導航:首頁 > 研究方法 > 數據角度分析學習方法

數據角度分析學習方法

發布時間:2022-11-28 11:38:09

如何真正學好數據分析

除了數據分析的道,再來講講數據分析的術,即工具和手段,如果你進入了一個企業,希望盡快成長為一個數據分析師,還需要在以下4個方面加強學習,當然僅供參考,不用盡信,西線學院相信每個人都需要形成自己的學習軌跡,不需要照搬它人。
數據學習
業務學習有一個毛病,比如你看案例,往往接觸到的數據或使用的數據是局部的,因此,你的視野會受局限,在大多數公司里,很多數據分析師其實缺乏全局的數據視野,因為他不知道到底有多少數據,因此,永遠只能在已知的數據里轉圈圈,當然,可能也夠了,但我這里要說得是做得最好。
數據分析師應該主動的向IT部門拿到最全的數據字典,對於數據字典進行持續的學習,了解每張表甚至欄位的業務含義,理解的越透徹,你的分析潛力就越大。更有甚者,筆者還建議你去理解源系統,從業務實現流程角度出發去理解對應數據的含義,因為有時候,簡單的業務描述在數據上的表達卻是非常復雜的,業務語言與數據語言很多時候是1對多關系,打個比方,你看到業務系統上某個菜單的功能,對應到系統中的數據是怎樣的,你能還原出來嗎?
當然,大多數數據分析師可能不需要進行系統數據學習,反正實踐中慢慢熟悉好了,但自頂向下的數據學習方式可以讓你有一個更好的基礎和更全局的數據視野。
技術學習
有幾個層面的東西要學,依賴於實際的場景和你希望達到的階段:
首先,你要學會從資料庫或者其它源頭獲取數據,很多數據分析師仍然依賴於IT人員獲取數據,但大數據時代,真的有必要自己動手了,因為依賴他人效率太低了,起碼你要會SQL,SQL甚至基本上是為統計取數而生的方便工具,圖形化的透視方式也遠遠沒有SQL的表達能力強,這是基本功,其實, SQL就能解決大多數統計取數問題。
其次,你要會一些數據分析工具,EXCEL是最基本的,其實大多數數據分析基於EXCEL應付已經綽綽有餘了,EXCEL的圖形表達能力也已經夠強。
最後,如果你希望更深一層,那就學習R語言、PYTHON、SPSS,SAS等,他們提供了更強大的挖掘能力,可以幫你把統計學的數據挖掘精髓發揮的淋漓盡致。
當然,如果有可能,你也要熟悉一下你所在企業的數據倉庫或大數據平台,懂得一些基本的操作,對於你提升分析的自由度和靈活性也大有好處,比如自己搞個腳本定時跑數據,打造個人的數據集市,現在數據分析的概念也越來越大,很多公司把對於大數據平台的數據處理能力也納入到數據分析師的技能范疇。
以上層層遞推,其實數據分析師每在IT上前進一步,帶來的效益是幾何級的,比如你懂Hadoop,那麼,你就可能離大數據更近一點。
統計理論
終於講到大家都很關心的統計學知識了,推薦一些書吧:
《深入淺出數據分析》:講了數據分析到底是干什麼的?數據分析都包含什麼內容?對新人們還是有一定的作用,難度容易。
《深入淺出統計學》:要了解常用數理統計模型(描述統計指標、聚類、決策樹、貝葉斯分類、回歸等),重點放在學習模型的工作原理、輸入內容和輸出內容,至於具體的數學推導,學不會可暫放一邊,難度容易。
《極簡統計學》:對統計推斷部分的闡述十分清晰,適合非統計背景的人工閱讀
《統計學:從數據到結論》:簡明精要,統計概念和R可以一起學習
《數據挖掘導論》:最近幾年數據挖掘教材中比較好的一本書,被美國諸多大學的數據挖掘課作為教材,筆者也最近買的,很好,很多概念解釋的比較清楚,難度中上。
這些都是很實用的書籍,但結合了實踐學更好,對於特定的業務場景,就找對應的書看吧,網上推薦的也很多了,大家自己搜索。
表達能力
作為數據分析人員,PPT製作能力是極其重要的一項能力,你總要通過某種形式表達出你的觀點,很核心的一點是需要有嚴密的邏輯,甚至滴水不漏,可以通過思維導圖來訓練自己,但實際的格式表達卻有點八股,一般都是現狀分析,原因剖析、分析結論和後續措施啥的,萬變不離其宗,當然你需要花一點時間來了解如何做重點突出,如何圖文並茂,PPT的寫作決非一日之功。

