㈠ 數學四大思想八大方法是什麼
數學四大思想:數形結合思想,轉化思想,分類討論思想,整體思想。八大數學方法:配方法,因式分解法,待定系數法,換元法,構造法,等積法,反證法,判別式法。
以上是學習中常用的思想方法。這些都是學習數學的過程中,經常運用的。不同學習階段,數學思想方法的運用也不同,側重點各有差異。思想方法分類也不盡相同。
方法概述
函數的思想,就是用運動和變化的觀點,分析和研究數學中的數量關系,建立函數關系或構造函數,運用函數的圖像和性質去分析問題、轉化問題,從而使問題獲得解決的數學思想。
方程的思想,就是分析數學問題中變數間的等量關系,建立方程或方程組,或者構造方程,通過解方程或方程組,或者運用方程的性質去分析、轉化問題,使問題獲得解決的數學思想。
㈡ 學習數學的方法有哪些
初中數學寶典,你知道學習數學最重要的是什麼嗎?
在初中學習數學這們課程的時候很多的學生都是比較煩惱的,因為這們課程是非常難的,並且難點非常多,很多的學生在剛開始學習的時候還可以更得上,但是過一段時間之後就會變得非常的吃力,那麼你知道初中數學寶典是什麼嗎?我們來了解一下吧!
復習知識點
以上就是初中數學寶典的內容,當學習吃力的時候可以先復習一下之前的內容,當然這個時候之前記得筆記就可以用來復習了,這樣可以更好的幫助我們學習後期的內容,並且可以改善學習吃力的問題.
㈢ 何為基本數學方法具體有哪些(最好有典型點的例題)
學直覺的含義
數學直覺是一種直接反映數學對象結構關系的心智活動形式,它是人腦對於數學對象事物的某種直接的領悟或洞察。它在運用知識組塊和直感時都得進行適當的加工,將腦中貯存的與當前問題相似的塊,通過不同的直感進行聯結,它對問題的分解、改造整合加工具有創造性的加工。
數學直覺,可以簡稱為數覺(有很多人認為它屬於形象思維),但是並非數學家才能產生數學的直覺,對於學習數學已經達到一定水平的人來說,直覺是可能產生的,也是可以加以培養的。數學直覺的基礎在於數學知識的組塊和數學形象直感的生長。因此如果一個學生在解決數學新問題時能夠對它的結論作出直接的迅速的領悟,那麼我們就應該認為這是數學直覺的表現。
數學是對客觀世界的反映,它是人們對生活現象的世界運行的秩序直覺的體現,再以數學的形式將思考的理性過程格式化。數學最初的概念是基於直覺,數學在一定程度上就是在問題解決中得到發展,問題解決也離不開直覺,下面我們就以數學問題的證明為例,來考察直覺在證明過程中所起的作用。
一個數學證明可以分解為許多基本運算或多個「演繹推理元素」,一個成功的組合,彷彿是一條從出發點到目的地的通道,一個個基本運算和「演繹推理元素」就是這條通道的一個個路段,當一個成功的證明擺在我們面前開始,邏輯可以幫助我們確信沿著這條路必定能順利地到達目的地,但是邏輯卻不能告訴我們,為什麼這些路徑的選取與這樣的組合可以構成一條通道。事實上,出發不久就會遇上叉路口,也就是遇上了正確選擇構成通道的路段的問題。龐加萊認為,即使能復寫一個成功的數學證明,但不知道是什麼東西造成了證明的一致性。……,這些元素安置的順序比元素本身更加重要。笛卡爾認為在數學推理中的每一步,直覺能力都是不可缺少的。就好似我們平時打籃球,要等靠球感一樣,在快速運動中來不及去作邏輯判斷,動作只是下意識的,而下意識的動作正是平時訓練產生的一種直覺。
在教育過程中,老師由於把證明過程過分的嚴格化、程序化,學生只是見到一具僵硬的邏輯外殼,直覺的光環被掩蓋住了,而把成功往往歸功於邏輯的功勞,對自己的直覺反而不覺得。學生的內在潛能沒有被激發出來,學生的興趣沒有被調動,得不到思維的真正樂趣。《中國青年報》曾報道「約30%的初中生學習了平面幾何推理之後,喪失了對數學學習的興趣」,這種現象應該引起數學教育者的重視與反思。
