❶ 微量氟的測定
牙膏中微量氟的測定(離子選擇性電極)一、實驗目的
1.掌握電位法的基本原理;2.學會使用離子選擇電極的測量方法和數據處理方法。二、方法原理
氟離子選擇電極是以氟化鑭單晶片為敏感膜的電位法指示電極,對溶液中的氟離子具有良好的選擇性。氟電極與飽和甘汞電極組成的電池可表示為:其中0.059為25℃時電極的理論響應斜率,其它符號具有通常意義。用離子選擇電極測量的是溶液中離子活度,而通常定量分析需要測量的是離子的濃度,不是活度。所以必須控制試液的離子強度。如果測量試液的離子強度維持一定,則上述方程可表示為:用氟離子選擇電極測量F-最適宜pH范圍為5.5~6.5。pH值過低,易形成HF2-影響F-的活度;pH值過高,易引起單晶膜中La3+水解,形成La(OH)3,影響電極的響應。故通常用pH=6的檸檬酸鹽緩沖溶液來控制溶液的pH值。檸檬酸鹽還可消除Al3+、Fe3+(生成穩定的絡合物)的干擾。使用總離子強度緩沖調節劑(TISAB),既能控制溶液的離子強度,又能控制溶液的pH值,還可消除Al3+、Fe3+對測定的干擾。TISAB的組成要視被測溶液的成份及被測離子的濃度而定。三、儀器設備與試劑材料
1.離子計或pH/mV計,電磁攪拌器。2.氟離子選擇電極,飽和甘汞電極。3.NaF標准貯備液,1.000mg
❷ 廢水中氟含量檢測方法
對氟檢測的方法有離子選擇性電極法,離子選擇性微電極法,氣相色譜法,電子探針法,分光光度法,中子活化分析技術等
❸ 離子選擇電極法測定氟
方法提要
試樣用氫氧化鈉熔融後,用水浸取熔塊,使氟與部分元素的化學鍵解離而釋放出氟離子。在pH6.8~7.2的檸檬酸-三乙醇胺溶液中,以氟離子選擇電極為指示電極,飽和甘汞電極為參比電極,用離子計測定試液中的電位值。
方法適用於水系沉積物及土壤中氟量的測定。
方法檢出限(3s):20μg/g氟。
測定范圍:60~3400μg/g氟。
儀器及材料
離子計精度0.1mV。
氟離子選擇電極要求氟含量在10-1~10-5mol/L內,電極電位與濃度的負對數呈良好的線性關系。電極使用前在0.001mol/LNaF溶液中浸泡1h,使之活化,然後用水清洗至說明書上的規定值(一般在去離子水中的電位為-320mV)。
飽和甘汞電極。
電磁攪拌器。
石墨坩堝30mL。
試劑
氫氧化鈉。
鹽酸。
乙醇。
檸檬酸鈉溶液稱取500g檸檬酸鈉,用水溶解後,加水稀釋至1700mL,攪勻,備用。
氫氧化鈉溶液(50g/L)稱取5gNaOH置於200mL塑料燒杯中,加水溶解後,用水稀釋至100mL,貯存於塑料瓶中備用。
三乙醇胺緩沖溶液(pH=7.0)量取200mL三乙醇胺,加入約215mL(1+1)HCl,調節溶液pH在6.8~7.1范圍,再用水稀釋至1000mL。
氟標准溶液Ⅰρ(F)=100μg/mL稱取0.2210g已在500℃烘焙15min,並在乾燥器中冷卻的優級純氟化鈉,置於150mL塑料燒杯中,加入100mL水溶解後,移入1000mL容量瓶中,用水稀釋至刻度,搖勻,立刻移入凈化的塑料瓶中。
氟標准溶液Ⅱρ(F)=10.0μg/mL分取50.00mL氟標准溶液Ⅰ,移入500mL容量瓶中,用水稀釋至刻度,搖勻,立刻移入凈化的塑料瓶中。
酚紅指示劑(1g/L)稱取0.10g酚紅置於100mL燒杯中,加入100mL水及數滴NaOH溶液使之溶解。
校準曲線
