導航:首頁 > 研究方法 > 動力學研究方法

動力學研究方法

發布時間:2022-01-16 08:01:28

A. 什麼是動力學研究

動力學是理論力學的一個分支學科,它主要研究作用於物體的力與物體運動的關系。動力學的研究對象是運動速度遠小於光速的宏觀物體。動力學是物理學和天文學的基礎,也是許多工程學科的基礎。許多數學上的進展也常與解決動力學問題有關,所以數學家對動力學有著濃厚的興趣。

動力學的研究以牛頓運動定律為基礎;牛頓運動定律的建立則以實驗為依據。動力學是牛頓力學或經典力學的一部分,但自20世紀以來,動力學又常被人們理解為側重於工程技術應用方面的一個力學分支。

動力學的發展簡史

力學的發展,從闡述最簡單的物體平衡規律,到建立運動的一般規律,經歷了大約二十個世紀。前人積累的大量力學知識,對後來動力學的研究工作有著重要的作用,尤其是天文學家哥白尼和開普勒的宇宙觀。

17世紀初期,義大利物理學家和天文學家伽利略用實驗揭示了物質的慣性原理,用物體在光滑斜面上的加速下滑實驗,揭示了等加速運動規律,並認識到地面附近的重力加速度值不因物體的質量而異,它近似一個常量,進而研究了拋射運動和質點運動的普遍規律。伽利略的研究開創了為後人所普遍使用的,從實驗出發又用實驗驗證理論結果的治學方法。

17世紀,英國大科學家牛頓和德國數學家萊布尼茲建立了的微積分學,使動力學研究進入了一個嶄新的時代。牛頓在1687年出版的巨著《自然哲學的數學原理》中,明確地提出了慣性定律、質點運動定律、作用和反作用定律、力的獨立作用定律。他在尋找落體運動和天體運動的原因時,發現了萬有引力定律,並根據它導出了開普勒定律,驗證了月球繞地球轉動的向心加速度同重力加速度的關系,說明了地球上的潮汐現象,建立了十分嚴格而完善的力學定律體系。

動力學以牛頓第二定律為核心,這個定律指出了力、加速度、質量三者間的關系。牛頓首先引入了質量的概念,而把它和物體的重力區分開來,說明物體的重力只是地球對物體的引力。作用和反作用定律建立以後,人們開展了質點動力學的研究。

牛頓的力學工作和微積分工作是不可分的。從此,動力學就成為一門建立在實驗、觀察和數學分析之上的嚴密科學,從而奠定現代力學的基礎。

17世紀荷蘭科學家惠更斯通過對擺的觀察,得到了地球重力加速度,建立了擺的運動方程。惠更斯又在研究錐擺時確立了離心力的概念;此外,他還提出了轉動慣量的概念。

牛頓定律發表100年後,法國數學家拉格朗日建立了能應用於完整系統的拉格朗日方程。這組方程式不同於牛頓第二定律的力和加速度的形式,而是用廣義坐標為自變數通過拉格朗日函數來表示的。拉格朗日體系對某些類型問題(例如小振盪理論和剛體動力學)的研究比牛頓定律更為方便。

剛體的概念是由歐拉引入的。18世紀瑞士學者歐拉把牛頓第二定律推廣到剛體,他應用三個歐拉角來表示剛體繞定點的角位移,又定義轉動慣量,並導得了剛體定點轉動的運動微分方程。這樣就完整地建立了描述具有六個自由度的剛體普遍運動方程。對於剛體來說,內力所做的功之和為零。因此,剛體動力學就成為研究一般固體運動的近似理論。

1755年歐拉又建立了理想流體的動力學方程;1758年伯努利得到關於沿流線的能量積分(稱為伯努利方程);1822年納維得到了不可壓縮性流體的動力學方程;1855年許貢紐研究了連續介質中的激波。這樣動力學就滲透到各種形態物質的領域中去了。例如,在彈性力學中,由於研究碰撞、振動、彈性波傳播等問題的需要而建立了彈性動力學,它可以應用於研究地震波的傳動。