二、 數學直覺思維的主要特點
直覺思維有以下四個主要特點:
(1) 簡約性。直覺思維是對思維對象從整體上考察,調動自己的全部知識經驗,通過豐富的想像作出的敏銳而迅速的假設,猜想或判斷,它省去了一步一步分析推理的中間環節,而採取了「跳躍式」的形式。它是一瞬間的思維火花,是長期積累上的一種升華,是思維者的靈感和頓悟,是思維過程的高度簡化,但是它卻清晰的觸及到事物的「本質」。
(2) 經驗性。直覺所運用的知識組塊和形象直感都是經驗的積累和升華。直覺不斷地組合老經驗,形成新經驗,從而不斷提高直覺的水平。
(3) 迅速性。直覺解決問題的過程短暫,反應靈敏,領悟直接。
(4) 或然性。直覺判斷的結果不一定正確。直覺判斷的結果不一定都正確,這是由於組塊本身及其聯結存在模糊性所致。
三、 數學直覺思維的培養
從前面的分析可知,培養數學直覺思維的重點是重視數學直覺。徐利治教授指出:「數學直覺是可以後天培養的,實際上每個人的數學直覺也是不斷提高的。」也就是說數學直覺是可以通過訓練提高的。美國著名心理學家布魯納指出:「直覺思維、預感的訓練,是正式的學術學科和日常生活中創造性思維的很受忽視而重要的特徵。」並提出了「怎樣才有可能從早年級起便開始發展學生的直覺天賦」。我們的學生,特別是差生,都有著極豐富的直覺思維的潛能,關鍵在於教師的啟發誘導和有意培養。在明確了直覺的意義的基礎上,就可以從下列各個方面入手來培養數學直覺:
1、 重視數學基本問題和基本方法的牢固掌握和應用,以形成並豐富數學知識組塊。
直覺不是靠「機遇」,直覺的獲得雖然是有偶然性,但決不是無緣無故的憑空臆想,而是以扎實的知識為基礎。若沒有深厚的功底,是不會迸發出思維的火花。所以對數學基本問題和基本方法的牢固掌握和應用是很重要的。所謂知識組塊又稱知識反應塊。它們由數學中的定義、定理、公式、法則等組成,並集中地反映在一些基本問題,典型題型或方法模式。許多其他問題的解決往往可以歸結成一個或幾個基本問題,化為某類典型題型,或者運用某種方式模式。這些知識組塊由於不一定以定理、性質、法則等形式出現,而是分布於例題或問題之中,因此不容易引起師生的特別重視,往往被淹沒在題海之中,如何將它們篩選出來加以精練是數學中值得研究的一個重要課題。
在解數學題時,主體在明了題意並抓住題目條件或結論的特徵之後,往往一個念頭閃現就描繪出了解題的大致思路。這是尖子學生經常會碰到的事情,在他們大腦中貯存著比一般學生更多的知識組塊和形象直感,因此快速反應的數學直覺就應運而生。
例:已知 ,求證:
分析 觀察題目條件與結論的式結構後會閃現兩個念頭:(1)在a、b、c為任意值時,等式通常是不成立的,從而在a、b、c之間存在比題給條件更簡單的關系;(2)作為特例考慮,顯然三個數中有兩個互為相反數時,條件與結論均成立,這意味著條件式子含有因式(a+b)或(b+c)或(c+a),由於輪換對稱性,則必含有(a+b)(b+c) (c+a)於是數學直覺形成,只需化簡條件至既定目標即可推得結論。這個直覺來源於過去的運算經驗—知識組塊,也來源於對題給的圖式表象的象質轉換直感。
2、強調數形結合,發展幾何思維與類幾何思維。
數學形象直感是數學直覺思維的源泉之一,而數學形象直感是一種幾何直覺或空間觀念的表現,對於幾何問題要培養幾何自身的變換、變形的直觀感受能力。對於非幾何問題則要用幾何眼光去審視分析就能逐步過渡到類幾何思維。
例2:若a<b<c,求函數y=|x-a|+|x-b|+|x-c|的最小值。
