱不同,所以在計算之前須先消除量綱的影響,而將原始數據標准化,本文所採用的數據就存在量綱影響[註:本文指的數據標准化是指Z標准化]。
A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R為相關系數矩陣,λi、ai是相應的特徵值和單位特徵向量,λ1≥λ2≥…≥λp≥0 。
進行主成分分析主要步驟如下:
1. 指標數據標准化(SPSS軟體自動執行);
2. 指標之間的相關性判定;
3. 確定主成分個數m;
4. 主成分Fi表達式;
5. 主成分Fi命名;

選用以上兩種方法時的注意事項如下:
1、因子分析中是把變數表示成各因子的線性組合,而主成分分析中則是把主成分表示成個變數的線性組合。

2、主成分分析的重點在於解釋個變數的總方差,而因子分析則把重點放在解釋各變數之間的協方差。

3、主成分分析中不需要有假設(assumptions),因子分析則需要一些假設。因子分析的假設包括:各個共同因子之間不相關,特殊因子(specific factor)之間也不相關,共同因子和特殊因子之間也不相關。

4、主成分分析中,當給定的協方差矩陣或者相關矩陣的特徵值是唯一的時候,的主成分一般是獨特的;而因子分析中因子不是獨特的,可以旋轉得到不同的因子。

5、在因子分析中,因子個數需要分析者指定(spss根據一定的條件自動設定,只要是特徵值大於1的因子進入分析),而指定的因子數量不同而結果不同。在主成分分析中,成分的數量是一定的,一般有幾個變數就有幾個主成分。和主成分分析相比,由於因子分析可以使用旋轉技術幫助解釋因子,在解釋方面更加有優勢。大致說來,當需要尋找潛在的因子,並對這些因子進行解釋的時候,更加傾向於使用因子分析,並且藉助旋轉技術幫助更好解釋。而如果想把現有的變數變成少數幾個新的變數(新的變數幾乎帶有原來所有變數的信息)來進入後續的分析,則可以使用主成分分析。當然,這中情況也可以使用因子得分做到。所以這中區分不是絕對的。

總得來說,主成分分析主要是作為一種探索性的技術,在分析者進行多元數據分析之前,用主成分分析來分析數據,讓自己對數據有一個大致的了解是非常重要的。主成分分析一般很少單獨使用:a,了解數據。(screening the data),b,和cluster analysis一起使用,c,和判別分析一起使用,比如當變數很多,個案數不多,直接使用判別分析可能無解,這時候可以使用主成份發對變數簡化。(rece dimensionality)d,在多元回歸中,主成分分析可以幫助判斷是否存在共線性(條件指數),還可以用來處理共線性。

在演算法上,主成分分析和因子分析很類似,不過,在因子分析中所採用的協方差矩陣的對角元素不在是變數的方差,而是和變數對應的共同度(變數方差中被各因子所解釋的部分)。

(1)了解如何通過SPSS因子分析得出主成分分析結果。首先,選擇SPSS中Analyze-Data Rection-Factor…,在Extraction…對話框中選擇主成分方法提取因子,選擇好因子提取個數標准後點確定完成因子分析。打開輸出結果窗口後找到Total Variance Explained表和Component Matrix表。將Component Matrix表中第一列數據分別除以Total Variance Explained表中第一特徵根值的開方得到第一主成分表達式系數,用類似方法得到其它主成分表達式。打開數據窗口,點擊菜單項的Analyze-Descriptive Statistics-Descriptives…,在打開的新窗口下方構選Save standardized values as variables,選定左邊要分析的變數。點擊Options,只構選Means,點確定後既得待分析變數的標准化新變數。

選擇菜單項Transform-Compute…,在Target Variable中輸入:Z1(主成分變數名,可以自己定義),在Numeric Expression中輸入例如:0.412(剛才主成分表達式中的系數)*Z人口數(標准化過的新變數名)+0.212*Z第一產業產值+…,點確定即得到主成分得分。通過對主成分得分的排序即可進行各個個案的綜合評價。很顯然,這里的過程分為四個步驟:

Ⅰ.選主成分方法提取因子進行因子分析。

Ⅱ.計算主成分表達式系數。

Ⅲ.標准化數據。

Ⅳ.計算主成分得分。

我們的程序也將依該思路展開開發。

(2)對為何要將Component Matrix表數據除以特徵根開方的解釋

我們學過主成分分析和因子分析後不難發現,原來因子分析時的因子載荷矩陣就是主成分分析特徵向量矩陣乘以對應特徵根開方值的對角陣。而Component Matrix表輸出的恰是因子載荷矩陣,所以求主成分特徵向量自然是上面描述的逆運算。

成功啟動程序後選定分析變數和主成分提取方法即可在數據窗口輸出得分和在OUTPUT窗口輸出主成分表達式。

3,聚類分析(Cluster Analysis)

聚類分析是直接比較各事物之間的性質,將性質相近的歸為一類,將性質差別較大的歸入不同的類的分析技術 。

在市場研究領域,聚類分析主要應用方面是幫助我們尋找目標消費群體,運用這項研究技術,我們可以劃分出產品的細分市場,並且可以描述出各細分市場的人群特徵,以便於客戶可以有針對性的對目標消費群體施加影響,合理地開展工作。

4.判別分析(Discriminatory Analysis)

判別分析(Discriminatory Analysis)的任務是根據已掌握的1批分類明確的樣品,建立較好的判別函數,使產生錯判的事例最少,進而對給定的1個新樣品,判斷它來自哪個總體。根據資料的性質,分為定性資料的判別分析和定量資料的判別分析;採用不同的判別准則,又有費歇、貝葉斯、距離等判別方法。