19世紀英國數學家漢密爾頓用變分原理推導出漢密爾頓正則方程,此方程是以廣義坐標和廣義動量為變數,用漢密爾頓函數來表示的一階方程組,其形式是對稱的。用正則方程描述運動所形成的體系,稱為漢密爾頓體系或漢密爾頓動力學,它是經典統計力學的基礎,又是量子力學借鑒的範例。漢密爾頓體系適用於攝動理論,例如天體力學的攝動問題,並對理解復雜力學系統運動的一般性質起重要作用。

拉格朗日動力學和漢密爾頓動力學所依據的力學原理與牛頓的力學原理,在經典力學的范疇內是等價的,但它們研究的途徑或方法則不相同。直接運用牛頓方程的力學體系有時稱為矢量力學;拉格朗日和漢密爾頓的動力學則稱為分析力學。

動力學的基本內容

動力學的基本內容包括質點動力學、質點系動力學、剛體動力學、達朗貝爾原理等。以動力學為基礎而發展出來的應用學科有天體力學、振動理論、運動穩定性理論,陀螺力學、外彈道學、變質量力學,以及正在發展中的多剛體系統動力學等。

質點動力學有兩類基本問題:一是已知質點的運動,求作用於質點上的力;二是已知作用於質點上的力,求質點的運動。求解第一類問題時只要對質點的運動方程取二階導數,得到質點的加速度,代入牛頓第二定律,即可求得力;求解第二類問題時需要求解質點運動微分方程或求積分。

動力學普遍定理是質點系動力學的基本定理,它包括動量定理、動量矩定理、動能定理以及由這三個基本定理推導出來的其他一些定理。動量、動量矩和動能是描述質點、質點系和剛體運動的基本物理量。作用於力學模型上的力或力矩,與這些物理量之間的關系構成了動力學普遍定理。

剛體的特點是其質點之間距離的不變性。歐拉動力學方程是剛體動力學的基本方程,剛體定點轉動動力學則是動力學中的經典理論。陀螺力學的形成說明剛體動力學在工程技術中的應用具有重要意義。多剛體系統動力學是20世紀60年代以來,由於新技術發展而形成的新分支,其研究方法與經典理論的研究方法有所不同。

達朗貝爾原理是研究非自由質點系動力學的一個普遍而有效的方法。這種方法是在牛頓運動定律的基礎上引入慣性力的概念,從而用靜力學中研究平衡問題的方法來研究動力學中不平衡的問題,所以又稱為動靜法。

動力學的應用

對動力學的研究使人們掌握了物體的運動規律,並能夠為人類進行更好的服務。例如,牛頓發現了萬有引力定律,解釋了開普勒定律,為近代星際航行,發射飛行器考察月球、火星、金星等等開辟了道路。

自20世紀初相對論問世以後,牛頓力學的時空概念和其他一些力學量的基本概念有了重大改變。實驗結果也說明:當物體速度接近於光速時,經典動力學就完全不適用了。但是,在工程等實際問題中,所接觸到的宏觀物體的運動速度都遠小於光速,用牛頓力學進行研究不但足夠精確,而且遠比相對論計算簡單。因此,經典動力學仍是解決實際工程問題的基礎。

在目前所研究的力學系統中,需要考慮的因素逐漸增多,例如,變質量、非整、非線性、非保守還加上反饋控制、隨機因素等,使運動微分方程越來越復雜,可正確求解的問題越來越少,許多動力學問題都需要用數值計演算法近似地求解,微型、高速、大容量的電子計算機的應用,解決了計算復雜的困難。

