導航:首頁 > 研究方法 > 統計檢驗方法分析

統計檢驗方法分析

發布時間:2022-12-12 21:48:05

① 統計方法有哪些什麼情況下用什麼方法

1.計量資料的統計方法

分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。

參數檢驗法主要為t檢驗和方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小樣本比較時要求兩總體分布為正態分布且方差齊性,若不能滿足以上要求,宜用t 檢驗或非參數方法(秩和檢驗)。方差分析可用於兩個以上樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和單因素方差分析。

2.計數資料的統計方法

計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。 四格表資料:組間比較用

檢驗或u檢驗,若不能滿足 檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。 R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。

3.等級資料的統計方法

等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。

② 原因分析的三種方法 原因分析常用的三種統計方法

1、原因分析常用的三種統計方法:相關分析、回歸分析和假設檢驗。

2、相關分析:相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。

3、回歸分析:回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。

4、假設檢驗:假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。

③ 總結!14個常用的統計假設檢驗的方法

本文分享利用SPSSAU進行14個常用的統計假設檢驗的方法,分為以下五個部分:

一、正態性檢驗

正態性特質是很多分析方法的基礎前提,如果不滿足正態性特質,則應該選擇其它的分析方法,因此在做某些分析時,需要先進行正態性檢驗。如果樣本量大於50,則應該使用Kolmogorov-Smirnov檢驗結果,反之則使用Shapro-Wilk檢驗的結果。

常見的分析方法正態性特質要求歸納如下表(包括分析方法,以及需要滿足正態性的分析項,如果不滿足時應該使用的分析方法)。


如果p 值大於0.05,則說明具有正態性特質,反之則說明數據沒有正態性特質。

如果是問卷研究,數據很難滿足正態性特質,而實際研究中卻也很少使用不滿足正態性分析時的分析方法。

SPSSAU認為有以下三點原因:

① 參數檢驗的檢驗效能高於非參數檢驗,比如方差分析為參數檢驗,所以很多時候即使數據不滿足正態性要求也使用方差分析

② 如果使用非參數檢驗,呈現出差異性,則需要對比具體對比差異性(但是非參數檢驗的差異性不能直接用平均值描述,這與實際分析需求相悖,因此有時即使數據不正態,也不使用非參數檢驗,或者Spearman相關系數等)

③ 理想狀態下數據會呈現出正態性特質,但這僅會出現在理想狀態,現實中的數據很難出現正態性特質(尤其是比如問卷數據)【可直接使用「直方圖」直觀展示數據正態性情況】。

二、方差齊檢驗

如果要進行方差分析,需要滿足方差齊性的前提條件,需要進行方差齊檢驗,其用於分析不同定類數據組別對定量數據時的波動情況是否一致。例如研究人員想知道三組學生的智商 波動情況是否一致(通常情況希望波動一致,即方差齊)。

判斷p 值是否呈現出顯著性(p <0.05),如果呈現出顯著性,則說明不同組別數據波動不一致,即說明方差不齊;反之p 值沒有呈現出顯著性(p >0.05)則說明方差齊。


提示: 方差不齊時可使用『非參數檢驗』,或者還可使用welch 方差,或者Brown-Forsythe方差。

三、相關性檢驗

(1)相關分析

相關分析是一種簡單易行的測量定量數據之間的關系情況的分析方法。可以分析包括變數間的關系情況以及關系強弱程度等。相關系數常見有三類,分別是:

1.Pearson相關系數

2.Spearman等級相關系數

3.Kendall相關系數

三種相關系數最常使用的是Pearson相關系數;當數據不滿足正態性時,則使用Spearman相關系數,Kendall相關系數用於判斷數據一致性,比如裁判打分。下圖是詳細使用場景:

如果呈現出顯著性(結果右上角有*號,此時說明有關系;反之則沒有關系)。

有了關系之後,關系的緊密程度直接看相關系數大小即可。(一般0.7以上說明關系非常緊密;0.4~0.7之間說明關系緊密;0.2~0.4說明關系一般。)

如果說相關系數值小於0.2,但是依然呈現出顯著性(右上角有*號,1個*號叫0.05水平顯著,2個*號叫0.01水平顯著;顯著是指相關系數的出現具有統計學意義普遍存在的,而不是偶然出現),說明關系較弱,但依然是有相關關系。

