1. 求平均數的方法有哪幾種
算術平均數
算術平均數是指在一組數據中所有數據之和再除以數據的個數.它是反映數據集中趨勢的一項指標.
公式為:
平均數=(a1+a2+…+an)/n
如:
3,4,5的平均數為:
(3+4+5)/3=4
幾何平均數
geometric mean
n個正實數乘積的n次算術根.給定n個正實數 a1,a2,…,an,其幾何平均數為(a1*a2*……*an)^(1/n).特別是,兩個正數a,b的幾何平均數c=(a*b)^(1/2)是a與b的比例中項.任意n個正數a1,a2 ,…,an的幾何平均數不大於這n個數的算術平均數,即(a1*a2*……*an)^(1/n)≤(a1+a2+…+an)/n .這個不等式在研究其他不等式或極值等問題時常起特殊作用.
調和平均數
調和平均數(harmonic mean)是平均數的一種.但統計調和平均數,與數學調和平均數不同.在數學中調和平均數與算術平均數都是獨立的自成體系的.計算結果兩者不相同且前者恆小於後者.因而數學調和平均數定義為:數值倒數的平均數的倒數.但統計加權調和平均數則與之不同,它是加權算術平均數的變形,附屬於算術平均數,不能單獨成立體系.且計算結果與加權算術平均數完全相等.主要是用來解決在無法掌握總體單位數(頻數)的情況下,只有每組的變數值和相應的標志總量,而需要求得平均數的情況下使用的一種數據方法
公式為:2/(a/+1/b)
加權平均數
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
說明:1)「權」的英文是weight,表示數據的重要程度.即數據的權能反映數據的相對「重要程度」.
2)算術平均數是加權平均數的一種特殊情況,即各項的權相等時,加權平均數就是算術平均數.
平方平均數
公式為:M=[(a^2+b^2+c^2+…n^2)/n] ^ ½
2. 求平均數的方法有哪幾種
算術平均數算術平均數是指在一組數據中所有數據之和再除以數據的個數.它是反映數據集中趨勢的一項指標.公式為:平均數=(a1+a2+…+an)/n如:3,4,5的平均數為:(3+4+5)/3=4幾何平均數...
3. 用三種方法求平均數
1、平均數=(a1+a2+…+an)/n
2、算術平均數
算術平均數是指在一組數據中所有數據之和再除以數據的個數,它是反映數據集中趨勢的一項指標。公式為:平均數=(a1+a2+…+an)/n
3、加權平均數
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。
(3)求平均的方法有什麼和什麼擴展閱讀
一、很多題目中都不止存在一組平均數關系,而是有多組平均數關系,各組之間的數量切不可混淆。例如涉及男生女生平均分數的題目,全班總分數、全班人數、全班平均分是一組數量。
而男生總分數、男生人數、男生平均分是另外一組數量,女生總分數、女生人數、女生平均分則是第三組數量,這三組數量之間要注意不能混淆來計算。
二、不能簡單地用兩個平均數的平均來求第三個平均數。例如不能用「男生平均分」加上「女生平均分」除以2來求全班平均分,而是要嚴格按照平均數的定義,用「總數量÷總份數」來求平均數。這是一個常見錯誤,要特別注意。
三、涉及多組平均數的題目,往往各組的數量之間是有聯系的,利用各組之間的數量關系是解題的往往是解題的關鍵。例如在上面提到的全班、男生、女生這三組平均分關系中,還存在「全班人數=男生人數+女生人數」、「全班總分=男生總分+女生總分」這些數量關系,要善於利用。
4. 求平均值的簡單方法
計算平均值,一般常用的有兩種方法:一種是簡單平均法,一種是加權平均法。還有幾何平均值,平方平均值,調和平均值等方法。 平均值有算術平均值,幾何平均值,平方平均值(均方根平均值,rms),調和平均值,加權平均值等。
5. 求平均數的方法有哪些
移多補少的方法:即觀察這組數,把大的數多出來的部分補充到小的數;
先總後分的方法:即用總數除以份數的方法。
6. 平均數有哪幾種計算方法
1、算術平均數
算術平均數也成均值,是最常用的平均指標。它的基本公式形式是總體標志總量除以總體單位總量。在實際工作中,由於資料的不同,算術平均數有兩種計算形式:即簡單算術平均數和加權算術平均數。
⑴簡單算術平均數適用於未分組的統計資料,如果已知各單位標志值和總體單位數,可採用簡單算術平均數方法計算。
⑵加權算術平均數適用於分組的統計資料,如果已知各組的變數值和變數值出現的次數,則可採用加權算術平均數計算。
加權算術平均數的大小受兩個因素的影響:其一是受變數值大小的影響。其二是各組次數占總次數比重的影響。在計算平均數時,由於出現次數多的標志值對平均數的形成影響大些,出現次數少的標志值對平均數的形成影響小些,因此就把次數稱為權數。