目前動力學系統的研究領域還在不斷擴大,例如增加熱和電等成為系統動力學;增加生命系統的活動成為生物動力學等,這都使得動力學在深度和廣度兩個方面有了進一步的發展。

B. 空氣動力學的研究方法

空氣動力學的研究,分理論和實驗兩個方面。理論和實驗研究兩者彼此密切結合,相輔相成。理論研究所依據的一般原理有:運動學方面,遵循質量守恆定律;動力學方面,遵循牛頓第二定律;能量轉換和傳遞方面,遵循能量守恆定律;熱力學方面,遵循熱力學第一和第二定律;介質屬性方面,遵循相應的氣體狀態方程和粘性、導熱性的變化規律等等。
它力學分支學科
靜力學、動力學、流體力學、分析力學、運動學、固體力學、材料力學、復合材料力學、流變學、結構力學、彈性力學、塑性力學、爆炸力學、磁流體力學、空氣動力學、理性力學、物理力學、天體力學、生物力學、計算力學

C. 運動生物力學三種主要實驗研究方法是什麼

運動生物力學運動生物力學

biomechanics

應用力學原理和方法研究生物體的外在機械運動的生物力學分支。狹義的運動生物力學研究體育運動中人體的運動規律。按照力學觀點,人體或一般生物體的運動是神經系統、肌肉系統和骨骼系統協同工作的結果。神經系統控制肌肉系統,產生對骨骼系統的作用力以完成各種機械動作。運動生物力學的任務是研究人體或一般生物體在外界力和內部受控的肌力作用下的機械運動規律,它不討論神經、肌肉和骨骼系統的內部機制,後者屬於神經生理學、軟組織力學和骨力學的研究范疇(生物固體力學)。在運動生物力學中,神經系統的控制和反饋過程以簡明的控制規律代替 , 肌肉活動簡化為受控的力矩發生器,作為研究對象的人體模型可忽略肌肉變形對質量分布的影響,簡化為由多個剛性環節組成的多剛體系統。相鄰環節之間以關節相連接,在受控的肌力作用下產生圍繞關節的相對轉動,並影響系統的整體運動。

對於人體運動的研究最早可追溯到15世紀達·芬奇在力學和解剖學基礎上對人體運動器官的形態和機能的解釋。18世紀已出現對貓在空中轉體現象的實驗和理論研究。運動生物力學作為一門學科是20世紀60年代在體育運動、計算技術和實驗技術蓬勃發展的推動下形成的。70年代中H.哈茲將人體的神經-肌肉-骨骼大系統作為研究對象,利用復雜的數學模型進行數值計算,以解釋最基本的實驗現象。T.R.凱恩將描述人體運動的坐標區分為內變數和外變數,前者描述肢體的相對運動,為可控變數;後者描述人體的整體運動,由動力學方程確定。這種簡化的研究方法有可能將力學原理直接用於人體實際運動的模擬和理論分析。由於生物體存在個體之間的差異性,實驗研究在運動生物力學中佔有特殊重要地位。實驗運動生物力學利用高速攝影和計算機解析、光電計時器、加速度計、關節角變化、肌電儀和測力台等工具量測人體運動過程中各環節的運動學參數以及外力和內力的變化規律。

在實踐中,運動生物力學主要用於確定各專項體育運動的技術原理,作為運動員的技術診斷和改進訓練方法的理論依據。此外,運動生物力學在運動創傷的防治,運動和康復器械的改進,仿生機械如步行機器人的設計等方面也有重要作用。同時還為運動員選材提供了依據.

D. 請教高手:佛洛姆所提出的動力學的研究方法是什麼

弗羅姆(Erick Fromm,19001980)不過是新弗洛伊德派的代表罷了,他的研究方法沿襲了弗洛伊德的做法,所以讀讀弗洛伊德的精神分析學就知道了,相關著作:
《夢的解析》(1900)
《性學三論》(1905)
《精神分析引論》(1915一1917)

E. 物理學的研究方法有哪些

一、控制變數法:通過固定某幾個因素轉化為多個單因素影響某一量大小的問題.

二、等效法:將一個物理量,一種物理裝置或一個物理狀態(過程),用另一個相應量來替代,得到同樣的結論的方法.

三、模型法:以理想化的辦法再現原型的本質聯系和內在特性的一種簡化模型.