(2)卡方檢驗

卡方檢驗主要用於研究定類與定類數據之間的差異關系。卡方檢驗要求X、Y項均為定類數據,即數字大小代表分類。並且卡方檢驗需要使用卡方值和對應p 值去判斷X與Y之間是否有差異。通常情況下,共有三種卡方值,分別是Pearson卡方,yates校正卡方,Fisher卡方;優先使用Pearson卡方,其次為yates校正卡方,最後為Fisher卡方。

具體應該使用Pearson卡方,yates校正卡方,也或者Fisher卡方;需要結合X和Y的類別個數,校本量,以及期望頻數格子分布情況等,選擇最終應該使用的卡方值。SPSSAU已經智能化處理這一選擇過程。

第一:分析X分別與Y之間是否呈現出顯著性(p值小於0.05或0.01);

第二:如果呈現出顯著性;具體對比選擇百分比(括弧內值),描述具體差異所在;

第三:對分析進行總結。


卡方檢驗,SPSSAU提供兩個按鈕,二者的區別是,後者輸出更多的統計量過程值以及深入指標表格,滿足需要更多分析指標的研究人員,如下各圖。


進行卡方檢驗,上傳數據時需要特別注意數據格式,有兩種格式:常規格式和加權格式。

①  常規格式數據 ,如下圖。則通用方法中的【交叉(卡方)】和實驗/醫學研究中的【卡方檢驗】都可以使用。


②  加權數據: 但在某些情況下,我們得到的不是原始數據,而是經過整理的匯總統計數據。比如下面這樣格式的數據:

類似這樣的格式,不能直接使用的,需要整理成加權數據格式,只能使用實驗/醫學研究中的【卡方檢驗】


這時候點擊實驗/醫學研究面板中的【卡方檢驗】-拖拽三個【分析變數】分別到對應分析框-【開始分析】即可。

四、參數檢驗

(1) 單樣本t檢驗

單樣本T檢驗用於比較樣本數據與一個特定數值之間是否存在差異情況。

首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則分析項明顯不等於設定數字,具體差異可通過平均值進行對比判斷。

(2)獨立樣本T檢驗(T檢驗)

獨立樣本T檢驗用於分析定類數據(X)與定量數據(Y)之間的差異情況。

獨立樣本T檢驗除了需要服從正態分布、還要求兩組樣本的總體方差相等。當數據不服從正態分布或方差不齊時,則考慮使用非參數檢驗。


首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則說明兩組數據具有顯著性差異,具體差異可通過平均值進行對比判斷。


(3)配對樣本T檢驗

用於分析配對定量數據之間的差異對比關系。與獨立樣本t檢驗相比,配對樣本T檢驗要求樣本是配對的。兩個樣本的樣本量要相同;樣本先後的順序是一一對應的。

常見的配對研究包括幾種情況:


判斷p 值是否呈現出顯著性,如果呈現出顯著性,,則說明配對數據具有顯著性差異,具體差異可通過平均值進行對比判斷。

(4)方差分析

方差分析(單因素方差分析),用於分析定類數據與定量數據之間的關系情況.例如研究人員想知道三組學生的智商平均值是否有顯著差異。

進行方差分析需要數據滿足以下兩個基本前提:

理論上講,數據必須滿足以上兩個條件才能進行方差分析,如不滿足,則使用非參數檢驗。但現實研究中,數據多數情況下無法到達理想狀態。正態性檢驗要求嚴格通常無法滿足,實際研究中,若峰度絕對值小於10並且偏度絕對值小於3,或正態圖基本上呈現出 鍾形 ,則說明數據雖然不是絕對正態,但基本可接受為正態分布,此時也可使用方差分析進行分析。

第一:分析X與Y之間是否呈現出顯著性(p值小於0.05或0.01)。

第二:如果呈現出顯著性;通過具體對比平均值大小,描述具體差異所在。

第三:如果沒有呈現出顯著性;說明X不同組別下,Y沒有差異。


(5)重復測量方差

在某些實驗研究中,常常需要考慮時間因素對實驗的影響,當需要對同一觀察單位在不同時間重復進行多次測量,每個樣本的測量數據之間存在相關性,因而不能簡單的使用方差分析進行研究,而需要使用重復測量方差分析。


第一、首先進行球形度檢驗,p <0.05說明沒有通過球形度檢驗,p >0.05說明通過球形度檢驗;

第二、如果沒有通過球形度檢驗,並且球形度W值大於0.75,則使用HF校正結果;

第三、如果沒有通過球形度檢驗,並且球形度W值小於0.75,則使用GG校正結果;

