導航:首頁 > 研究方法 > 液體生物質燃料工業分析方法

液體生物質燃料工業分析方法

發布時間:2022-10-29 08:44:39

① 生物質燃料的應用前景,水分檢測方法

生物質燃料顆粒是新能源燃料的一種,所謂新能源,是區別於傳統的化石能源,主要指生物質能源、風能、水能、太陽能等。其實我們使用的生物質能源和傳統的化石能源,都是太陽能的一種轉換載體,化石能源是古老的生物質能源儲存的太陽能源產物,生物質能源主要是靠光合作用儲存的太陽能轉化成其他能源。而新能源最好的就是可再生能源,具體再生能源主要包括太陽能、水能、風能、生物質能、波浪能、潮汐能、海洋溫差能、地熱能等。主要特點為可以循環再生、取之不盡、用之不竭。

生物質燃料的種類及其水分檢測:
1.生物質成型燃料是一種比較經濟型的燃料,它的原料主要來自秸稈、三剩物、木屑、花生殼、樹皮,經過生物質制粒機炭化後加工成直徑約6-8cm,長度為其直徑5倍左右的塊狀燃料
2.生物質燃料顆粒的檢測可以使用快速水分測定儀檢測,即加強了檢測效率,獲取精準穩定的水分值。

生物質燃料水分含量表

② 生物質的工業分析和元素分析分別用什麼儀器來做

提問太寬泛了。
據定義,生物質是一切直接或間接利用綠色植物光合作用形成的有機物質。包括除化石燃料外的植物、動物和微生物及其排泄與代謝物等。
那麼裡面主要是碳氫化合物了,不過生物體內也是包含各種金屬微量元素的。
所以問它的工業分析和元素分析用儀器,也不知怎麼回答,主要看是測什麼對象,具體可以看看儀器分析的書,對應找方法。
比如,金屬元素的分析常用原子吸收光度法(aas)
生物體的復雜性,如果只是測其中某種碳氫化合物的含量,就需要使用色譜類(gc,hplc等)分離分析方法

③ 固體生物質燃料檢驗方法的標准

固體生物質燃料是指由生物質直接或問接產生的燃料,主要成分是纖維素、半纖維素、木質素,其主要來源於農業、畜牧業、食品加工業、林業及林業加工等行業的固體生物質或擠壓成型的固體顆粒,主要包括木炭、燃料木和成型燃料等幾種產品,目前發展最快的當屬固體成型燃料。
1歐盟固體生物質燃料標准化
歐盟固體生物質燃料標准化工作開始於2000年,目前共有30個技術規范,分為術語、規格、分類和質量保證、采樣和樣品制備、物理(或機械)特性、化學特性等5個方面(見表1)。

2美國固體生物質燃料測試方法標准
美國ASTM協會制訂的固體成型燃料相關測試方法標准,主要包括生物質成型顆粒燃料堆積密度、灰分、揮發分、元素分析、木質燃料分析、球形顆粒燃燒室內加熱爐、用於微波爐的木質顆粒燃料水分含量測試等9項標准以及木炭化學分析測試方法、木炭粒度分布、耐磨性等;美國農業和生物工程協會制訂了生物質產品收割、收集、儲運、加工、轉化、應用術語和定義標准;產品標准由顆粒燃料研究所制訂,主要產品指標包含了外形、堆積密度、機械強度、灰分以及氯化物;美國國防部制訂了用於制備彈葯的木炭標准。ASTM固體生物質燃料標准見表2。