四、轉換法(間接推斷法)把不能觀察到的效應(現象)通過自身的積累成為可觀測的宏觀物或宏觀效應.

五、類比法:根據兩個對象之間在某些方面的相似或相同,把其中某一對象的有關知識、結論推移到另一個對象中去的一種邏輯方法.

六、比較法:找出研究對象之間的相同點或相異點的一種邏輯方法.

七、歸納法:從一系列個別現象的判斷概括出一般性判斷的邏輯的方法.

(5)動力學研究方法擴展閱讀:

物理學的本質:物理學並不研究自然界現象的機制(或者根本不能研究),我們只能在某些現象中感受自然界的規則,並試圖以這些規則來解釋自然界所發生任何的事情。我們有限的智力總試圖在理解自然,並試圖改變自然,這是物理學,甚至是所有自然科學共同追求的目標。

六大性質

1.真理性:物理學的理論和實驗揭示了自然界的奧秘,反映出物質運動的客觀規律。

2.和諧統一性:神秘的太空中天體的運動,在開普勒三定律的描繪下,顯出多麼的和諧有序。物理學上的幾次大統一,也顯示出美的感覺。

牛頓用三大定律和萬有引力定律把天上和地上所有宏觀物體統一了。麥克斯韋電磁理論的建立,又使電和磁實現了統一。愛因斯坦質能方程又把質量和能量建立了統一。光的波粒二象性理論把粒子性、波動性實現了統一。愛因斯坦的相對論又把時間、空間統一了。

3.簡潔性:物理規律的數學語言,體現了物理的簡潔明快性。如:牛頓第二定律,愛因斯坦的質能方程,法拉第電磁感應定律。

4.對稱性:對稱一般指物體形狀的對稱性,深層次的對稱表現為事物發展變化或客觀規律的對稱性。如:物理學中各種晶體的空間點陣結構具有高度的對稱性。豎直上拋運動、簡諧運動、波動鏡像對稱、磁電對稱、作用力與反作用力對稱、正粒子和反粒子、正物質和反物質、正電和負電等。

5.預測性:正確的物理理論,不僅能解釋當時已發現的物理現象,更能預測當時無法探測到的物理現象。例如麥克斯韋電磁理論預測電磁波存在,盧瑟福預言中子的存在,菲涅爾的衍射理論預言圓盤衍射中央有泊松亮斑,狄拉克預言電子的存在。

6.精巧性:物理實驗具有精巧性,設計方法的巧妙,使得物理現象更加明顯。

對於物理學理論和實驗來說,物理量的定義和測量的假設選擇,理論的數學展開,理論與實驗的比較是與實驗定律一致,是物理學理論的唯一目標。

人們能通過這樣的結合解決問題,就是預言指導科學實踐這不是大唯物主義思想,其實是物理學理論的目的和結構。

在不斷反思形而上學而產生的非經驗主義的客觀原理的基礎上,物理學理論可以用它自身的科學術語來判斷。而不用依賴於它們可能從屬於哲學學派的主張。在著手描述的物理性質中選擇簡單的性質,其它性質則是群聚的想像和組合。

通過恰當的測量方法和數學技巧從而進一步認知事物的本來性質。實驗選擇後的數量存在某種對應關系。一種關系可以有多數實驗與其對應,但一個實驗不能對應多種關系。也就是說,一個規律可以體現在多個實驗中,但多個實驗不一定只反映一個規律。