第四、如果通過球形度檢驗,組內效應分析結果時使用「滿足球形度檢驗」結果即可;

將數據上傳至SPSSAU分析,選擇【實驗/醫學研究】--【重復測量方差】。

五、非參數檢驗

凡是在分析過程中不涉及總體分布參數的檢驗方法,都可以稱為「非參數檢驗」。因而,與參數檢驗一樣,非參數檢驗包括許多方法。以下是最常見的非參數檢驗及其對應的參數檢驗對應方法:

非參數秩和檢驗研究X不同組別時Y的差異性,針對方差不齊,或者非正態性數據(Y)進行差異性對比(X為兩組時使用mannWhitney檢驗,X超過兩組時使用Kruskal-Wallis檢驗,系統默認進行判斷);

(1)單樣本Wilcoxon檢驗

單樣本Wilcoxon檢驗是單樣本t檢驗的代替方法。該檢驗用於檢驗數據是否與某數字有明顯的區別,如對比調查對象整體態度與滿意程度之間的差異。首先需要判斷數據是否呈現出正態性分析特質,如果數據呈現出正態性特質,此時應該使用單樣本t檢驗進行檢驗;如果數據沒有呈現出正態性特質,此時應該使用單樣本Wilcoxon檢驗

首先判斷p 值是否呈現出顯著性,如果呈現出顯著性,則分析項明顯不等於設定數字,具體差異可通過中位數進行對比判斷。


(2)Mann-Whitney檢驗

Mann-Whitney檢驗是獨立樣本t檢驗的非參數版本。該檢驗主要處理包含等級數據的兩個獨立樣本,SPSSAU中稱為非參數檢驗。

第一:分析X與Y之間是否呈現出顯著性(p值小於0.05或0.01)。

第二:如果呈現出顯著性;通過具體對比中位數大小,描述具體差異情況。


(3)Kruskal-Wallis檢驗

Kruskal-Wallis檢驗是單因素方差分析的非參數替代方法。Kruskal-Wallis檢驗用於比較兩個以上獨立組的等級數據。

在SPSSAU中,與Mann-Whitney檢驗統稱為「非參數檢驗」,分析時SPSSAU會根據自變數組別數自動選擇使用Kruskal-Wallis檢驗或Mann-Whitney檢驗。

(4)配對Wilcoxon檢驗

Wilcoxon符號秩檢驗是配對樣本t檢驗的非參數對應方法。該檢驗將兩個相關樣本與等級數據進行比較。

第一:分析每組配對項之間是否呈現出顯著性差異(p值小於0.05或0.01)。

第二:如果呈現出顯著性;具體對比中位數(或差值)大小,描述具體差異所在。


④ 常用統計分析方法

數據分析師針對不同業務問題可以製作各種具體的數據模型去分析問題,運用各種分析方法去探索數據,這里介紹最常用的三種分析方法,希望可以對您的工作有一定的的幫助

文中可視化圖表均使用DataFocus數據分析工具製作。

1.相關分析

相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。

2.回歸分析

回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。

另請注意,散點圖上的異常值非常重要。例如,外圍數據點可能代表公司最關鍵供應商或暢銷產品的輸入。但是,回歸線的性質通常會讓您忽略這些異常值。

3.假設檢驗

假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。

在掌握了數據分析的基本圖形和分析方法之後,數據分析師認為有一點需要注意:「在沒有確認如何表達你想要解決的問題之前,不要開始進行數據分析。」簡而言之,如果您無法解釋您試圖用數據分析解決的業務問題,那麼沒有數據分析可以解決問題。

⑤ 常用統計分析方法有哪些

1、對比分析法

對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。

2、分組分析法

分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。

根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。

3、預測分析法

預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。

最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。

5、AB測試分析法

AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。

例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。

⑥ 統計學檢驗方法有哪些

統計學 各種應用條件、校正條件

應用檢驗方法必須符合其適用條件,不同設計的數據應選用不同檢驗方法。 一、第五章 參數估計 P74 總體均數的置信區間 1.正態近似法:
總體標准差σ已知,或σ未知但n>50時 2. t分布法
總體標准差σ未知,且n≤50時
二、第六章 計量資料兩組均數t檢驗P93、P99 (一)t 檢驗的應用條件
適用於計量資料(單樣本、兩配對樣本、兩獨立樣本),並要求: 1. 樣本來自正態分布的總體。W檢驗(n≤50時),H0:樣本來自正態總體,P>0.05時尚不能認為兩組資料的分布非正態;
2. 兩獨立樣本均數比較時,兩總體方差齊性。Levene檢驗,H0:方差相等。P>0.05時尚不能認為兩組資料方差不齊。
(二)方差不齊或非正態時,兩計量資料均數的比較方法 方法1. 僅方差不齊時,可採用近似t檢驗,即 t′檢驗。 方法2. 變數變換:對數變換、平方根變換、倒數變換等
方法3. 非參數檢驗:Wilcoxon符號秩檢驗(兩相關樣本P142);Wilcoxon秩和檢驗、Mann-Whiney-U檢驗(兩獨立樣本 P145)等