費歇(FISHER)判別思想是投影,使多維問題簡化為一維問題來處理。選擇一個適當的投影軸,使所有的樣品點都投影到這個軸上得到一個投影值。對這個投影軸的方向的要求是:使每一類內的投影值所形成的類內離差盡可能小,而不同類間的投影值所形成的類間離差盡可能大。貝葉斯(BAYES)判別思想是根據先驗概率求出後驗概率,並依據後驗概率分布作出統計推斷。所謂先驗概率,就是用概率來描述人們事先對所研究的對象的認識的程度;所謂後驗概率,就是根據具體資料、先驗概率、特定的判別規則所計算出來的概率。它是對先驗概率修正後的結果。

距離判別思想是根據各樣品與各母體之間的距離遠近作出判別。即根據資料建立關於各母體的距離判別函數式,將各樣品數據逐一代入計算,得出各樣品與各母體之間的距離值,判樣品屬於距離值最小的那個母體。

5.對應分析(Correspondence Analysis)

對應分析是一種用來研究變數與變數之間聯系緊密程度的研究技術。

運用這種研究技術,我們可以獲取有關消費者對產品品牌定位方面的圖形,從而幫助您及時調整營銷策略,以便使產品品牌在消費者中能樹立起正確的形象。

這種研究技術還可以用於檢驗廣告或市場推廣活動的效果,我們可以通過對比廣告播出前或市場推廣活動前與廣告播出後或市場推廣活動後消費者對產品的不同認知圖來看出廣告或市場推廣活動是否成功的向消費者傳達了需要傳達的信息。

❷ 統計分析論文

統計分析是運用統計 方法 與分析對象有關的知識,從定量與定性的結合上進行的研究活動。下文是我為大家整理的關於統計分析論文的 範文 ,歡迎大家閱讀參考!

統計分析論文篇1

淺談統計分析與決策

[摘要] 統計分析與決策二者有聯系又有區別。統計要參與決策,必須搞好統計分析。搞好統計分析,需要解決選題、分析、撰寫 報告 三個問題。

[關鍵詞] 統計分析 分析方法 決策

統計工作的全過程分為四個階段,即統計設計,統計調查,統計整理,統計分析。其中,統計分析是統計工作的最後一個階段,是出統計成果的階段。現在倡導統計要參與決策,這是不是說統計工作還要增加一個決策階段呢?如果不是,那麼,統計分析與決策是什麼關系呢?

狹義的說,統計分析與決策是有區別的。統計分析是以統計數字為基礎,以統計方法為手段,對社會經濟情況進行科學的分析和綜合研究,以認識其本質和規律的過程。而決策則是為了達到某一預定目標,運用邏輯方法和統計方法,對兩種或兩種以上可能採取的方案進行比較、分析、研究,以做出合理的、科學的抉擇的行為過程。假若把統計分析與決策比作醫生看病,統計分析就是對病情的診斷,決策就是開處方,“診斷”和“處方”是有區別的。

廣義的講,統計分析與決策是密不可分的。一方面,統計分析貫穿於決策過程之中。一個決策過程大體上可分為下列三個大步驟:第一,診斷問題所在,確定決策目標;第二,探索和擬定各種可能的備選方案;第三,從各種備選方案中選出最合適的方案。從這三大步驟看,盡管要用到多種方法和手段,但哪一步也離不開統計分析,第一步就是通過統計分析,診斷問題所在,並在分析的基礎上確定決策目標;第二步擬定備選方案,要經過“輪廊設想”和“細部設計”這個階段對輪廊設想的方案要做初步篩選,對每一方案要充實具體內容,“篩選”和“充實”都要經過統計分析;第三步選擇最佳方案,首先要對各個備選方案進行評價、論證,這又需要統計分析。因此可以說,沒有統計分析,也就沒有科學決策。另一方面,從某種意義上講,決策是統計分析的結果。一般來說,統計分析報告是提出問題、分析問題、指出解決問題的辦法,其實,決策方案也就是解決問題實現決策目標的辦法,只不過比“今後意見”“幾條 措施 ”之類的辦法更全面、更詳細、更科學罷了。醫生診斷是為了正確處方,治病救人,不能只診斷不處方。統計分析是為了發現問題,解決問題,推動社會經濟的順利發展;也不能只提出問題,而不尋找解決問題的辦法。從這個意義上講,統計分析也就包括預測和決策。我們不能為統計而統計,也不能為分析而分析。統計應該參與決策,為了決策科學化,必須搞好統計分析。

搞好統計分析,需要解決選題、分析、撰寫報告三個問題。

一、統計分析選題

所謂選題,就是在復雜的社會經濟現象中,確定統計分析的內容和范圍。進行統計分析,選題很重要。成功的選題是成功的分析的前提。

怎樣選好題呢?選好題標准有兩條:―是分析對象有意義,二是適合決策層和群眾需要。關鍵是抓住黨和國家的方針政策和企業的經濟效益。

統計分析課題是很廣泛的。工業統計分析課題如:計劃執行情況分析、工業凈產值統計分析、工業產品銷售統計分析、工業原材料供應和消耗統計分析、工業能源消耗統計分析、工業生產設備統計分析、工業勞動與工資統計分析、成本利潤統計分析、綜合經濟效益統計分析等。商品流通企業統計分析課題如:市場供求狀況分析、市場佔有率分析、主要商品經濟壽命周期分析、市場商品價格分析、計劃執行情況分析、購銷合同執行情況分析、商品購進質量分析、商品銷售動態分析、商品銷售構成分析、商品庫存分析、企業經濟效益分析等。對於以上內容,可根據不同的時間、地點、條件,按兩條選題標准適當選擇。