於一組25mL容量瓶中,分取0.00mL、0.50mL、1.00mL、2.00mL、4.00mL氟標准溶液Ⅱ,再分取0.80mL、1.60mL、2.40mL、3.20mL氟標准溶液Ⅰ。分別加入5mL空白試驗溶液[為了便於控制體積,可將兩份空白試驗溶液合並在同一個100mL容量瓶中,這樣就可以加入分取試樣溶液體積的一半]。再加入7.5mL檸檬酸鈉溶液,搖勻。加2滴酚紅指示劑,用(1+1)HCl和氫氧化鈉溶液調至溶液呈橙紅色pH6.8~7.1,加入2.5mL三乙醇胺緩沖溶液,用水稀釋至刻度,搖勻,配成0.00μg/mL、0.20μg/mL、0.40μg/mL、0.80μg/mL、1.60μg/mL、3.20μg/mL、6.40μg/mL、9.60μg/mL、12.80μg/mL的氟標准系列。
將溶液倒入50mL塑料杯中,放入1根轉子,將塑料杯放在電磁攪拌器上,插入氟離子選擇電極和飽和甘汞電極,在轉子不斷攪拌下,在離子計上測定並讀取平衡後穩定的電位值。以氟量(lgC)為橫坐標,氟離子選擇電極電位值為縱坐標,在半對數紙上繪制校準曲線。
分析步驟
稱取0.5~1.0g(精確至0.0001g)試樣(粒徑小於0.075mm,經室溫乾燥後,裝入磨口小玻璃瓶或小塑料瓶中備用)置於30mL石墨(或鎳)坩堝中,放入高溫爐內,升溫至450℃焙燒1h(石墨坩堝宜低於400℃;若有機質較低,可不焙燒),取出冷卻。加入幾滴乙醇潤濕試樣,加入6gNaOH,放入高溫爐內,慢慢升溫至620℃,保溫15min。取出,稍冷後,將坩堝放入盛有60mL沸水的150mL塑料燒杯中(若溶液中有錳離子的綠色,可加入幾滴乙醇還原)。待熔融物完全脫落後,用水洗出坩堝,冷卻至室溫,移入100mL容量瓶中,用水稀釋至刻度,搖勻。放置澄清或干過濾。
分取10.00mL澄清溶液於50mL塑料燒杯中,加入7.5mL檸檬酸鈉溶液,搖勻。加2滴酚紅指示劑,用(1+1)HCl和氫氧化鈉溶液調至溶液呈橙紅色pH6.8~7.1,加入2.5mL三乙醇胺緩沖溶液,將溶液移入25mL容量瓶中,用水稀釋至刻度,搖勻。將溶液倒回原塑料杯中,然後按校準曲線步驟操作,在校準曲線上查得試樣溶液中的氟量。
試樣中氟含量的計算參見式(84.8)。
注意事項
1)也可將試樣加入4gNa2O2攪勻,面上再覆蓋1g,在鎳坩堝中於700℃高溫爐中熔融。
2)可從測定鎢、鉬的試樣溶液中分取試液進行測定。
❹ 氟的測定
73.11.10.1 高溫燃燒水解-氟離子選擇電極法
方法提要
煤樣在氧氣和水蒸氣混合氣流中燃燒與水解,煤中氟全部轉化為揮發性氟化物(SiF4及HF)並定量地溶於水中。以氟離子選擇性電極為指示電極,飽和甘汞電極為參比電極,用標准加入法測定煤樣溶液中氟離子濃度,計算煤中氟量。本法適用於褐煤、煙煤和無煙煤中氟的測定。
儀器裝置
器皿、容器本方法所用的器皿、容器應是塑料製品。
高溫燃燒-水解裝置(圖73.51)。
燃燒管石英管,能耐溫1300℃,規格尺寸見圖73.52。
圖73.51 高溫燃燒-水解裝置示意圖
圖73.52 石英管(數字單位mm)
圖73.53 冷凝管(數字單位mm)
冷凝管 規格尺寸見圖73.53。水蒸氣發生器 由500mL平底燒瓶和可調壓圓盤電爐構成。
流量計 量程1000mL/min,最小分度10mL/min。