分析:數軸上兩點間的距離公式AB=|xA-xB|,而數a、b、c在數軸上大致位置如圖所示
a
b
c
求y=|x-a|+|x-b|+|x-c|的最小值。即在數軸上求點x,使它到a、b、c的距離之和最小。顯然當x定在a、c之間,|x-a|+|x-c|最小。所以
當x=b時,y=|x-a|+|x-b|+|x-c|的值最小。
3、重視整體分析,提倡塊狀思維。
在解決數學問題時要教會學習從宏觀上進行整體分析,抓住問題的框架結構和本質關系,從思維策略的角度確定解題的入手方向和思路。在整體分析的基礎上進行大步驟思維,使學生在具有相應的知識基礎和已達到一定熟練程度的情況下能變更和化歸問題,分析和辨認組成問題的知識集成塊,培養思維跳躍的能力。在練習中注意方法的探求,思路的尋找和類型的識別,養成簡縮邏輯推理過程,迅速作出直覺判斷的洞察能力。
例3 :I為△ABC的內心,AI、BI、CI的延長線分別交△ABC的外接圓於D、E、F,求證:AD+BE+CF>AB+BC+CA
D
E
F
B
A
C
I
分析:細心觀察圖形,尋求可運用的知識組塊。有兩個形象直感不難獲得:(1)由內心性質知DI=DB=DC;(2)應運用三角形不等式的適當組合構成特徵不等式,由此得到啟發可將AD分成兩段推證(BE、CF類同),即DB+DC>BC可以推出DI> BC及AI+IB>AB。再得另外四個類似不等式後,將它們同向相加即可推至結論。
4、鼓勵大膽猜測,養成善於猜想的數學思維習慣。
數學猜想是在數學證明之前構想數學命題思維過程。「數學事實首先是被猜想,然後才被證實。」猜想是一種合情推理,它與論證所用的邏輯推理相輔相成。對於未給出結論的數學問題,猜想的形成有利於解題思路的正確誘導;對於已有結論的問題,猜想也是尋求解題思維策略的重要手段。數學猜想是有一定規律的,並且要以數學知識的經驗為支柱。但是培養敢於猜想、善於探索的思維習慣是形成數學直覺,發展數學思維,獲得數學發現的基本素質。因此,在數學教學中,既要強調思維的嚴密性,結果的正確性,也不應忽視思維的探索性和發現性,即應重視數學直覺猜想的合理性和必要性。
例4:如圖,正方形ABCD中,BC=2厘米,現有兩點E、F,分別從點B、點A同時出發,點E沿線BA以1厘米/秒的速度向點A運動,點F沿折線A—D—C以2厘米/秒的速度向點C運動,設點E離開點B的時間為t(秒)(1≤t≤2),EF與 AC相交於點P,問點E、F運動時,點P的位置是否發生變化?若發生變化,請說明理由;若不發生變化,請給予證明,並求AP∶PC的值。
猜想:點P的位置不變。分析:因為點E離開點B的時間為t(秒),所以AE=(2-1t)厘米。因為點F離開點A的時間為t(秒),速度為2厘米/秒,所以CF=(4-2t)厘米。則:
E
F
D
A
B
C
P
由於AE‖FC,因式AP∶PC=AE∶CF=1∶2,所以點P的位置不變。
數學直覺思維能力的培養是一個長期的過程。要作一名好的教師,就必須在數學教育的每一個角落滲透對學生的直覺思維的培養,讓學生有敏捷的思維,靈活的解題思路和很強的對以往知識結構綜合利用能力。這不僅有利於對學生的智力開發,更有利於對學生邏輯思維的培養。
主要參考文獻
1、錢學森主編,關於思維科學。上海:上海人發出版社,1986
2、孔慧英,梅智超編著,現代數學思想概論。北京:中國科學技術出版社,1993
3、朱智賢、林崇德,思維發展心理。北京師范大學出版社,1990
4、郭思樂、喻偉著,數學思維教育論。上海:上海教育出版社,1997
5、席振偉著,數學的思維方式。南京:江蘇教育出版社,1995
回答者:米蘭的藍白色 - 榜眼 十三級 4-30 13:47
您覺得最佳答案好不好?