統計分析有專題分析與綜合分析之分。在一定的總體范圍內,研究總體的各個方面及其相互關系,或研究總體的主要方面的統計分析,屬於綜合分析;只研究其中某一方面,或某一部分的統計分析,屬於專題分析。兩者各有不同的特點,都是必要的,但專題分析宜多,綜合分析宜少。

二、統計分析方法

統計分析的關鍵是分析,怎樣進行統計分析呢?統計分析有兩個特點:一是以統計數字為基礎,二是以統計方法為手段。因此,統計分析在選題之後,就要根據分析的需要,搜集整理有關數字資料及具體情況,在充分佔有材料的基礎上,靈活運用統計方法進行分析。

統計分析方法很多。統計學原理中除了有關統計調查、統計整理的內容外,綜合指標、統計指數、時間數列、抽樣推斷等內容全部是統計分析方法。從方法角度上講,統計分析就是統計學原理的運用。

統計方法與人們的認識過程是相適應的。人們的認識分感性認識和理性認識兩個階段。感性認識階段所認識的是事物的現象,可採用統計調查和統計整理。理性認識階段所認識的是事物的本質和規律,這個階段要經過形成概念、進行判斷和推理等思維活動。與此相適應,要分別採用不同的統計分析方法。

形成概念一般用描述性的綜合指標法,即總量指標、相對指標和平均指標,以說明現象的規模大小、水平高低、速度快慢、內部結構以及比例關系等。判斷推理就是要判斷事物的性質,分析事物變化的原因,找出事物發展的規律。這一般要用分組分析法、動態分析法、因素分析法、相關回歸分析法、平衡分析法等。

對統計學原理中的各種統計分析方法要熟練地掌握,靈活地運用。怎樣靈活運用呢?這里有個技巧問題。技巧就是定性分析與定量分析巧妙結合。

所謂定性分析是指對事物的性質和影響事物發展變化的因素進行分析。定量分析就是分析事物的規模、水平、速度、結構、比例,以及各個因素對事物總體變化的影響方向和影響程度。定性分析與定量分析巧妙結合有兩層含義,一是二者不可偏廢,二是二者密不可分,

沒有定性分析,定量分析就沒有方向。沒有定量分析,定性分析就不準確。結合的目的是在質與量的辯證統一中探尋事物的內在聯系。

從根本上講,統計分析就是完成從感性認識到理性認識,從現象到本質的飛躍。完成了這―飛躍,才是高質量的統計分析。有些統計分析質量不高,往往就是沒有完成這一飛躍,仍然停留在表面現象上。

三、統計分析報告的撰寫

統計分析報告是統計的最終產品。如果說統計數字的准確性是統計的生命,那麼,統計分析報告的質量則關繫到統計作用的發揮。對高質量的統計分析報告的要求,可以概括為五個字,就是“准、快、新、深、活”。

准:就是實事求是地反映客觀實際。做到數字准確,情況准確,論點准確。

快:就是在決策層決策之前,不失時機地及時提供分析報告。

新:就是不斷創新。要求不斷開拓新領域,鑽研新課題,反映新情況和新問題。

深:就是要在充分佔有材料的基礎上,提高分析的深度,使認識不只停留在反映現象上,而要揭示事物的本質和規律,並且用觀點統帥材料,用材料說明觀點,做到材料和觀點的統一。

活:就是文字生動活潑,形式靈活多樣。資料要多樣化和生動具體,要有群眾語言,要通俗易懂,文字要精精煉。

統計分析報告是在統計分析的基礎上撰寫出來的。沒有好的分析,不可能寫出好的報告。經過分析階段,弄清了事實,判明了性質,探索出規律,得出了結論,在此基礎上就可以撰寫統計分析報告。但分析得好,並不等於報告寫得好,這里還有個撰寫的技巧問題,那就是准確地表述事實,透徹地闡明本質,深刻地揭示規律,恰當地提出建議。

1.准確地表述事實

每一篇統計分析報告,都需要表述所分析的現象,即說明“是什麼”。准確地表述事實,才能給讀者一個明確的概念。為此,須注意如下幾點:(1)數字要真實;(2)運用數字要適當,不要堆砌數字,搞數字文字化;(3)語言要素准確。

2.透徹地闡明本質

現象只說明事物的各個片面,本質才說明事物的整體。撰寫統計分析報告,必須深刻地揭示事物的本質,它是統計認識事物的正確程度和深度的反映。如果不能深刻地闡明事物的本質,那隻能是現象羅列,沒有多大價值。

闡明事物的本質,也就是闡明事物的基本性質。事物的性質是由事物內部矛盾的主要方面決定的。例如,某企業利潤增加,是靠漲價,還是靠降低成本?經過分析,認識到利潤增加主要是靠降低成本,這是矛盾的主要方面,這就反映出事物的性質。因此,在報告中就應闡明降低成本在提高經濟效益中的重要作用。再如某企業,本質問題是鋼材浪費嚴重,在報告中就應揭示浪費的若干方面和嚴重程度。

3.深刻地揭示規律

規律是事物內部固有的、本質的、必然聯系。成本高低與產量多少有聯系,經過推理,這種聯系是事物內部固有的、本質的必然聯系,反映了事物發展變化的規律性,而且存在一定的回歸關系。而回歸方程反映這種關系,所以在統計分析報告中,要利用回歸方程揭示這種必然聯系及其回歸關系。