測量電位儀器電磁攪拌器,連續可調。氟離子選擇性電極,測量線性范圍0.1~10-5mol/L。飽和甘汞電極。數字式離子計,輸入阻抗大於1011Ω,精度0.1mV,也可用性能相同的數字式毫伏計代替。
試劑
石英砂 化學純,粒度0.5~1mm。
氫氧化鈉溶液 稱取1g優級純氫氧化鈉溶於100mL水中。
硝酸。
溴甲酚綠指示劑 稱取0.1g溴甲酚綠指示劑溶於100mL乙醇中。
氟標准儲備溶液ρ(F)=1.00mg/mL稱取2.2101g預先在120℃乾燥約2h的優級純氟化鈉置於燒杯中,加水溶解,用水洗入1000mL容量瓶中並稀釋至刻度,搖勻,貯存於塑料瓶中備用。
氟標准溶液根據試樣氟含量用水稀釋氟標准儲備溶液。
總離子強度調節緩沖溶液稱取294g檸檬酸三鈉(Na3C6H5O7·2H2O)和20gKNO3溶於800mL水中,用(5+95)HNO3調節pH為6.0,再用水稀釋至1000mL。貯存於塑料瓶中備用。
分析步驟
按圖73.51所示,裝配好全套儀器裝置,連接電路、氣路、水路各個系統。將單節高溫爐升溫至1100℃。往燒瓶內加入約300mL水並加熱至沸騰。冷凝管通入冷水,塞緊進樣推棒橡皮塞,調節氧氣流量為400mL/min,檢查不漏氣後,通水蒸氣和氧氣15min。此項操作每天只需進行一次。
稱取0.5g(精確至0.0001g)粒度小於2mm的空氣乾燥煤樣和0.5g石英砂放在燃燒舟里混合,再用適量石英砂鋪蓋在上面。將100mL容量瓶放在冷凝管下端接收冷凝液。取下進樣推棒,把燃燒舟放入管內,插入進樣推棒,塞緊橡皮塞。將瓷舟前端推到預先測好的低溫區(約300℃),為了防止煤樣爆燃,此後在15min內分3段把燃燒舟推到(1100±5)℃恆溫區,拔出進樣推棒以免熔化,燃燒舟在恆溫區繼續停留15min。在整個操作過程中,調節燒瓶內水的蒸發量,以控制收集的冷凝液體積。前15min,每分鍾收集約3mL;後15min,每分鍾收集約2.5mL。最後總體積應控制在85mL以內。燃燒-水解後,把水蒸氣發生器的電壓調到「零」位置。移走容量瓶,停止通氧氣。取下進樣推棒,用帶鉤的鎳鉻絲取出燃燒舟。往盛有冷凝液的容量瓶中加3滴溴甲酚綠指示劑,用氫氧化鈉溶液中和到指示劑變藍色。加入10mL總離子強度調節緩沖溶液,用水稀釋至刻度,搖勻。放置半小時後測量電位。
連結好電位測量儀器裝置,開動攪拌器,更換燒杯中水數次,直至毫伏計顯示的電位達到氟離子電極的空白電位。由於氟離子電極實際斜率往往偏離理論值(59.2mV),因此應定期測試氟離子電極的實際斜率。可在5個100mL容量瓶中,分別加入系列氟標准溶液,加入3滴溴甲酚綠指示劑和10.0mL總離子強度調節緩沖溶液,加水稀釋至刻度,搖勻。將溶液倒入100mL燒杯中,用電位測量儀測量電位。測量每個標准溶液時,電極插入深度和攪拌速度等要求一致。以各種濃度溶液的響應電位(mV)為縱坐標,相應的濃度對數為橫坐標,在對數坐標紙上作圖。由曲線上lgC=0和lgC=1兩點所對應的響應電位之差求出該電極的實際斜率。
將制備好的煤樣溶液移入100mL燒杯中,放入攪拌子,插入氟離子電極和甘汞電極(插入深度及攪拌速度應和測量電極實際斜率時一樣),開動攪拌器,待電位穩定後記錄響應電位E1,立即加入1.00mL氟標准溶液,待電位穩定後記錄響應電位E2。
按下式計算煤中氟的含量:
岩石礦物分析第四分冊資源與環境調查分析技術