三、第七章 計量資料多組均數的比較-方差分析 (一)方差分析流程 P109
1、多個樣本均數比較。若P<0.05,均數不全相等,則進行第2步;
2、作多重比較:LSD-t檢驗、Dunnett-t檢驗(多個實驗組與一個對照組比較)、SNK-q檢驗(多個均數間全面比較)
(二)方差分析的應用條件 P114
1、各樣本相互獨立,服從正態分布;W檢驗 2、各樣本方差齊性。Levene檢驗
四、分類資料(計數資料)的比較-

⑦ 什麼是統計檢驗怎麼選擇統計檢驗方法

統計檢驗亦稱「假設檢驗」。根據抽樣結果,在一定可靠性程度上對一個或多個總體分布的原假設作出拒絕還是不拒絕(予以接受)結論的程序。決定常取決於樣本統計量的數值與所假設的總體參數是否有顯著差異。這時稱差異顯著性檢驗。檢驗的推理邏輯為具有概率性質的反證法。

選擇

顯著性水平和否定域

有了與問題相關的抽樣分布,我們便可以把所有可能的結果分成兩類:一類是不大可能的結果;另一類人們預料這些結果很可能發生。既然如此,如果我們在一次實際抽樣中得到的結果恰好屬於第一類,我們就有理由對概率分布的前提假設產生懷疑。

在統計檢驗中,這些不大可能的結果稱為否定域。如果這類結果真的發生了,我們將否定假設;反之就不否定假設。概率分布的具體形式是由假設決定的,假設肯定不止一個。在統計檢驗中,通常把被檢驗的那個假設稱為零假設(或稱原假設,用符號H0表示),並用它和其他備擇假設(用符號H1表示)相對比。

值得注意的是,假設只能被檢驗,從來不能加以證明。統計檢驗可以幫助我們否定一個假設,卻不能幫助我們肯定一個假設。為了使檢驗更嚴格、更科學,還需要更多的東西。首先,我們必須確定冒犯第一類和第二類錯誤的風險的程度;其次,要確定否定域是否要包含抽樣分布的兩端。

第一類錯誤是,零假設H0實際上是正確的,卻被否定了。第二類錯誤則是,H0實際上是錯的,卻沒有被否定。第二類錯誤是,零假設H0實際上是錯誤的,卻沒有被否定。遺憾的是,不管我們如何選擇否定域,都不可能完全避免第一類錯誤和第二類錯誤,也不可能同時把犯兩類錯誤的危險壓縮到最小。

對任何一個給定的檢驗而言,第一類錯誤的危險越小,第二類錯誤的概率就越大;反之亦然。一般來講,不可能具體估計出第二類錯誤的概率值。第一類錯誤則不然,犯第一類錯誤的概率是否定域內各種結果的概率之和。

由於犯第一類錯誤的危險和犯第二類錯誤的危險呈相背趨向,所以統計檢驗時,我們必須事先在冒多大第一類錯誤的風險和多大第二類錯誤的風險之間作出權衡。被我們事先選定的可以犯第一類錯誤的概率,叫做檢驗的顯著性水平(用α表示),它決定了否定域的大小。

如果抽樣分布是連續的,否定域可以建立在想要建立的任何水平上,否定域的大小可以和顯著性水平的要求一致起來(後面的正態檢驗就如此)。如果抽樣分布是非連續的,就要用累計概率的方法找出一組構成否定域的結果。

即在已知概率分布表上,從兩端可能性最小的概率開始向中心累計,直至概率之和略小於選定的顯著性水平為止。在許多場合,我們能預測偏差的方向,或只對一個方向的偏差感興趣。每當方向能被預測的時候,在同樣顯著性水平的條件下,單側檢驗比雙側檢驗更合適。