❷ 數據分析的基本方法有哪些

數據分析的三個常用方法
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

❸ 如何學習數據分析

第一方面是數學基礎,第二方面是統計學基礎,第三方面是計算機基礎。要想在數據分析的道路上走得更遠,一定要注重數學和統計學的學習。數據分析說到底就是尋找數據背後的規律,而尋找規律就需要具備演算法的設計能力,所以數學和統計學對於數據分析是非常重要的。

而想要快速成為數據分析師,則可以從計算機知識開始學起,具體點就是從數據分析工具開始學起,然後在學習工具使用過程中,輔助演算法以及行業致死的學習。學習數據分析工具往往從Excel工具開始學起,Excel是目前職場人比較常用的數據分析工具,通常在面對10萬條以內的結構化數據時,Excel還是能夠勝任的。對於大部分職場人來說,掌握Excel的數據分析功能能夠應付大部分常見的數據分析場景。

在掌握Excel之後,接下來就應該進一步學習資料庫的相關知識了,可以從關系型資料庫開始學起,重點在於Sql語言。掌握資料庫之後,數據分析能力會有一個較大幅度的提升,能夠分析的數據量也會有明顯的提升。如果採用資料庫和BI工具進行結合,那麼數據分析的結果會更加豐富,同時也會有一個比較直觀的呈現界面。

數據分析的最後一步就需要學習編程語言了,目前學習Python語言是個不錯的選擇,Python語言在大數據分析領域有比較廣泛的使用,而且Python語言自身比較簡單易學,即使沒有編程基礎的人也能夠學得會。通過Python來採用機器學習的方式實現數據分析是當前比較流行的數據分析方式。

對大數據分析有興趣的小夥伴們,不妨先從看看大數據分析書籍開始入門!B站上有很多的大數據教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

❹ 數據分析的方法有哪些

② 數據分析為了挖掘更多的問題,並找到原因;
③ 不能為了做數據分析而坐數據分析。
2、步驟:① 調查研究:收集、分析、挖掘數據
② 圖表分析:分析、挖掘的結果做成圖表
3、常用方法: 利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數據進行挖掘。 ①分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。 ②回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。 ③聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。 ④關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。 ⑤特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。 ⑥變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。 ⑦Web頁挖掘。

❺ 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

❻ 中學數學數據分析能力的培養方法 如何培養學生數據分析能力

1、通過統計教學,激發學生的數據分析觀念。

2、統計學的一個核心就是數據分析。不論是統計還是概率,都要基於數據,基於對數據的分析,在進行預測的同時,為了使預測更合理,也需要收集更多的數據。如要選誰參加數學競賽,如果投票選舉,那麼就不具備統計觀念,也就會不合理。但如果意識到事前要收集以往學習成績,再通過整理與分析數據,然後去選選手肯定是比較可靠的。要想辦法激發學生的學習動機。可以從以下兩方面考慮:一是要選擇合適的素材。二是要讓學生感受到數據分析的現實意義。我們不但要讓學生知道這些聯系,還要培養學生有意識地從統計的角度思考有關問題,也就是遇到問題時能想到用統計的知識分析數據的能力。

3、鼓勵學生從多角度分析數據,掌握數據分析的方法,通過數據分析,培養學生思維的靈活性。

4、義務教育階段的統計學習要讓學生有意識地、正確地運用統計來解決實際問題,又能理智地分析他人的統計數據,以作出合理的判斷。目前要求的平均數、中位數、眾數,它們都是刻畫一組數據集中情況的統計量。只有在數據分布偏態(不對稱)的情況下,才會出現均值、中位數和眾數的區別,這也就是我們常說的平均數容易.受極端數據的影響。進行數據分析時經常使用平均數的理由,利用平均數代表數據,可以使二次損失(誤差平方和)

5、達到最小。而利用中位數代表數據,是使一次損失(誤差絕對值的和)最小。但是現在平均數教學中也存在著問題,其中之一是學生學習了平均數,會進行計算,但是當遇到真正的數據需要分析時,卻很少想到用平均數。所以說:義務教育階段統計教學的關鍵是發展學生的數據分析觀念,使他們想到用數據。學生要會從不同的統計圖表中獲取有用的數據,能從數據中提取一些信息。

