㈠ 數據分析的六種基本分析方法
數據分析的六種基本分析方法:
1、對比分析法:常用於對縱向的、橫向的、最為突出的、計劃與實際的等各種相關數據的。例如:今年與去年同期工資收入的增長情況、3月CPI環比增長情況等。
2、趨勢分析法:常用於在一段時間周期內,通過分析數據運行的變化趨勢(上升或下降),為未來的發展方向提供幫助。例如:用電量的季節性波動、股市的漲跌趨勢等。
3、相關分析法:常用於分析兩個或多個變數之間的性質以及相關程度。例如:氣溫與用電量的相關性、運動量大小與體重的相關性等。
4、回歸分析法:常用於分析一個或多個自變數的變化對一個特定因變數的影響程度,從而確定其關系。例如:氣溫、用電設備、用電時長等因素對用電量數值大小的影響程度、工資收入的高低對生活消費支出大小的影響程度等。
5、描述性分析法:常用於對一組數據樣本的各種特徵進行分析,以便於描述樣本的各種及其所代表的總體的特徵。例如:本月日平均用電量、上海市工資收入中位數等。
6、結構分析法:常用於分析數據總體的內部特徵、性質和變化規律等。例如:各部分用電量占總用電的比重、生活消費支出構成情況等。
㈡ 數據分析的分析方法有哪些
數據分析的分析方法有:
1、列表法
將數據按一定規律用列表方式表達出來,是記錄和處理最常用的方法。表格的設計要求對應關系清楚,簡單明了,有利於發現相關量之間的相關關系;此外還要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。
2、作圖法
作圖法可以最醒目地表達各個物理量間的變化關系。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。
圖表和圖形的生成方式主要有兩種:手動製表和用程序自動生成,其中用程序製表是通過相應的軟體,例如SPSS、Excel、MATLAB等。將調查的數據輸入程序中,通過對這些軟體進行操作,得出最後結果,結果可以用圖表或者圖形的方式表現出來。
圖形和圖表可以直接反映出調研結果,這樣大大節省了設計師的時間,幫助設計者們更好地分析和預測市場所需要的產品,為進一步的設計做鋪墊。同時這些分析形式也運用在產品銷售統計中,這樣可以直觀地給出最近的產品銷售情況,並可以及時地分析和預測未來的市場銷售情況等。所以數據分析法在工業設計中運用非常廣泛,而且是極為重要的。
(2)理科數據分析方法擴展閱讀:
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
㈢ 數據分析的方法有哪些
數據分析的方法有:對比分析法,分組分析法,預測分析法,漏斗分析法,AB測試分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假設性分析法。
1.對比分析法:對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
數據分析方法是數據統計學當中應用非常廣泛的方法,具體方法有很多種,具體採用的時候因人而異。
㈣ 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
㈤ 常用的數據分析方法有哪些
①對比分析法通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。
②分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
③預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
④漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
⑤AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
㈥ 統計學中常用的數據分析方法有哪些
1、描述統計
描述統計是通過圖表或數學方法,對數據資料進行整理、分析,並對數據的分布狀態、數字特徵和隨機變數之間關系進行估計和描述的方法。描述統計分為集中趨勢分析、離中趨勢分析和相關分析三大部分。
2、假設檢驗
參數檢驗:參數檢驗是在已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗。
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一股性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
3、信服分析
介紹:信度(Reliability)即可靠性,它是指採用同樣的方法對同一對象重復測量時所得結果的一致性程度。
信度指標多以相關系數表示,大致可分為三類:穩定系數(跨時間的一致性),等值系數(跨形式的一致性)和內在一致性系數(跨項目的一致性)。信度分析的方法主要有以下四種:重測信度法、復本信度法、折半信度法、α信度系數法。
㈦ 數據分析方法一般分為哪三種
1、漏斗分析
漏斗分析是指通過數據分析找到有問題的業務環節,並對其優化。
漏斗分析兩大作用:其一,漏斗分析可以對各個業務階段的用戶、流量的變化進行監控,及時分析低轉化率的環節,找出流失的關鍵,並不斷優化。其二,漏斗分析可以根據不同的人群、渠道,進行差異化的分析,比如新渠道、新客戶,分析出最佳的和最差的,這樣能夠提高操作的准確性和效率。
3、對比分析法
對比分析法即對比數據,分析差別,可以直觀地看到某個方面的變化或差距,並能准確量化地表示這些變化或差距。對比分析既可以基於時間進行對比,也可以基於分類,如部門、地區、類別等進行對比。在工作中,我們會使用對比分析法比較多,比如,如上年的銷量對比、目標與實際對比等。我們在對比的過程中要注意要找相似的對比對象。比如,佛山的人口與上海的人口對比就沒有可比性,是毫無意義的。
㈧ 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
㈨ 數據分析常用的分析方法有哪些
1. 描述型分析
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
㈩ 常見的5種數據分析方法
所謂公式法就是針對某個指標,用公式層層分解該指標的影響因素。
舉例:分析某產品的銷售額較低的原因,用公式法分解:
對比法就是用兩組或兩組以上的數據進行比較,是最通用的方法。
我們知道孤立的數據沒有意義,有對比才有差異。
一些直接描述事物的變數,如長度、數量、高度、寬度等,通過對比得到比率數據,增速、效率、效益等指標,這才是數據分析時常用的。
比如:用於在時間維度上的同比和環比、增長率、定基比、與競爭對手的對比、類別之間的對比、特徵和屬性對比等。
對比法可以發現數據變化規律,使用頻繁,經常和其他方法搭配使用。
通過對2種及以上緯度的劃分,運用坐標的方式表達出想要的價值。由價值直接轉變為策略,從而進行一些落地的推動。象限法是一種策略驅動的思維,常於產品分析、市場分析、客戶管理、商品管理等。
28法也可以叫帕累托法則,源於經典的二八法則。比如在個人財富上可以說世界上20%的人掌握著80%的財富。而在數據分析上,則可以理解為20%的數據產生了80%的效果,需要圍繞這20%的數據進行挖掘。
漏鬥法即是漏斗圖,有點像倒金字塔,是一個流程化的思考方式,常用於像新用戶的開發、購物轉化率這些有變化和一定流程的分析中。