㈣ 數學學習竅門和方法
數學的重要性不言而喻,有哪些能培養數學思維的學習小竅門?
八、排序思維
關於排序思維,家長一般重視循環排序的教育,比如一說三角形、圓形、三角形、圓形,孩子能知道接下來就是三角形、圓形。這里同樣再給大家查漏補缺,不能忽視「第幾」的排序方式,比如小朋友們排排隊,從左到右第幾,從右到左第幾,以及讓孩子把一些東西從大到小排序或從高到低排序,這些能增強孩子對序數的感知力,和以後數學學習密切相關,而且相信大家在工作中也沒少遇到需要排序處理的問題。
九、抽象思維
孩子一般在5歲開始出現抽象思維,多數家長並不知道怎麼培養孩子的抽象思維,其實很簡單,比如「你看媽媽今天和平常穿的衣服有什麼不同?」孩子就要通過思考,在提取一個個信息比較後,分析出不同在哪裡。
類似的例子很多,家長在生活中多注意即可。
十、解決問題的思維
學習數學的最終目的是解決問題,多數家長卻只追求孩子的成績,家長應該讓孩子利用數學知識去解決問題,並給孩子留下空間,讓孩子思考,結果正確與否,並不重要。比如有6顆草莓,讓孩子平均分給大人。
㈤ 什麼是數學解題方法
用來解數學題的方法
或這用數學方法解物理問題的方法
㈥ 這是什麼數學方法
看到問題的第一感覺是您女兒好聰明啊,竟會想的此方法,於普通問題中見不同解法,當真了不起。其實解決問題的方法有好多,為何她的方法沒有得到廣義上,教科書式的推廣呢,因為正向您所說『』當前數個位小於後面的數時」,後減前,反之則前減去後方便,這就涉及到一個分情況討論,變換計算順序的問題,其實是很簡單的分情況,但是本質上是思維的路徑加長了,路徑越復雜越長就越容易出錯,時間也會增加。而咱們所熟悉的解法是定式的,拿過來就那麼搞。
鼓勵她發散思維很好,只要她喜歡可以叫她自己那麼做。我覺得改變她也不大好。等她自己想變的時候就自己變了。僅供參考!
㈦ 學習數學的方法是什麼
你主要是對數學解題技巧方面有困難,所以你應該在課後做習題,注意做3到4遍同類型的習題(不是同一道題)不要嫌煩,因為,你第一遍不會可以探索可以反答案,看解析,直到弄懂掌握解題方法第二遍可以實踐掌握的方法,如果犯錯可以對照答案查缺補漏。第三遍力求作對,第四遍當然是可以加深映像。上課除了聽老師說的基本內容,更要記住老師的解題技巧,好的輔導書可以幫助你提高,數學輔導書不建議你買什麼教材全解之類的,還是買有詳細答案的習題書比較有用,說到底,數學就是多做多練,不要喪失信心堅持下去
㈧ 數學方法
要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。
一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。
㈨ 數學的方法是什麼
多看書(基礎也重要) 多練習 多提問 多思考 跟緊老師,學會總結歸納,諸如做題方法== 養成好習慣,書寫等也應該和老師交流