F. 海岸動力學的研究方法主要包括哪些

理論分析,數值模擬,模型實驗,現場調查

G. 地球化學動力學研究步驟和方法

地球化學動力學研究步驟如圖4.11 所示:首先根據研究的地質-地球化學問題,視問題的主次,忽略次要的、突出主要的,使問題合理簡化,形成地球化學動力學的概念模型(conceptual models)。如在研究熱液成礦系統的熱流體對流遷移過程時可側重熱驅動流體的動力學過程,而忽略流體與圍岩的化學反應;在研究礦物蝕變導致礦物自中心到邊緣成分變化、礦物與流體同位素交換等過程時則主要考慮組分的擴散和離子交換反應;研究矽卡岩化過程除考慮流體的滲濾外,還要考慮流體中主要組分K、Na、Ca、Mg、Si、Al的擴散和流體與圍岩的化學作用。對經歷了多期次、多階段、多物質來源的地球化學作用的地球化學系統要重點研究主要階段和主要物質來源。對諸如區域地球化學演化這樣復雜的動力學問題,應對所涉及的各個子系統和過程分別建立動力學模型,從各個側面去把握復雜體系的動力學行為。

圖4.11 地球化學動力學研究的步驟和方法框圖

建立地球化學動力學概念模型,主要有兩條研究途徑:一是應用化學動力學、流體動力學等原理及其相應的數學表述,建立地球化學動力學的數學模型,也稱動力學模型(dynamic models),並在此基礎上,應用有限元、有限差分等數值計算方法,通過計算機數值模擬,獲得動力學系統的演化規律;另一途徑是地球化學動力學實驗。目前主要限於兩類地球化學動力學實驗:一類是高溫高壓水-岩反應動力學實驗,典型的實驗裝置和原理見圖4.12,側重於開

放體系中流體與礦物或岩石顆粒之間的化學反應機制和反應速率研究;另一類實驗是在一個大的容器(稱tank)內通過激光攝像和各種探頭實時檢測容器內流體的運動和成分變化,可以模擬宏觀尺度的地球化學輸運-反應動力學過程,但較難控制溫、壓條件,大多在常壓下實驗。

圖4.12 典型的水-岩反應動力學實驗裝置示意圖

無論是數值模擬還是實驗模擬,都需先確定模型所需的各種動力學參數如流體的密度、粘度系數、圍岩的孔隙度和滲透率、顆粒比表面積等,還要根據實驗研究對象確定邊界條件和初始條件。

數值模擬和實驗模擬各有其長,可以相互補充。計算機模擬的優勢是可以模擬較復雜的地球化學體系,且可以方便地修改模型,或改變動力學參數和邊界、初始條件,得到各種模擬結果,從而研究不同條件下地球化學體系的演化規律。但數值模擬的成果取決於所建立數學模型的合理性和計算機軟體系統的正確性,受研究者主觀判斷和水平的影響。實驗模擬能較為宏觀地模擬地球化學過程,結果更為可信,但受實驗設備和實驗條件等限制,實驗研究只限於比較簡單的地球化學過程和簡單的邊界條件,且較費時費力,目前研究比較成熟的主要限於水-岩反應動力學實驗。

H. 葯代動力學的研究方法

根據不同的葯,有具體不同要求。如果是人的葯代動力學,可以找CRO公司;如果是動物的,也可以找臨床前CRO,在我的網站上有很多。

I. 系統動力學分析方法有多種,比較典型的方法

力學是一門獨立的基礎學科,是有關力、運動和介質(固體、液體、氣體是撒旦和等離子體),宏、細、微觀力學性質的學科,研究以機械運動為主,及其同物理、化學、生物運動耦合的現象。力學是一門基礎學科,同時又是一門技術學科。它研究能量和力以及它們與固體、液體及氣體的平衡、變形或運動的關系。力學可粗分為靜力學、運動學和動力學三部分,靜力學研究力的平衡或物體的靜止問題;運動學只考慮物體怎樣運動,不討論它與所受力的關系;動力學討論物體運動和所受力的關系。現代的力學實驗設備,諸如大型的風洞、水洞,它們的建立和使用本身就是一個綜合性的科學技術項目,需要多工種、多學科的協作。

J. 什麼叫動力學

動力學是理論力學的一個分支學科,它主要研究作用於物體的力與物體運動的關系。動力學的研究對象是運動速度遠小於光速的宏觀物體。動力學是機械工程與航空工程的基礎課程。許多數學上的進展也常與解決動力學問題有關,所以數學家對動力學有著濃厚的興趣。