式中:Fad為空氣乾燥煤中氟的質量分數,μg/g;S為氟電極的實測斜率;ΔE為E2-E1,mV;Cs為氟標准溶液的濃度,μg/mL;Vs為加入氟標准溶液的體積,mL;m為試樣的質量,g。
注意事項
1)如果電極連續使用,不必每天都測定電極的實際斜率。如果電極干放時間超過一星期,再使用時就應測定。當電極實際斜率低於55時,則應將電極拋光一次,或更換新的電極。
2)加入的標准氟量(Cs·Vs)應大於試液中氟量(CXVX)4倍為宜,在實際操作中可根據E1的數值選擇加入標准氟溶液的濃度(100μg/mL、250μg/mL或500μg/mL),控制ΔE在20~40mV。
73.11.10.2 硝酸鎂固定-氟離子選擇電極法
方法提要
煤樣中的氟經硝酸鎂溶液-氫氧化鈉溶液固定,灰化後,灰分用氫氧化鈉熔解,水提取。氟在總離子強度緩沖溶液-檸檬酸鈉存在下,在數字式離子計上以氟離子電極為測量電極,飽和甘汞電極為參比電極,測定溶液中氟的含量。
儀器
數字離子計。
氟電極。
參比電極(飽和甘汞電極)。
電磁攪拌器。
試劑
氫氧化鈉。
鹽酸。
檸檬酸鈉溶液稱取294g無水檸檬酸鈉溶解於水中,用水稀釋至1000mL。
硝酸鎂溶液(100g/L)。
氫氧化鈉溶液(40g/L、100g/L)。
氟標准溶液ρ(F)=10.0μg/mL介質為40g/LNaOH溶液。
溴鉀酚紫指示劑(1g/L)介質為(1+4)乙醇。
校準曲線
分取0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、6.00mL、8.00mL、10.00mL氟標准溶液置於25mL比色管中,用40g/LNaOH溶液補至10mL,加1滴溴甲酚紫指示劑,用(1+1)HCl中和至由藍變黃,再過量2~3滴,立即加入10mL檸檬酸鈉溶液,用水稀釋至刻度,搖勻。將溶液倒入50mL小燒杯中,用精度為0.1mV的數字式離子計測量電位值,繪制電位-濃度校準曲線。
分析步驟
稱取1~2g(精確至0.0001g)粒度小於2mm的空氣乾燥煤樣置於30mL鎳坩堝中,加4mL硝酸鎂溶液,加100g/LNaOH溶液使呈鹼性,混勻後浸泡0.5h,將煤樣中的氟固定,然後在水浴上蒸干,再加熱炭化至不冒煙。再於600℃高溫爐內灰化3h,待灰化完全,取出放冷,將4gNaOH加入鎳坩堝,於高溫爐中從低溫升至650℃,使之呈流體狀,熔融7~10min,取出冷卻。將坩堝放入150mL塑料燒杯中,加入60mL近沸水提取,加幾滴乙醇,攪勻,取出坩堝並洗滌,將溶液移入100mL塑料容量瓶,加水稀釋至刻度,搖勻,放置澄清。分取10.00mL煤樣溶液於25mL比色管中,加1滴溴甲酚紫指示劑,然後按校準曲線分析步驟操作,測得氟量。
空氣乾燥煤樣氟含量的計算參見式(73.95)。
注意事項
本法在經硝酸鎂固定後,也可採用艾氏卡試劑半熔法。稱取1.5g(精確至0.01g)艾氏卡試劑置於蒸干水分的鎳坩堝中,用玻璃棒將煤樣和艾氏卡試劑混合均勻,再用1.5g艾氏卡試劑均勻覆蓋其上。將坩堝放入高溫爐中,半開爐門,緩緩升溫至500℃,並在此溫度下保持約1h,然後升溫至(800+10)℃,在此溫度下再保持約3h,取出坩堝,冷卻至室溫,再按分析步驟同樣操作。
❺ 測定飲用水中的氟含量,應採用哪一種儀器分析方法進行分析較為適宜
1、應該選擇GB5049 標准里 規定的儀器分析方法:
2、應該選用:氟離子選擇電極法進行分析較為適宜;
3、還有氟試劑分光光度法測定氟離子操作麻煩。