6、通過數據分析,體驗隨機觀念。

7、老師在教學可能性時,注重讓學生動手操作實驗,課堂氣氛很好,卻忽略了對數據的分析。課後卻發現學生的作業「箱子里有5個紅球,1個白球。摸到球的可能性大」。還有一大部分學生填白球,就問我為什麼?我認為應先讓學生操作實驗,用實驗獲得數據,再對數據進行分析獲取頻率,用頻率來推斷概率。這種通過對數據進行分析處理。

❼ 怎樣對數據進行分析—數據分析的六大步驟

        時下的大數據時代與人工智慧熱潮,相信很多人都會對數據分析產生很多的興趣,其實數據分析師是Datician的一種,指的是不同行業中,專門從事行業數據收集,整理,分析,並依據數據做出行業研究、評估和預測的專業人員。

        很多人學習過數據分析的知識,但是當真正接觸到項目的時候卻不知道怎樣去分析了,導致這樣的原因主要是沒有屬於自己的分析框架,沒有一個合理的分析步驟。那麼數據分析的步驟是什麼呢?比較讓大眾認可的數據分析步驟分為

六大步驟。只有我們有合理的分析框架時,面對一個數據分析的項目就不會無從下手了。

        無論做什麼事情,首先我們做的時明確目的,數據分析也不例外。在我們進行一個數據分析的項目時,首先我們要思考一下為什麼要進展這個項目,進行數據分析要解決什麼問題,只有明確數據分析的目的,才不會走錯方向,否則得到的數據就沒有什麼指導意義。

        明確好數據分析目的,梳理分析思路,並搭建分析框架,把分析目的分解成若干不同的分析要點,即如何具體開展數據分析,需要從那幾個角度進行分析,採用哪些分析指標(各類分析指標需合理搭配使用)。同時,確保分析框架的體系化和邏輯化,確定分析對象、分析方法、分析周期及預算,保證數據分析的結果符合此次分析的目的。

        數據收集的按照確定的數據分析框架,收集相關數據的過程,它為數據分析提供了素材和依據。常見的數據收集方式主要有以下幾種

        一般地我們收集過來的數據都是雜亂無章的,沒有什麼規律可言的,所以就需要對採集到的數據進行加工處理,形成合適的數據樣式,保證數據的一致性和有效性。一般在工作中數據處理會佔用我們大部分的時間

        數據處理的基本目的是從大量的,雜亂無章的數據中抽取到對接下來數據分析有用的數據形式。常見的數據處理方式有 數據清洗、數據分組、數據檢索、數據抽取 等,使用的工具有 Excel、SQL、Python、R 語言等。

        對數據整理完畢之後,就需要對數據進行綜合的分析。數據分析方式主要是使用適當的分析方法和工具,對收集來的數據進行分析,提取有價值的信息,形成有效結論的過程。

        在確定數據分析思路的階段,就需要對公司業務、產品和分析工具、模型等都有一定的了解,這樣才能更好地駕馭數據,從容地進行分析和研究,常見的分析工具有 SPSS、SAS、Python、R語言 等,分析模型有 回歸、分類、聚類、關聯、預測 等。其實數據分析的重點不是採用什麼分析工具和模型而是找到合適的分析工具和模型,從中發現數據中含有的規律。

        通過對數據的收集、整理、分析之後,隱藏的數據內部的關系和規律就會逐漸浮現出來,那麼通過什麼方式展現出這些關系和規律,才能讓別人一目瞭然。一般情況下,是通過表格和圖形的方式來呈現出來。多數情況下,人們通常願意接受圖形這樣數據展現方式,因為它能更加有效、直觀地傳遞出數據所要表達的觀點。

        常用數據圖表 有餅圖、柱形圖、條形圖、折線圖、氣泡圖、散點圖、雷達圖、矩陣圖 等圖形,在使用圖形展現的情況下需要注意一下幾點:

        當分析出來最終的結果之後,我們是知道這部分數據展現出來的意義,適用的場景。但是如果想讓更多人了解你分析出來的東西,讓你的分析成果為眾人所熟知,這時就需要一份完美的PPT報告,一個邏輯合理的故事。這樣的分析結果才是最完美的。