動力學(Dynamics)是經典力學的一門分支,主要研究運動的變化與造成這變化的各種因素。換句話說,動力學主要研究的是力對於物體運動的影響。運動學則是純粹描述物體的運動,完全不考慮導致運動的因素。更仔細地說,動力學研究由於力的作用,物理系統怎樣隨著時間的演進而改變。動力學的基礎定律是艾薩克·牛頓提出的牛頓運動定律。對於任意物理系統,只要知道其作用力的性質,引用牛頓運動定律,就可以研究這作用力對於這物理系統的影響。在經典電磁學里,物理系統的動力狀況涉及了經典力學與電磁學,需要使用牛頓運動定律、麥克斯韋方程、洛倫茲力方程來描述。自20世紀以來,動力學又常被人們理解為側重於工程技術應用方面的一個力學分支。動力學是機械工程與航空工程的基礎課程。

動力學的基本內容包括質點動力學、質點系動力學、剛體動力學、達朗貝爾原理等。以動力學為基礎而發展出來的應用學科有天體力學、振動理論、運動穩定性理論,陀螺力學、外彈道學、變質量力學,以及正在發展中的多剛體系統動力學、晶體動力學等。

兩個抽象模型
質點和質點系。質點是具有一定質量而幾何形狀和尺寸大小可以忽略不計的物體。

兩類基本內容
質點動力學有兩類基本問題:一是已知質點的運動,求作用於質點上的力;二是已知作用於質點上的力,求質點的運動。求解第一類問題時只要對質點的運動方程取二階導數,得到質點的加速度,代入牛頓第二定律,即可求得力;求解第二類問題時需要求解質點運動微分方程或求積分。

動力學普遍定理
動力學普遍定理是質點系動力學的基本定理,它包括動量定理、動量矩定理、動能定理以及由這三個基本定理推導出來的其他一些定理。動量、動量矩和動能是描述質點、質點系和剛體運動的基本物理量。作用於力學模型上的力或力矩,與這些物理量之間的關系構成了動力學普遍定理。

剛體
剛體的特點是其質點之間距離的不變性。歐拉動力學方程是剛體動力學的基本方程,剛體定點轉動動力學則是動力學中的經典理論。陀螺力學的形成說明剛體動力學在工程技術中的應用具有重要意義。多剛體系統動力學是20世紀60年代以來,由於新技術發展而形成的新分支,其研究方法與經典理論的研究方法有所不同。

達朗貝爾原理
達朗貝爾原理是研究非自由質點系動力學的一個普遍而有效的方法。這種方法是在牛頓運動定律的基礎上引入慣性力的概念,從而用靜力學中研究平衡問題的方法來研究動力學中不平衡的問題,所以又稱為動靜法。

閱讀全文

與動力學研究方法相關的資料

熱點內容
硫酸粘菌素效價計算方法 瀏覽:310
阿克曼角異響解決方法 瀏覽:901
四平行八平行計算方法 瀏覽:247
相機三腳架的使用方法 瀏覽:84
原子變數的計算方法 瀏覽:491
報表的正確方法圖解 瀏覽:381
蘋果下載鬧鈴鈴聲怎麼設置在哪裡設置方法 瀏覽:42
一個月快速增重20斤的方法 瀏覽:108
如何降低肌肉興奮的方法 瀏覽:334
電腦閱卷快速寫字方法 瀏覽:949
林海真假雅馬哈摩托車的鑒別方法 瀏覽:605
無線光貓連接列印機的方法 瀏覽:286
人都變瘦的方法是什麼呢 瀏覽:107
醫用污水提升泵安裝方法 瀏覽:77
電容電壓低的解決方法 瀏覽:973
如何減臉上的贅肉最有效的方法 瀏覽:489
哪些方法可以減少鐵生銹 瀏覽:721
如何放鬆快樂的學習的方法 瀏覽:831
中網安裝方法 瀏覽:529
早搏的症狀和治療方法 瀏覽:558