4.恰當地提出建議

認識世界的目的是為了改造世界。經過統計分析,透過現象認識到事物的本質和規律,還必須提出解決問題的建議,如“今後意見”、“幾點建議”、“決策方案”等等。怎樣才算恰當地建議呢?恰當的建議要符合三個條件:(1)符合分析目的;(2)合乎客觀規律;(3)切實可行。

以上四點,一般可以作為分析報告的結構和順序,但不能千篇一律。

統計分析報告是統計分析結果的反映。既要注意提高寫作水平,更要努力鍛煉分析問題和解決問題的能力。

統計分析論文篇2

試談統計分析方法應用

【摘要】統計分析方法應用於各個領域,解決了很多工業、農業、經濟、醫學等領域的實際問題,本文分析多元統計分析方法的主要應用和構建多元統計方法檢驗體系的必要性,針對性的提出了需要引起注意的共性問題,具有很強的現實意義。

【關鍵詞】統計分析方法;應用;檢驗體系;共性問題;現實意義前言

隨著信息技術的普及和廣泛應用,它推動了社會、經濟和科學技術的發展,多元統計分析方法的難題得到了攻破,各個領域廣泛採用,推動了各行各業經濟的快速發展。

二、多元統計分析方法的主要應用

統計方法是科學研究的一種重要工具,其應用頗為廣泛。在工業,農業,經濟,生物和醫學等領域的實際問題中,常常需要處理多個變數的觀測數據,因此對多個變數進行綜合處理的多元統計分析方法顯得尤為重要。隨著電子計算機技術的普及,以及社會,經濟和科學技術的發展,過去被認為具有數學難度的多元統計分析方法,已越來越廣泛地應用於實際。

聚類分析

它是研究分類問題的一種多元統計方法,聚類分析的基本思想是首先將每個樣本當作一類,然後根據樣本之間的相似程度並類計算新類與 其它 類之間距離,再選擇近似者並類每合並一次減少一類,繼續這一過程直到所有樣本都合並成為一類為止。所以聚類分析依賴於對觀測間的接近程度或相似程度的理解,定義不同的距離量度和相似性量度就可以產生不同的聚類結果。企業制定 市場營銷 戰略時要弄清在同一市場中哪些企業是直接競爭者,哪些是間接競爭者是非常關鍵的一個環節。要解決這個問題,企業首先可以通過 市場調查 ,獲取自己和所有主要竟爭者,從而尋找企業在市場中的機會。

判別分析

判別分析是已知研究對象分成若干類型,並取得各種類型的一批已知樣品的觀測數據、在此基礎上根據某些准則建立判別式,然後對未知類型的樣品進行判別分析,企業在市場預測中往往根據以往所調查的種種指標,用判別分析方法判斷下季度產品是暢銷平銷或滯銷。一般情況下判別分析經常與聚類分析聯合起來使用。

主成分分析

主成分分析就是設法將原來指標重新組合成一組新的互相無關的幾個綜合指標,來代替原來指標,同時根據實際需要從中可取幾個較少的綜台指標,盡可能多反映原來指標的信息,在市場研究中常常利用主成分析方法分析顧客的偏好和當前市場的產品與顧客之間的差別,從而提供給生產企業新產品開發方向的信息。

因子分析

因子分析是主成分分析的推廣和應用。它是將錯綜復雜的隨機變數綜合為數量較少的隨機變數去描述,多個變數之間的相關關系以再現原始指標與因子之間的相互關系。也可以認為因子分析是將指標按原始數據的內在結構分類。例如:對Y個調查區的商業網點數、人口數、金融機構服務數、收入情況等N個指標進行因子分析,如果按照一般的分析方法,我們就需要處理N個指標,並給它們以不同的權重。這樣不僅工作量變大而且由干指標之間存在比較高的相關性,會給分析結果帶來偏差另外給具有較高相關性的眾多指標,從而計算出各個調查區平均綜合實力得分以便決定在某個調查區擬建何種類型的銷售點。

三、構建多元統計分析方法檢驗體系的必要性

(一)構建多元統計分析方法檢驗體系,提高多元統計分析應用質量

多元統計分析方法已經越來越為人們廣泛應用,但應用中盲目套用分析方法的情況很多,只關心模型方法的應用。許多教科書也只側重介紹多元統計分析方法的思想、原理和分析步驟,對多元統計分析方法應用結果的統計檢驗敘述不多。這就直接影響了多元統計分析方法的應用效果和可信性。因此,本文擬對多元統計分析方法的統計檢驗問題進行探討。構建多元統計分析方法檢驗體系的目的在於進一步豐富和完善多元統計分析方法的內容體系;實踐上,使多元統計分析方法的應用更加合理、規范。推動多元統計分析方法應用質量的提高,推動多元統計分析方法獲得更廣泛的應用。

(二)多元統計分析統計檢驗體系的基礎理論

多元正態分布總體的樣本分布,即維希特分布,霍特林分布,威爾克斯分布,多元正態總體均值向量假設檢驗,包括一個正態總體均值向量假設檢驗,兩個正態總體均值向量假設檢驗,多個正態總體均值向量假設檢驗;多元正態總體協方差陣假設檢驗,包括一個正態總體協方差陣假設檢驗,多個協差陣相等假設檢驗。