❻ 氟離子測定方法
氟離子測定方法如下:
1、直接蒸餾法:蒸餾效率較高,但溫度控制較難,排除干擾也較差,在蒸餾時易發生爆沸。水蒸氣蒸餾法:溫度控制較高,排除干擾較好,不易發生爆沸現象,操作過程比較安全。
2、離子色譜法:離子色譜法已在國內外普遍使用,該方法簡便、快速、相對干擾較少,測量范圍為0.06~10mg/L。離子色譜法不但能夠檢測水中氟化物的含量,還能對大氣、土壤等環境樣品中存在的氟化物進行檢測。
具體而言, 一般飲用水中含氟的適宜濃度為0.5~1.0mg/L,當長期飲用含氟量高於1.0~1.5mg/L的水時,易患斑齒病,當水中含氟量高於4.0mg/L時,則可導致氟骨病。為了降低污水或循環水中氟離子的濃度,需要加入除氟葯劑進行處理。
❼ 水中氟含量測取方法及其局限性
在本文的研究過程中,我們對採集的水樣進行水中氟含量測定時主要是按照國家衛生部公布的《生活飲用水衛生標准》(GB 5749-2006)檢驗方法中提出的離子選擇電極法,其基本原理是利用氟化鑭單晶對氟化物離子具有選擇性,在氟化鑭電極膜兩側的不同濃度氟溶液之間存在電位差,即膜電位,由於膜電位的大小與氟化物溶液的離子活度有關,因此用氟離子選擇性電極為指示電極,飽和甘汞電極為參比電極,在離子計上測量溶液的電位值,最後根據標准氟溶液的電位值與氟濃度值的標准曲線,得出水樣中氟離子濃度,具體實驗步驟如下:
(1)標准曲線的繪制:分取0,0.2,0.4,0.6,1.0,2.0 和3.0mL 10 μg/mL的氟化物標准溶液於50mL燒杯中,各加純水至10mL,再各加與水樣相同的離子強度緩沖液,則此標准系列濃度分別為0,0.2,0.4,0.6,1.0,2.0 和 3.0mg/L(以F-計)。
(2)測定:吸取10mL水樣於50mL燒杯中。若水樣總離子強度過高時,應取少量水樣稀釋到10mL,加入10mL離子強度緩沖液,將燒杯放在電磁攪拌器上,放入攪拌子,插入氟離子電極和甘汞電極並開始攪拌水樣溶液,待電位平衡後讀取平衡電位值。以電位值(mV)為縱坐標,氟化物的活度(-lgC)為橫坐標,在半對數坐標紙上繪制標准曲線。
(3)結果計算:水樣中氟化物(F-,mg/L)可直接在標准曲線上查得:
河南省地下水中氟的分布及形成機理研究
式中:C為水樣中氟化物(F-)的濃度,mg/L;M為從標准曲線上查得的水樣中氟含量,μg;V為水樣體積,mL。
對上述實驗過程進行分析後得出,水中氟含量的測量結果其實是水中總氟含量,即不僅僅包括簡單氟陰離子(F-)含量,還包含其他氟形態離子的含量。因為不管用氟電極法、間接比色法(茜素鋯比色法、對磺基苯偶氮變色酸鋯比色法)還是直接比色法(氟化劑比色法)測量水中氟含量時,由於常常存在Al3+,Fe3+,Be2+,Tn4+,Zr4+,Ca2+,Mg2+和Cu2+等多種干擾離子,尤其是Al3+能與F-生成極穩定的
由於受到現有氟形態測量試驗水平的限制,本次研究將具有代表意義的配合離子態或有機態氟如氟鋁配合離子與簡單氟陰離子產生的人體負效應進行對比分析,以此推斷某些配合離子態或有機態氟生物有效性的大小,為後續實驗研究提出一種新思路,上述的前提是對地下水中不同形態氟的特徵進行分析。
❽ 有什麼方法可以檢測水中的含氟量。我們這里的飲用水含氟量太高了
高的氟離子含量可以用沉澱法,滴定法等。如果是微量的,就要用儀器分析了,比如電化學等。浙大哲博檢測幫助您!