        一份好的數據分析報告,首先需要有一個好的分析框架,並且圖文並茂,層次清晰,能夠讓閱讀者一目瞭然。結構清晰、主次分明可以使閱讀者正確理解報告內容;圖文並茂,可以令數據更加生動活潑,提高視覺沖擊力,有助於閱讀者更形象,直觀地看清楚問題和結論,從而產生思考。

                                                           數據分析的四大誤區

1、分析目的不明確,不能為了分析而分析 。只有明確目的才能更好的分析

2、缺乏對行業、公司業務的認知,分析結果偏離實際 。數據必須和業務結合才有意義,清楚所在行業的整體結構,對行業的上游和下游的經營情況有大致的了解,在根據業務當前的需要,制定發展計劃,歸類出需要整理的數據,同時,熟悉業務才能看到數據背後隱藏的信息。

3、為了方法而方法,為了工具而工具 。只要能解決問題的方法和工具就是好的方法和工具

4、數據本身是客觀的,但被解讀出來的數據是主觀的 。同樣的數據由不同的人分析很可能得出完全相反的結論,所以一定不能提前帶著觀點去分析

❽ 數據分析方法

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

❾ 新手怎麼學習數據分析

1、在選擇數據分析師這條路之前,一定要思考再三,雖然這條路看著光鮮靚麗(至少職業的薪酬收入類比其他行業不會好不少),但也是一條艱難前行之路,充滿著未知、荊棘和困惑。

2、雖然數據分析這個行業有著天然的專業鄙視鏈(文理科的邏輯思維功底、編程語言接受程度上以及數理統計基礎實實在在的存在差別,這也是甲方更信賴理工科出身的重要原因,因為社科或文藝類專業,很少有學校會嚴格地按照數理邏輯去制定學生的課程培養計劃),但是並不代表文科生沒有任何機會,因為大學以前,其實我們都沒正式接觸過編程或統計學,大學本科更多的是提升一個人的思維、而不是過硬的專研能力。

3、如果你要堅定的選擇這條路,就必須克服各種依賴症,比如安裝一個R語言或Python軟體,從龐大的數據中得出客觀的結論過程,用學到的知識去分析數據的價值等等,一定要動手動腦去實戰,不要單憑以前的文科思維(更注重思維的創造和個性的發揚),理性思維和客觀科學更重要。

4、動手實踐和實習參與項目是很好的數據科學或者數據分析的開端,只學不練假把式,只有直接用於實戰,才能看出來你學的東西到底有多少能夠落地,能夠用於提升業務的價值。

5、在求職以前,倘若時間允許,把R語言、Python(數據科學相關模塊)、SQL(可以選擇一個平台,比如MySQL)這三大關卡早點過了。

6、如果你還是在校學生,學會分清各種事情的輕重緩急,比如各種無聊拉人湊場子講座、聽課發禮品的營銷洗腦課,無效應酬社交,如果全部都用在數據分析的學習上,你會發現你的時間多了很多,自然你也可以更早地追上同行的腳步。

7、腳踏實地的去走自己的路,不會的多寫、多看、多問(問真正有價值的問題)、多總結、多交流,給自己足夠的轉行周期。

8、學會融會貫通不同領域的知識,觸類旁通、橫向遷移,這樣學起來才有越學越有通透的感覺,否則你只能增加筆記本的厚度,徒增煩惱罷了。

閱讀全文

與數據角度分析學習方法相關的資料

熱點內容
中式棉襖製作方法圖片 瀏覽:63
五菱p1171故障碼解決方法 瀏覽:858
男士修護膏使用方法 瀏覽:546
電腦圖標修改方法 瀏覽:607
濕氣怎麼用科學的方法解釋 瀏覽:537
910除以26的簡便計算方法 瀏覽:805
吹東契奇最簡單的方法 瀏覽:704
對腎臟有好處的食用方法 瀏覽:98
電腦四線程內存設置方法 瀏覽:512
數字電路通常用哪三種方法分析 瀏覽:13
實訓課程的教學方法是什麼 瀏覽:525
苯甲醇乙醚鑒別方法 瀏覽:82
蘋果手機微信視頻聲音小解決方法 瀏覽:700
控制箱的連接方法 瀏覽:75
用什麼簡單的方法可以去痘 瀏覽:789
快速去除甲醛的小方法你知道幾個 瀏覽:803
自行車架尺寸測量方法 瀏覽:124
石磨子的製作方法視頻 瀏覽:152
行善修心的正確方法 瀏覽:403
土豆燉雞湯的正確方法和步驟 瀏覽:276