(三)關於統計檢驗體系

將上述統計檢驗體系有機結合在一起,就構成了多元統計分析方法檢驗體系的基本框架。多元統計分析方法檢驗體系的構建,用多元統計分析方法,充分發揮多元統計分析方法的應用價值,提高應用質量,我們建議,在應用時,應該按照上述框架進行相應的統計檢驗。當然。上述統計檢驗體系還是一個初步的框架,隨著多元統計分析方法理論的逐步完善,上述檢驗體系也需要不斷完善,也需要更多的同行關注此類問題並不斷加以研究。另一方面,在實際應用中,即便是某種方法根據上述內容都進行了統計檢驗,由於各種方法自身存在的缺陷或局限性,也還會存在許多應用中考慮不周之處。應該引起注意。但是,因子分析結果還是具有較大主觀性。特別是對公共主因子在專業方面實際意義的解釋上,仍然保留著一種藝術氣息,並沒有統一做法,因此很多情況下也是不能令人滿意的。總之,我們在應用時,對因子分析的適用性、公因子的估計方法、公因子選取的數目。公因子的實際意義的解釋等一系列問題都要引起足夠注意。檢驗體系有如下幾個分類:

a.主成分分析統計檢驗體系

b.因子分析統計檢驗體裂引

c.系統聚類分析統計檢驗體系

d.判別分析統計檢驗體裂

e.對應分析統計檢驗體系

f.典型相關分析統計檢驗體系

四、多元統計分析方法應用中需要注意的幾個共性問題

1.關於原始數據變數的總體分布問題。

對原始變數的總體分布各種方法各有不同的要求。有的方法對原始數據變數總體分布沒有特殊的要求,如主成分分析、聚類分析、對應分析。有的方法在不同情況下,對原始變數分布有不同的要求,如因子分析中,公共因子的估計方法不同,對原始變數分布要求不同,採用極大似然估計方法估計主因子時,是假定原始變數是服從多元正態分布的,因此,應用時要引起重視,如典型相關分析要求原始變數服從正態分布,但在嚴格意義上,如果變數的分布形式比如高度偏態不會降低其他變數的相關關系,典型相關分析是可以包含這種非正態變數的。

樣本容量問題。

進行多元統計分析時,樣本容量n達到多少為宜,目前尚沒有統一的結論。有的認為樣本容量應是變數個數的10~20倍,有的認為樣本容量要在100以上比較合適,有的認為進行巴特萊特檢驗時的樣本容量應該大於150方可,也有的認為不必苛求太多的樣本容量,如在進行主成分分析和因子分析時當原始變數之間的相關性很小時,即使再擴大樣本容量,也難以得到滿意效果。

原始變數之間的相關性以及非線性關系問題。

多元統計分析方法中,有的是的要求原始變數中要具有相關性。有的則不要求原始變數具有相關性。如聚類分析中,進行Q型系統聚類分析時對原始數據變數之間的相關性也是有要求的,如選擇歐式距離、明氏距離、蘭氏距離時,則要求原始變數之間是不相關的。只有對原始數據的相關性進行了處理後,才可以選擇使用上述距離。若原始變數存在相關性,則選擇馬氏距離比較合適。另外原始變數之間的非線性關系也是需要注意的問題。如主成分分析、因子分析以及典型相關分析當基於相關矩陣來進行計算時,這里的相關矩陣實際上是Pearson的積差相關。但是,如果變數之間的關系不是線性的,而是非性相關關系,於是,所進行的分析以及結論也就失去應有的意義了。

數據處理問題。

多元統計分析中涉及多個變數,不同變數往往具有不同的量綱及不同的數量級別。在分析時,具有不同量綱的變數進行線性組合是沒有意義的,不同的數量級別的變數之間進行分析時。會導致“以大吃小”,即數量級的變數的影響會被忽略,從而影響了分析結果的合理性。因此。為了消除量綱和數量級別的影響,進行多元統計分析時,必須對原始數據進行處里,最常用的是先作標准化變換處理,然後再作相應的分析。

五、結束語

在統計分析方法的應用中,會涉及到多個變數,因此,必須根據原來有的數量進行處理,然後才能得出相應的分析結論。本文結合多元統計分析方法的理論基礎,對相關檢驗體系和分析體系進行了分析,具有現實的理論指導意義。

【參考文獻】

[1]於秀林.多元統計分析[M].北京,中國統計出版社,1999:223—224.

[2]高惠璇.應用多元統計分析[M].北京,北京大學出版社 ,2005:343—366.

[3]郭志剛.社會科學分析方法一SPSS軟體應用[M].,中國人民大學出版社,1999.

[4]傅德印.主成分分析中的統計檢驗問題 [J].統計 教育 ,2007(9):4—7.

>>>下一頁更多精彩的“統 計分 析論 文”

