㈠ 拿到一個數學建模題目要怎麼去分析啊有那些具體的方法
數學建模全國大賽歷年題目分析以及參賽成功方法數學建模競賽的賽題分析。
1.了解問題的實際背景,明確建模目的,收集掌握必要的數據資料。
2.在明確建模目的,掌握必要資料的基礎上,通過對資料的分析計算, 找出起主要作用的因素,經必要的精煉、簡化,提出若干符合客觀實際的假設。
3.在所作假設的基礎上,利用適當的數學工具去刻劃各變數之間的關系,建立相應的數學結構 --即建立數學模型。
4.模型求解。
5.模型的分析與檢驗。
㈡ 數學建模是什麼
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
(2)數學建模方法與分析擴展閱讀:
從基本物理定律以及系統的結構數據來推導出模型。
1. 比例分析法--建立變數之間函數關系的最基本最常用的方法。
2. 代數方法--求解離散問題(離散的數據、符號、圖形)的主要方法。
3. 邏輯方法--是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策等學科中得到廣泛應用。
4. 常微分方程--解決兩個變數之間的變化規律,關鍵是建立"瞬時變化率"的表達式。
5. 偏微分方程--解決因變數與兩個以上自變數之間的變化規律。
從大量的觀測數據利用統計方法建立數學模型。
1. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
2. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
3. 回歸分析法--用於對函數f(x)的一組觀測值(xi, fi)i=1,2…n,確定函數的表達式,由於處理的是靜態的獨立數據,故稱為數理統計方法。
4. 時序分析法--處理的是動態的相關數據,又稱為過程統計方法。
㈢ 數學建模中常用方法
按照應用領域:生物數學模型,醫學數學模型,數量經濟學模型,地理地質模型,人文數學模型,人口模型,交通模型,城市規劃模型,水資源模型,污染模型,生態模型,環境模型,資源利用模型等。
按照建模數學方法:初等模型,幾何模型,微分方程模型,圖論模型,規劃模型,概率統計模型,馬氏鏈模型,排隊論模型,規劃模型等。
按照建模的目的:描述,分析,預測,決策,控制,優化,規劃模型等。
按照對研究對象了解程度:白箱模型,灰箱模型,黑箱模型。
㈣ 數學建模方法與分析和數學建模這兩本書哪個更適合入門
數學建模方法與分析比較好
㈤ 數學建模的方法及意義
就是用數學知識解決現實生活中的問題,對個人的思維及文章寫作能力都有好處。希望對你有所幫助!
㈥ 數學建模方法和步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
㈦ 數學建模中綜合評價的方法有哪些
綜合評價有許多不同的方法:
1、綜合指數法:
綜合指數法是先綜合,後對比平均,其最大優點在於不僅可以反映復雜經濟現象總體的變動方向和程度,而且可以確切地、定量地說明現象變動所產生的實際經濟效果。但它要求原始資料齊全。平均指數法是先對比,後綜合平均,雖不能直接說明現象變動的絕對效果,但較綜合指數法靈活,便於實際工作中的運用。
2、TOPSIS法:
其基本原理,是通過檢測評價對象與最優解、最劣解的距離來進行排序,若評價對象最靠近最優解同時又最遠離最劣解,則為最好;否則不為最優。其中最優解的各指標值都達到各評價指標的最優值。最劣解的各指標值都達到各評價指標的最差值。
3、層次分析法:
運用層次分析法有很多優點,其中最重要的一點就是簡單明了。層次分析法不僅適用於存在不確定性和主觀信息的情況,還允許以合乎邏輯的方式運用經驗、洞察力和直覺。也許層次分析法最大的優點是提出了層次本身,它使得買方能夠認真地考慮和衡量指標的相對重要性。
另外還有RSR法、模糊綜合評價法、灰色系統法等,這些方法各具特色,各有利弊。
(7)數學建模方法與分析擴展閱讀:
綜合評價的一般步驟
1、根據評價目的選擇恰當的評價指標,這些指標具有很好的代表性、區別性強,而且往往可以測量,篩選評價指標主要依據專業知識,即根據有關的專業理論和實踐,來分析各評價指標對結果的影響,挑選那些代表性、確定性好,有一定區別能力又互相獨立的指標組成評價指標體系。