3其他歐洲國家標准
瑞典固體生物質燃料標准SS 187120,主要包含外形尺寸、密度、耐久性、水分、灰分、總水分(運輸)、熱值、硫、氯等指標。在歐盟標准頒布實施之前,普遍被芬蘭、丹麥等歐洲國家所採用。
德國木質成型燃料標准DIN 51713,性能指標中對於砷、鈣、鉻、銅、汞、鉛、鋅、抽提有機鹵等元素含量都作了較為詳細的要求。木炭標准DIN 51749,主要包含水分含量、灰分、固定炭、顆粒大小、黏接劑等指標。
奧地利根據原料來源不同分為木材原料和樹皮成型,產品標准(Onorm M7135)與瑞典標准包含指標大體相同,還補充了與質量、規格相關的Onorm M7136和Onorm M7137。另外瑞士也有相應的SN166000標准;英國除根據灰分指標分為三級(1%、3%或6%),基本與瑞典標准一致;芬蘭、丹麥等國大多採用瑞典標准。
4中國固體生物質燃料檢驗方法標准
我國於20世紀80年代末制訂了GB/T 17664—1999《木炭和木炭試驗方法》、GB 5186—1985、NY/T 12—1985《生物質燃料發熱量測試方法》、NY/T 8—2006《民用柴爐、柴灶熱性能試驗方法》、NY/T 1001-2006《民用省柴節煤灶、爐、炕技術條件》、GB/T 21923-2008《固體生物質燃料檢測通則》等國家或農業行業標准。農業部正在組織制定《生物質固體成型燃料技術條件》和《生物質固體成型設備技術條件》2項農業行業標准。煤炭科學研究總院煤炭分析實驗室正組織制定固體生物質燃料相關檢驗方法標准,主要包括:樣品制備方法、全水分、工業分析、碳氫、全硫、發熱量、灰熔融性、灰成分、氯、氮等。其中全水分、工業分析、碳氫、全硫標准已通過審查,待批准發布。
GB/T 21923-2008《固體生物質燃料檢驗通則》統一了有關生物質燃料及其檢驗的概念、術語和定義、檢驗規則和結果表述等。為今後建立的一系列固體生物質燃料檢驗標准或技術規范(包括采、制樣)奠定基礎。
固體生物質燃料全水分測定方法與DD CEN/TS 14774-1:2004和DD CEN/TS 14774-2:2004相比修改了換氣次數和檢查性乾燥時間,具體規定了首次乾燥時問、稱樣量、試驗終止條件和重復性限。較歐盟技術規范規定的方法更具體、更具可操作性;檢查性乾燥時問為30min,縮短了總的測定時間。
固體生物質燃料工業分析方法提出的方法主要技術條件與歐盟技術規范基本一致,對試驗條件進行優化,試驗程序、操作步驟規定的更詳細,可操作性增強。其中水分測定規定了兩種測定方法。方法A為通氮乾燥法,方法B為空氣乾燥法。如樣本材料在(105±2)℃易於氧化,應首選方法A。
在仲裁分析中遇到有用一般分析試驗試樣水分進行校正以及基的換算時,應用方法A測定一般分析試驗試樣的水分。
固體生物質燃料全硫測定方法包括艾士卡法和庫侖滴定法。其中高溫燃燒庫侖滴定法為我國自主研發,相比歐盟標准方法和ASTM標准方法,儀器設備簡單,自動化程度高,易操作。
固體生物質燃料元素分析方法中碳氫測定採用三節爐法,由吸收劑的增量計算生物質燃料中碳和氫的含量。生物質燃料中硫和氯對碳測定的干擾在三節爐中用鉻酸鉛和銀絲卷消除。氮對碳測定的干擾用粒狀二氧化錳消除。採用凱氏法消解樣品後採用酸鹼滴定法測定。
固體生物質燃料樣品制備研製具有切割、破碎和擊打功能的破碎機,能順利制備出小於30mm的全水分樣品和小於0.5mm的分析試樣。比歐盟標準的小於1mm粒度,代表性更好;同時發現,對於固體生物質燃料樣品,粗碎階段的樣品可在105℃下進行預乾燥而不影響試樣的品質,由此可縮短固體生物質樣品制備時間。
固體生物質燃料發熱量測定方法用預先標定了熱值的擦鏡紙包裹樣品再進行燃燒試驗,比歐盟標准提出的將試樣壓餅,或裝入燃燒袋或膠囊後再進行試驗,更簡單、更方便實用,且能有效防止樣品燃燒時的噴濺和燃燒不完全現象。
固體生物質燃料氯建立了自動化程度高的高溫燃燒水解~電位滴定法。較歐盟標准中的氧彈燃燒分解或高壓容器酸溶法分解樣品一離子色譜法相比,儀器設備簡單、操作方便,高含量測定結果精密度較高,結果穩定、自動化程度高。
固體生物質燃料灰成分測定方法建立了適合我國國情且可操作性強的固體生物質燃料的灰成分(包括SiO2、Al2O3、Fe2O3、CaO、MgO、K2O、Na2O、TiO2、P2O5、SO3)測定方法。
固體生物質燃料灰熔融性測定方法通過對不同類型樣品的條件試驗,確定了(550±5)℃的樣品灰化溫度;從700℃控制升溫程序為(4~6)℃/min;550℃時通入還原性氣體。且較歐盟標准多一種氣氛控制方法——封碳法。
5結語
參考國際先進的固體生物質燃料檢驗標准,適應我國固體生物質產業生產和適用,制定既符合中國國情又與國際接軌的檢驗標准,能有效克服不同種類燃料特性、檢驗方法等造成的障礙,促進我國固體生物質燃料產業健康、有序、持續發展。