❸ 多元統計分析的簡介

multivariate statistical analysis
研究客觀事物中多個變數(或多個因素)之間相互依賴的統計規律性。它的重要基礎之一是多元正態分析。又稱多元分析 。 如果每個個體有多個觀測數據,或者從數學上說, 如果個體的觀測數據能表為 P維歐幾里得空間的點,那麼這樣的數據叫做多元數據,而分析多元數據的統計方法就叫做多元統計分析 。 它是數理統計學中的一個重要的分支學科。20世紀30年代,R.A.費希爾,H.霍特林,許寶碌以及S.N.羅伊等人作出了一系列奠基性的工作,使多元統計分析在理論上得到迅速發展。50年代中期,隨著電子計算機的發展和普及 ,多元統計分析在地質 、氣象、生物、醫學、圖像處理、經濟分析等許多領域得到了廣泛的應用 ,同時也促進了理論的發展。各種統計軟體包如SAS,SPSS等,使實際工作者利用多元統計分析方法解決實際問題更簡單方便。重要的多元統計分析方法有:多重回歸分析(簡稱回歸分析)、判別分析、聚類分析、主成分分析、對應分析、因子分析、典型相關分析、多元方差分析等。
早在19世紀就出現了處理二維正態總體(見正態分布)的一些方法,但系統地處理多維概率分布總體的統計分析問題,則開始於20世紀。人們常把1928年維夏特分布的導出作為多元分析成為一個獨立學科的標志。20世紀30年代,R.A.費希爾、H.霍特林、許寶祿以及S.N.羅伊等人作出了一系列奠基性的工作,使多元統計分析在理論上得到了迅速的進展。40年代,多元分析在心理、教育、生物等方面獲得了一些應用。由於應用時常需要大量的計算,加上第二次世界大戰的影響,使其發展停滯了相當長的時間。50年代中期,隨著電子計算機的發展和普及,它在地質、氣象、標准化、生物、圖像處理、經濟分析等許多領域得到了廣泛的應用,也促進了理論的發展。
多元分析發展的初期,主要討論如何把一元正態總體的統計理論和方法推廣到多元正態總體。多元正態總體的分布由兩組參數,即均值向量μ(見數學期望)和協方差矩陣(簡稱協差陣)∑ (見矩)所決定,記為Np(μ,∑)(p為分布的維數,故又稱p維正態分布或p 維正態總體)。設X1,X2,…,Xn為來自正態總體Np(μ,∑)的樣本,則μ和∑的無偏估計(見點估計)分別是