❾ 用什麼可以檢驗氟離子
氟離子可以利用二氧化硅進行檢驗向溶液中加入少量酸之後加入二氧化硅 如果溶解 就說明有氟
❿ 請告訴我關於氟這種物質的詳細事宜.越詳細越好.謝謝
元素名稱:氟
元素原子量:19.00
元素類型:非金屬
發現人:莫瓦桑 發現年代:1886年
發現過程:
1886年,法國的莫瓦桑,在鉑制U型管中,用鉑銥合金作電極,電解乾燥的氟氫化鉀,製得氟。
元素描述:
呈蒼黃色氣體,密度1.69克/升,熔點-219.62℃,沸點-188.14℃,化合價-1,氟的電負性最高,電離能為17.422電子伏特,是非金屬中最活潑的元素,氧化能力很強,能與大多數含氫的化合物如水、氨和一切無論液態、固態、或氣態的化學物質起反應。與水的反應很復雜,主要氟化氫和氧,以及較少量的過氧化氫,二氟化氧和臭氧產生,也可在化合物中置換其他非金屬元素。可以同所有的非金屬和金屬元素起猛烈的反應,生成氟化物,並發生燃燒。有極強的腐蝕性和毒性,操作時應特別小心,切勿使它的液體或蒸氣與皮膚和眼睛接觸。
元素來源:
可從電解熔融的氟化鉀和無水氟化氫的混合物中製得。
元素用途:
含氟塑料和含氟橡膠等高分子,具有優良的性能,用於氟氧吹管和製造各種氟化物。
元素輔助資料:
正是經過19世紀初期的化學家發反復分析,肯定了鹽酸的組成,確定了氯是一種元素之後,氟就因它和氯的相似性很快被確認是一種元素,相應的存在與氫氟酸中。雖然它的單質狀態一直拖延到19世紀80年代才被分離出來。
氟和氯一樣,也是自然界中廣泛分布的元素之一,在鹵素中,它在地殼中的含量僅次於氯。早在16世紀前半葉,氟的天然化合物螢石(CaF2)就被記述於歐洲礦物學家的著作中,當時這種礦石被用作熔劑,把它添加在熔煉的礦石中,以降低熔點。因此氟的拉丁名稱 fluorum從fluo(流動)而來。它的元素符號由此定為F。拉瓦錫在1789年的化學元素表中將氫氟酸基當作是一種元素。到1810年戴維確定了氯氣是一種元素,同一年法國科學家安培根據氫氟酸和鹽酸的相似性質和相似組成,大膽推斷氫氟酸中存在一種新元素。他並建議參照氯的命名給這種元素命名為fluorine。但單質狀態的氟卻遲遲未能製得,直到1886年6月26日,才由法國化學家弗雷米的學生莫瓦桑製得。莫瓦桑因此獲得1906年諾貝爾化學獎,他是由於在化學元素發現中作出貢獻而獲諾貝爾化學獎的第二人。
比較一下氯和氟的發現史,是很有意義的。氯在它的單質被分離出來30多年後才被確認為是一種元素;而氟在沒有被分離出單質狀態以前就被確認為是一種元素了。這一史實說明在人們對客觀事物的認識過程中,逐漸掌握了它們的一些規律後,就能更快、更清楚地認識它們。