2、根據評價目的,確定諸評價指標在對某事物評價中的相對重要性,或各指標的權重;
3、合理確定各單個指標的評價等級及其界限;
4、根據評價目的,數據特徵,選擇適當的綜合評價方法,並根據已掌握的歷史資料,建立綜合評價模型;
5、確定多指標綜合評價的等級數量界限,在對同類事物綜合評價的應用實踐中,對選用的評價模型進行考察,並不斷修改補充,使之具有一定的科學性、實用性與先進性,然後推廣應用。
㈧ 數學建模方法及其應用,學這個有幫助求詳解,加分
數學建模說通俗點就像小學的數學應用題,是將實際情況用數學的方法來模擬表示出來,然後解題。數學建模在各個領域都很有用處,特別是現在計算機運算速率相當之快、高級編程語言的普遍使用、以及各種數學軟體普及,它的用處是越來越大的。我參加過數學建模比賽,也學過數學建模,這個沒有什麼固定的學習路線,就是多閱讀一些數學建模的實例,讀的越多你對它的理解也就越深刻。我是學土木的,但是在土力學、混凝土結構等方面均有數學建模的影子,而且其模型用數學模型的眼光看可能還很簡單。當然這些模型都是經過大量實例驗證過的。所以說學數學建模會讓你更好的理解在各領域中的很多經典理論。具體的方法有很多很多種,對應著多種模型,差分方程、偏微分、數值分析、還有各種演算法,包括排序、圖論、神經網路等等,當然他們之間也有相互包含的。這個方法沒有固定套路,一個問題可能有多種解決的模型,而且其結果往往都很不錯。模型的建立是一方面,計算的結果與你帶入的數據也有關,數據有問題,那麼計算的結果與實際結果差別也非常的大。
若有什麼問題可以問我,望採納。
㈨ 做數學建模需要哪些方面的知識
推薦你看謝金星編寫的那本數學建模書。一本書啃下來,你已經掌握了各種題型的基本方法。做題的時候,題目先是要細細的看,然後,有時候會發現如果所有條件都用上,可能根本就做不出什麼來了。所以,你要學會提煉條件。再一個就是通過網上各種資料的搜集,要從別人的文獻中找到有用的建模方法,要想成績特別好的話,就必須有自己的想法。對於美國建模,和國內還是相差挺大的,難度、要求都不一樣。必須至少有一人掌握matlab編程。論文一定要寫好,語句通順無錯別字。
參加數學建模競賽是不是需要學習很多知識?
沒有必要很系統的學很多數學知識,這是時間和精力不允許的。很多優秀的論文,其高明之處並不是用了多少數學知識,而是思維比較全面、貼合實際、能解決問題或是有所創新。有時候,在論文中可能碰見一些沒有學過的知識,怎麼辦?現學現用,在優秀論文中用過的數學知識就是最有可能在數學建模競賽中用到的,你當然有必要去翻一翻。
具體說來,大概有以下這三個方面:
第一方面:數學知識的應用能力
歸結起來大體上有以下幾類:
1)概率與數理統計
2)統籌與線軸規劃
3)微分方程;
還有與計算機知識交叉的知識:計算機模擬。
上述的內容有些同學完全沒有學過,也有些同學只學過一點概率與數理統計,微分方程的知識怎麼辦呢?一個詞「自學」,我曾聽到過數模評卷的負責教師范毅說過「能用最簡單淺易的數學方法解決了別人用高深理論才能解決的答卷是更優秀的答卷」。
第二方面:計算機的運用能力
一般來說凡參加過數模競賽的同學都能熟練地應用字處理軟體「Word」,掌握電子表格「Excel」的使用;「Mathematica」軟體的使用,最好還具備語言能力。這些知識大部分都是學生自己利用課余時間學習的。
第三方面:論文的寫作能力
前面已經說過考卷的全文是論文式的,文章的書寫有比較嚴格的格式。要清楚地表達自己的想法並不容易,有時一個問題沒說清楚就又說另一個問題了。評卷的教師們有一個共識,一篇文章用10來分鍾閱讀仍然沒有引起興趣的話,這一遍文章就很有可能被打入冷宮了。
最後,祝你取得好成績。
㈩ 數學建模中的分析方法有哪些
數學建模分析方法大體分為機理分析和測試分析兩種。
機理分析:根據對客觀事物特性的認識,找出反映內部機理的數量規律,建立的模型常有明確的物理或現實意義。
測試分析:將研究的對象看做一個「黑箱」系統(意思是它的內部機理看不清楚),通過對系統輸入、輸出數據的測量和統計分析,按照一定的准則找出與數據擬合最好的模型。
希望對你有幫助