分別稱之為樣本均值向量和樣本協差陣,它們是在各種多元分析問題中常用的統計量。樣本相關陣R 也是一個重要的統計量,它的元素為
其中υij為樣本協差陣S的元素。S的分布是維夏特分布,它是一元統計中的Ⅹ2分布的推廣。
另一典型問題是:假定兩個多維正態分布協差陣相同,檢驗其均值向量是否相同。設樣本X1,X2,…,Xn抽自正態總體Np(μ1,∑),而Y1,Y2,…,Ym抽自Np(μ2,∑),要檢驗假設H 0:μ1=μ2(見假設檢驗)。在一元統計中使用t統計量(見統計量)作檢驗;在多元分析中則用T2統計量,
,其中,
,
·
,T2的分布稱為T2分布。這是H.霍特林在1936年提出來的。
在上述問題中的多元與一元相應的統計量是類似的,但並非都是如此。例如,要檢驗k個正態總體的均值是否相等,在一元統計中是導致F統計量,但在多元分析中可導出許多統計量,最著名的有威爾克斯Λ統計量和最大相對特徵根統計量。研究這些統計量的精確分布和優良性是近幾十年來多元統計分析的重要理論課題。
多元統計分析有狹義與廣義之分,當假定總體分布是多元正態分布時,稱為狹義的,否則稱為廣義的。近年來,狹義多元分析的許多內容已被推廣到更廣的分布之中,特別是推廣到一種稱為橢球等高分布族之中。
按多元分析所處理的實際問題的性質分類,重要的有如下幾種。 簡稱回歸分析。其特點是同時處理多個因變數。回歸系數和常數的計算公式與通常的情況相仿,只是由於因變數不止一個,原來的每個回歸系數在此都成為一個向量。因此,關於回歸系數的檢驗要用T2統計量;對回歸方程的顯著性檢驗要用Λ統計量。
回歸分析在地質勘探的應用中發展了一種特殊的形式,稱為趨勢面分析,它以各種元素的含量作為因變數,把它們對地理坐標進行回歸(選用一次、二次或高次的多項式),回歸方程稱為趨勢面,反映了含量的趨勢。殘差分析是趨勢面分析的重點,找出正的殘差異常大的點,在這些點附近,元素的含量特別高,這就有可能形成可採的礦位。這一方法在其他領域也有應用。 由 k個不同總體的樣本來構造判別函數,利用它來決定新的未知類別的樣品屬於哪一類,這是判別分析所處理的問題。它在醫療診斷、天氣預報、圖像識別等方面有廣泛的應用。例如,為了判斷某人是否有心臟病,從健康的人和有心臟病的人這兩個總體中分別抽取樣本,對每人各測兩個指標X1和X2,點繪如圖 。可用直線A將平面分成g1和g2兩部分,落在g1的絕大部分為健康者,落在g2的絕大部分為心臟病人,利用A的垂線方向l=(l1,l2)來建立判別函數
y=l1X1+l2X2,可以求得一常數с,使 y<с 等價於(X1,X2)落在g1,y>с等價於(X1,X2)落在g2。由此得判別規則:若,l1X1+l2X2<c
判,即此人為健康者;若,l1X1+l2X2>C
判,
即此人為心臟病人;若,l1X1+l2X2=c則為待判。此例的判別函數是線性函數,它簡單方便,在實際問題中經常使用。但有時也用非線性判別函數,特別是二次判別函數。建立判別函數和判別規則有不少准則和方法,常用的有貝葉斯准則、費希爾准則、距離判別、回歸方法和非參數方法等。
無論用哪一種准則或方法所建立的判別函數和判別規則,都可能產生錯判,錯判所佔的比率用錯判概率來度量。當總體間區別明顯時,錯判概率較小;否則錯判概率較大。判別函數的選擇直接影響到錯判概率,故錯判概率可用來比較不同方法的優劣。
變數(如上例中的X1和X2)選擇的好壞是使用判別分析的最重要的問題,常用逐步判別的方法來篩選出一些確有判別作用的變數。利用序貫分析的思想又產生了序貫判別分析。例如醫生在診斷時,先確定是否有病,然後確定是哪個系統有病,再確定是什麼性質的病等等。 又稱數值分類。聚類分析和判別分析的區別在於,判別分析是已知有多少類和樣本來自哪一類,需要判別新抽取的樣本是來自哪一類;而聚類分析則既不知有幾類,也不知樣本中每一個來自哪一類。例如,為了制定服裝標准,對 N個成年人,測量每人的身高(x1)、胸圍(x2)、肩寬(x3)、上體長(x4)、手臂長(x5)、前胸(x6)、後背(x7)、腰圍(x8)、臀圍(x9)、下體長(x10)等部位,要將這N個人進行分類,每一類代表一個號型;為了使用和裁剪的方便,還要對這些變數(x1,x2,…,x10)進行分類。聚類分析就是解決上述兩種分類問題。
設已知N個觀測值X1,X2,…,Xn,每個觀測值是一個p維向量(如上例中人的身高、胸圍等)。聚類分析的思想是將每個觀測值Xi看成p維空間的一個點,在p維空間中引入「距離」的概念,則可按各點間距離的遠近將各點(觀測值)歸類。若要對 p個變數(即指標)進行分類,常定義一種「相似系數」來衡量變數之間的親密程度,按各變數之間相似系數的大小可將變數進行分類。根據實際問題的需要和變數的類型,對距離和相似系數有不同的定義方法。
按距離或相似系數分類,有下列方法。①凝聚法:它是先將每個觀察值{Xi}看成一類,逐步歸並,直至全部觀測值並成一類為止,然後將上述並類過程畫成一聚類圖(或稱譜系圖),利用這個圖可方便地得到分類。②分解法:它是先將全部觀測值看成一類,然後逐步將它們分解為2類、3類、…、N類,它是凝聚法的逆過程。③動態聚類法:它是將觀測值先粗糙地分類,然後按適當的目標函數和規定的程序逐步調整,直至不能再調為止。
若觀察值X1,X2,…,Xn之間的次序在分類時不允許打亂,則稱為有序分類。例如在地質學中將地層進行分類,只能將互相鄰接的地層分成一類,不能打亂上下的次序。用於這一類問題中的重要方法是費希爾於1958年提出的最優分割法。
聚類分析也能用於預報洪水、暴雨、地震等災害性問題,其效果比其他統計方法好。但它在理論上還很薄弱,因為它不象其他方法那樣有確切的數學模型。 又稱主分量分析,是將多個變數通過線性變換以選出較少個數重要變數的一種方法。設原來有p個變數x1,x2,…,xp,為了簡化問題,選一個新變數z,
,
要求z盡可能多地反映p個變數的信息,以此來選擇l1,l2,…,lp,當l1,l2,…,lp選定後,稱z為x1,x2,…,xp的主成分(或主分量)。有時僅一個主成分不足以代表原來的p個變數,可用q(<p)個互不相關的呈上述形式的主成分來盡可能多地反映原p個變數的信息。用來決定諸系數的原則是,在
的約束下,選擇l1,l2,…,lp使z的方差達到最大。
在根據樣本進行主成分分析時又可分為R型分析與Q型分析。前者是用樣本協差陣(或相關陣)的特徵向量作為線性函數的系數來求主成分;後者是由樣品之間的內積組成的內積陣來進行類似的處理,其目的是尋找出有代表性的「典型」樣品,這種方法在地質結構的分析中常使用。 它是由樣本的資料將一組變數
y2,……yp)
分解為一些公共因子f與特殊因子s的線性組合,即有常數矩陣A使у=Af+s。公共因子f 的客觀內容有時是明確的,如在心理研究中,根據學生的測驗成績(指標)來分析他的反應快慢、理解深淺(公共因子);有時則是不明確的。為了尋求易於解釋的公共因子,往往對因子軸進行旋轉,旋轉的方法有正交旋轉,斜旋轉,極大變差旋轉等。
從樣本協差陣或相關陣求公共因子的方法有廣義最小二乘法、最大似然法與不加權的最小二乘法等。通常在應用中,最方便的是直接利用主成分分析所得的頭幾個主成分,它們往往是對各個指標影響都比較大的公共因子。 它是尋求兩組變數各自的線性函數中相關系數達到最大值的一對,這稱為第一對典型變數,還可以求第二對,第三對,等等,這些成對的變數,彼此是不相關的。各對的相關系數稱為典型相關系數。通過這些典型變數所代表的實際含意,可以找到這兩組變數間的一些內在聯系。典型相關分析雖然30年代已經出現,但至今未能廣泛應用。
上述的各種方法可以看成廣義多元分析的內容,在有些方法中,如加上正態性的假定,就可以討論一些更深入的問題,例如線性模型中有關線性假設檢驗的問題,在正態的假定下,就有比較系統的結果。 多元分析也可按指標是離散的還是連續的來區分,離散值的多元分析實質上與列聯表分析有很大部分是類似的,甚至是一樣的。
非數量指標數量化的理論和方法也是廣義多元分析的一個重要的研究課題。