因為否定域被集中到抽樣分布更合適的一側,可以得到一個比較大的尾端。這樣做,可以在犯第一類錯誤的危險不變的情況下,減少了犯第二類錯誤的危險。

(7)統計檢驗方法分析擴展閱讀

選擇統計檢驗程序的方法時需考慮以下條件:

1、看總體分布是否已知。如果已知,看是不是正態分布。如果已知樣本分布為常態分布就可以選擇參數檢驗法,如果總體分布未知就用非參數檢驗法。

2、在參數檢驗中,如果總體分布為正態,總體方差已知,兩樣本獨立或相關都可以採用Z檢驗;如果總體方差未知,根據樣本方差,採取不同的t檢驗。如果總體分布非正態,總體方差已知,根據樣本獨立或相關採取Z』檢驗;如果總體方差未知,根據獨立和相關採取不同的Z『檢驗。

3、根據題目考慮用單側還是雙側檢驗。

4、在非參數檢驗中,按照兩個樣本相關和不相關、精度與容量等,可以採用符號檢驗、秩和檢驗等方法。

⑧ 統計學常用數據分析方法(二)推斷統計&參數檢驗

01

推論統計

推論統計是統計學中研究年份較為短的一部分內容。

推論統計主要以結果為依據,來證明或推翻某個命題也就是通過分析樣本與樣本分布的差異從而去估算樣本與總體、同一樣本的前後兩次的差異、樣本與樣本的差異、總體與總體的差異是否具有顯著性差異。

舉個例子,我們想研究教育背景是否會影響人的收入。然後我們可以找1000名30歲大學畢業生和1000名30歲初中畢業生。採集他們的工作以及收入情況。用推論統計方法進行數據處理,最後會得出類似這樣兒的結論:「研究發現,大學畢業生組的收入顯著高於初中畢業生組的收入,二者在0.01水平上具有顯著性差異,說明大學畢業生的一些收入情況優於中學畢業生組,也就是學歷會影響收入。」

02

正態性檢 驗

很多統計方法的前提條件是數值服從或近似服從正態分布,所以在進行數據分析之前需要進行正態性檢驗。

常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。

03

參數檢驗

已知總體分布的條件下(一般要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗叫做參數檢驗。

Z檢驗:使用條件:當樣本含量n較大時,樣本值符合正態分布

T檢驗:使用條件:當樣本含量n較小時,樣本值符合正態分布

單樣本t檢驗:想知道來自總體的一個樣本均值μ與已知的某一總體均數μ0 (常為理論值或標准值)有無差別;

配對樣本t檢驗:當總體均值未知時,並且兩個樣本可以配對,同對中的兩者一一對應,對於處理效果的各種條件方面扱為相似;

兩獨立樣本t檢驗:利用兩個總體的獨立樣本,通過推斷兩個總體的均值是否存在顯著性差異;兩獨立樣本的樣本容量可以相等,也可以不相等。

04

非參數檢驗

非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。

主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。

⑨ 有哪些統計方法

統計法有:計量資料的統計方法;計數資料的統計方法;等級資料的統計方法。

1、分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。參數檢驗法主要為t檢驗和方差分析(ANOVA,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。

2、計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。

3、等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。

4、統計方法是指有關收集、整理、分析和解釋統計數據,並對其所反映的問題作出一定結論的方法。統計方法是一種從微觀結構上來研究物質的宏觀性質及其規律的獨特的方法。

閱讀全文

與統計檢驗方法分析相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:57
五菱p1171故障碼解決方法 瀏覽:852
男士修護膏使用方法 瀏覽:540
電腦圖標修改方法 瀏覽:601
濕氣怎麼用科學的方法解釋 瀏覽:532
910除以26的簡便計算方法 瀏覽:799
吹東契奇最簡單的方法 瀏覽:698
對腎臟有好處的食用方法 瀏覽:92
電腦四線程內存設置方法 瀏覽:508
數字電路通常用哪三種方法分析 瀏覽:9
實訓課程的教學方法是什麼 瀏覽:521
苯甲醇乙醚鑒別方法 瀏覽:78
蘋果手機微信視頻聲音小解決方法 瀏覽:696
控制箱的連接方法 瀏覽:71
用什麼簡單的方法可以去痘 瀏覽:785
快速去除甲醛的小方法你知道幾個 瀏覽:799
自行車架尺寸測量方法 瀏覽:120
石磨子的製作方法視頻 瀏覽:148
行善修心的正確方法 瀏覽:401
土豆燉雞湯的正確方法和步驟 瀏覽:274