在分組數列的條件下,當各組標志值出現的次數或各組次數所佔比重均相等時,權數就失去了權衡輕重的作用,這時用加權算術平均數計算的結果與用簡單算術平均數計算的結果相同。
2、調和平均數
調和平均數是總體各單位標志值倒數的算術平均數的倒數,又稱為倒數平均數,由簡單調和平均數和加權調和平均數。
3、幾何平均數
幾何平均數是n個變數值乘積的n次方根。在統計中,幾何平均數常用於計算平均速度和平均比率。幾何平均數也有簡單平均和加權平均兩種形式。
(6)求平均的方法有什麼和什麼擴展閱讀
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。
例如,在一個單位里,如果經理和副經理工資特別高,就會使得這個單位所有成員工資的平均水平也表現得很高,但事實上,除去經理和副經理之外,剩餘所有人的平均工資並不是很高。這時,中位數和眾數可能是刻畫這個單位所有人員工資平均水平更合理的統計量。
中位數和眾數這兩個統計量的特點都是能夠避免極端數據,但缺點是沒有完全利用數據所反映出來的信息。由於各個統計量有各自的特徵,所以需要我們根據實際問題來選擇合適的統計量。
7. 求平均值的簡單方法
平均值有算術平均值,幾何平均值,平方平均值(均方根平均值,rms),調和平均值,加權平均值等,其中以算術平均值最頭 常見。
計算方法為:M=(X1+X2+.…+Xn)/n.算術平均值主要話用干數值型數據,不適用干品質數據。根據表現形式的不同。
8. 求平均數的方法有哪些 你知道嗎
1、算術平均數:算術平均數是指在一組數據中所有數據之和再除以數據的個數.它是反映數據集中趨勢的一項指標.公式為:平均數=(a1 a2 … an)/n。
2、幾何平均數:個正實數乘積的n次算術根.給定n個正實數 a1,a2,…,an,其幾何平均數為(a1*a2*……*an)^(1/n).特別是,兩個正數a,b的幾何平均數c=(a*b)^(1/2)是a與b的比例中項.任意n個正數a1,a2 ,…,an的幾何平均數不大於這n個數的算術平均數,即(a1*a2*……*an)^(1/n)≤(a1+a2+…+an)/n .這個不等式在研究其他不等式或極值等問題時常起特殊作用.
3、調和平均數:是平均數的一種.但統計調和平均數,與數學調和平均數不同。在數學中調和平均數與算術平均數都是獨立的自成體系的.計算結果兩者不相同且前者恆小於後者.因而數學調和平均數定義為:數值倒數的平均數的倒數.但統計加權調和平均數則與之不同,它是加權算術平均數的變形,附屬於算術平均數,不能單獨成立體系.且計算結果與加權算術平均數完全相等.主要是用來解決在無法掌握總體單位數(頻數)的情況下,只有每組的變數值和相應的標志總量,而需要求得平均數的情況下使用的一種數據方法。公式為:2/(a/ 1/b)
9. 怎麼求平均數
平均數是統計學中最常用的統計量,是表示一組數據集中趨勢的量數,是指在一組數據中所有數據之和再除以這組數據的個數。它是反映數據集中趨勢的一項指標。平均數的求法有直接求法、基數求法等。
備26.jpg
1平均數的求法
解題關鍵:找准「總數量」相對應的「總分數」
(1)直接求法:利用公式求出平均數,這是由「均分」思想產生的方法。
總數量÷總份數=平均數
李師傅前4天平均每天加工30個零件,改進技術後,第五天加工零件55個,李師傅5天中平均每天加工多少零件?
解答:先算出5天的總零件數:30×4+55=175(個),再求出5天中平均每天加零件的個數。
(30×4+55)÷5=35(個)
(2)基數求法:利用公式求平均數。這里是選設各數中最小者為基數,它是由「補差」思想產生的方法。
基數+各數與基數的差÷總份數=平均數
王師傅4天平均加工26個零件,第5天加工的零件數比5天平均數還多4.8個。王師傅第5天加工多少個零件?
解答:設王師傅第5天加工,x個零件。由5天平均數這個「量」可列方程。
X-4.8=26×4+x)÷5
5x-24=104+x
4x=128
X=32
10. 計算平均數的方法有哪些
1、平均數=(a1+a2+…+an)/n
2、算術平均數
算術平均數是指在一組數據中所有數據之和再除以數據的個數,它是反映數據集中趨勢的一項指標。公式為:平均數=(a1+a2+…+an)/n
3、加權平均數
若n個數x1,x2,……xn的權分別為w1,w2,……wn,則這n個數的加權平均數是(X1W1+X2W2+……+XnWn)/(W1+W2+……+Wn)
平均數非常明顯的優點之一是,它能夠利用所有數據的特徵,而且比較好算。另外,在數學上,平均數是使誤差平方和達到最小的統計量,也就是說利用平均數代表數據,可以使二次損失最小。
因此,平均數在數學中是一個常用的統計量。但是平均數也有不足之處,正是因為它利用了所有數據的信息,平均數容易受極端數據的影響。