❹ 簡述多元統計分析方法在spss中的操作步驟,在考試,跪謝

多元線性回歸
1.打開數據,依次點擊:analyse--regression,打開多元線性回歸對話框。
2.將因變數和自變數放入格子的列表裡,上面的是因變數,下面的是自變數。
3.設置回歸方法,這里選擇最簡單的方法:enter,它指的是將所有的變數一次納入到方程。其他方法都是逐步進入的方法。
4.等級資料,連續資料不需要設置虛擬變數。多分類變數需要設置虛擬變數。
虛擬變數ABCD四類,以a為參考,那麼解釋就是b相對於a有無影響,c相對於a有無影響,d相對於a有無影響。
5.選項裡面至少選擇95%CI。
點擊ok。

❺ 多元統計分析法主要包括

多元統計分析方法主要包括線性回歸分析方法、判別分析方法、聚類分析方法、主成份分析方法、因子分析方法、對應分析方法、典型相關分析方法以及片最小二乘回歸分析方法等。

《多元統計分析方法》是2009年上海格致出版社出版的圖書,作者是(德)巴克豪斯。本書主要講解了多元統計分析中最常見的九種方法。

簡介

多元統計分析是從經典統計學中發展起來的一個分支,是一種綜合分析方法,它能夠在多個對象和多個指標互相關聯的情況下分析它們的統計規律,很適合農業科學研究的特點。主要內容包括多元正態分布及其抽樣分布、多元正態總體的均值向量和協方差陣的假設檢驗。

多元方差分析、直線回歸與相關、多元線性回歸與相關(Ⅰ)和(Ⅱ)、主成分分析與因子分析、判別分析與聚類分析、Shannon信息量及其應用。簡稱多元分析。當總體的分布是多維(多元)概率分布時,處理該總體的數理統計理論和方法。數理統計學中的一個重要的分支學科。

❻ 多元數據分析的介紹

這是一本面向應用的經典多元數據分析教材,自1979年出版第1版至今,深受讀者好評。《多元數據分析(英文版)(第7版)》循序漸進地介紹了各種多元統計分析方法,並通過豐富的實例演示了這些方法的應用。書中不僅涵蓋多元數據分析的基本方法,而且還介紹了一些新方法,如結構方程建模和偏最小二乘法等。

❼ 多元統計分析方法的作用是什麼

多元統計分析方法的作用使實際工作者利用多元統計分析方法解決實際問題更簡單方便。

如果每個個體有多個觀測數據,或者從數學上說,如果個體的觀測數據能表為P維歐幾里得空間的點,那麼這樣的數據叫做多元數據,而分析多元數據的統計方法就叫做多元統計分析,它是數理統計學中的一個重要的分支學科。

典型相關分析

它是尋求兩組變數各自的線性函數中相關系數達到最大值的一對,這稱為第一對典型變數,還可以求第二對,第三對,等等,這些成對的變數,彼此是不相關的。各對的相關系數稱為典型相關系數。通過這些典型變數所代表的實際含意,可以找到這兩組變數間的一些內在聯系。典型相關分析雖然30年代已經出現,但至今未能廣泛應用。

❽ 《實用多元統計分析》pdf下載在線閱讀,求百度網盤雲資源

《實用多元統計分析》電子書網盤下載免費在線閱讀

鏈接:

提取碼:uzab

書名:實用多元統計分析

豆瓣評分:8.9

出版社:清華大學出版社

出版年份:2008-11

頁數:595

內容簡介:

《實用多元統計分析(第6版)》多元統計分析是統計學中內容十分豐富、應用范圍極為廣泛的一個分支。在自然科學和社會科學的許多學科中,研究者都有可能需要分析處理有多個變數的數據的問題。能否從表面上看起來雜亂無章的數據中發現和提煉出規律性的結論,不僅需要對所研究的專業領域有很好的訓練,而且要掌握必要的統計分析工具。對研究者來說,《實用多元統計分析》是學習掌握多元統計分析的各種模型和方法的一本有價值的參考書:首先,它做到了「淺入深出」,既可供初學者入門,又能使有較深基礎的人受益;其次,它既側重於應用,又兼顧必要的推理論證,使學習者既能學到「如何」做,又能在一定程度上了解「為什麼」這樣做;最後,它內涵豐富、全面,不僅基本包括各種在實際中常用的多元統計分析方法,而且對現代統計學的最新思想和進展有所介紹。

作者簡介:

作者:(美國)約翰遜 (Johnson.R.A.) (美國)威客恩 (Wichern.D.W.) 譯者:陳旋 葉俊

閱讀全文

與多元統計分析方法pdf相關的資料

熱點內容
行善修心的正確方法 瀏覽:398
土豆燉雞湯的正確方法和步驟 瀏覽:270
北京電流檢測方法 瀏覽:479
手機u盤保護方法 瀏覽:111
數字搭配有哪些方法 瀏覽:666
約一場球的正確方法 瀏覽:185
在家中洗衣服的方法如何 瀏覽:291
28天鍛煉腹肌最快的方法 瀏覽:199
簡單練翹臀方法視頻 瀏覽:756
心理診斷評估常用的方法有哪些 瀏覽:841
什麼方法能讓手機不黑屏 瀏覽:719
電腦開機慢的處理方法視頻 瀏覽:722
後天形成內斜視訓練方法有哪些 瀏覽:359
羊脂白的鑒別方法 瀏覽:621
家常腌酸菜方法視頻 瀏覽:254
黃安倫的教學方法 瀏覽:961
做糖最簡便的方法 瀏覽:638
草酸的檢測方法國標 瀏覽:846
如何提高寫作水平有哪些方法 瀏覽:502
最簡單的溫柔方法 瀏覽:362