詳情咨詢河北浩瀚農牧機械製造有限公司 13930149101

④ 固體生物質燃料檢驗方法的標准

固體生物質顆粒燃料(BiomassMouldingFuel,簡稱"BMF"),是將秸稈、稻草、 稻殼 、 花生殼 、 玉米芯 、油茶殼、 棉籽殼 等「三剩物」作為原材料,經過粉碎、混合、擠壓、烘乾等工藝,製成各種成型(如塊狀、顆粒狀等)的,可直接燃燒的一種新型清潔燃料。其與煤性質相同,是可供各種燃燒機、生物質鍋爐、熔解爐、生物質發電等的高效、可再生、環保生物質燃料,此種燃料在國際認證為零污染燃料。生物質顆粒的直徑一般為6~10毫米,干基含水量小於10%~15%。

目前市場上生物質顆粒燃料種類很多,但大體上可分為三種:第一:農作物廢棄物:主要由秸稈、花生殼、稻草桿;第二:經濟作物廢棄物:主要由牲畜糞便;第三:林業廢棄物廢木、樹皮、裁剪掉的樹枝等。

對於生物質燃料而言,水分含量對其本身的熱值及燃燒所能獲得的能量有重要的影響。水分含量越高,相對的熱值就越低,同時,水分蒸發是一個吸熱過程,水分含量越高,蒸發所需要的能量就越高,燃料燃燒釋放出來的能量相對越低。

MS-590在線生物質顆粒燃料水分測定儀,是一款德國進口非接觸式多頻譜微波水分、密度測量儀,採用當今全球最新的多頻譜硬體技術和獨特模糊數據分析的專利演算法結合數據模型結構,可實現含水率與密度完全獨立測量,互不影響,適用於為固體生物質顆粒燃料中水分含量的實時在線測定,既可以皮帶上測定,也可以整包測定。

據德國默斯技術人員介紹,MS-590在線生物質顆粒燃料水分測定儀,可以在皮帶上測量全部生物質原料的水分,完全穿透測量。可以測量所有物料的實時水分和平均水分,不同於抽樣測量和離線測量。這是一款不受皮帶上的物料高度、密度、溫度、顏色影響的在線生物質水分測定儀,可以同時測量水分和密度兩個參數。該水分測定儀,不僅高可靠性:無任何可動部件和易損件,最高可達10年使用壽命,而且高精度:最高精度0.2%;寬量程比:水分測量范圍寬至0%-100%。同時,該水分測定儀適用范圍廣:一款儀器可測量幾乎所有類型的原料;內置校準曲線,一次校準成功後,無需經常校準。安裝簡易:可安裝在皮帶上、料倉內、斗內、管道上等各種位置。

⑤ 生物質工業分析前 需要對原料怎樣處理

http://wenku..com/link?url=ApQLkh3ROqOCjOCh3qmFp_--PLNZF4VC
《煤的工業分析方法》GB212

生物質工業分析沒有單獨標准,還是參照煤的工業分析方法,網路文庫里就有

⑥ 生物質燃料的發熱量怎麼檢測

生物質燃料發熱量的檢測方法:

1 范圍
本標准規定了生物質燃料的高位發熱量的測定方法和低位發熱量的計算方法

2 單位和定義
2.1 熱量單位
熱量的單位為焦耳(J)
1焦耳(J)=1牛頓(N)×1米(m)=1牛·米(N·m)
發熱量測定結果以兆焦每千克(MJ/kg)或焦耳每克(J/g)表示。
2.2 彈筒發熱量
單位質量的固體生物質燃料在充有過量氧氣的氧彈內燃燒,其燃燒產物組成為氧氣、氮氣、二氧化碳、硝酸和硫酸、液態水以及固態灰時放出的熱量稱為彈筒發熱量。
2.3 恆容高位發熱量
單位質量的固體生物質燃料在充有過量氧氣的氧彈內燃燒,其燃燒產物組成為氧氣、氮氣、二氧化碳、二氧化硫、液態水和固態灰,且所有產物都在標准溫度下所放出的熱量。
恆容高位發熱量即由彈筒發熱量減去硝酸生成熱和硫酸校正熱後得到的發熱量。
2.4 恆容低位發熱量
單位質量的固體生物質燃料在恆容條件下燃燒,在燃燒產物中所有的水都保持氣態水的形態(0.1MPa),其它產物與恆容高位發熱量相同,並都在標准溫度下的固體生物質燃料的發熱量。
2.5 恆壓低位發熱量
單位質量的固體生物質燃料在恆壓條件下燃燒,在燃燒產物中所有的水都保持氣態水的形態(0.1MPa),其它產物與恆壓高位發熱量相同,並都在標准溫度下的固體生物質燃料的發熱量。
2.6 熱量計的有效熱容量
量熱系統產生單位溫度變化所需的熱量(簡稱熱容量)。通常以焦耳每開爾文(J/K)表示。

3 原理
3.1 高位發熱量
生物質的發熱量在氧彈熱量計中進行測定。一定量的分析試樣在氧彈熱量計中,進行過量氧氣燃燒,氧彈熱量計的熱容量通過在相近條件下燃燒一定量的基準量熱物苯甲酸來確定,根據試樣燃燒前後量熱系統產生的溫升,並對點火熱等附加熱進行校正後即可求得試樣的彈筒發熱量。
從彈筒發熱量中扣除硝酸生成熱和硫酸校正熱(硫酸與二氧化硫形成熱之差)即得高位發熱量。
3.2 低位發熱量
生物質的恆容低位發熱量和恆壓低位發熱量可以通過分析試樣的高位發熱量計算。計算恆容低位發熱量需要知道固體生物質樣中水分和氫的含量。原則上計算恆壓低位發熱量還需知道固體生物質燃料樣中氧和氮的含量。

4 實驗室條件
4.1 進行發熱量測定的實驗室,應為單獨房間,不得在同一房間內同時進行其他試驗項目。
4.2 室溫應保持相對穩定,每次測定室溫變化不超過1℃,室溫以不超過15℃~30℃范圍為宜。
4.3 室內應無強烈的空氣對流,因此不應有強烈的熱源、冷源和風扇等,試驗過程中應避免開啟門窗。
4.4 實驗室最好朝北,以避免陽光照射,否則熱量計應放在不受陽光直射的地方。

5 試劑和材料
5.1 氧氣(GB 3863): 99.5%純度,不含可燃成分,不允許使用電解氧。
5.2 苯甲酸: 基準量熱物質,二等或二等以上,經權威計量機關檢定或授權檢定並標明標准熱值。
5.3 點火絲: 直徑0.1mm左右的鉑、銅、鎳絲或其他已知熱值的金屬絲或棉線,如使用棉線,則應選用粗細均勻,不塗臘的白棉線。各種點火絲點火時放出的熱量如下:
鐵絲:6700 J/g
鎳鉻絲:6000 J/g
銅絲:2500 J/g
棉線:17500 J/g
5.4 擦鏡紙 :使用前先測出燃燒熱:抽取3張~4張紙,團緊,稱准質量,放入燃燒皿中,然後按常規方法測定發熱量。取3次結果的平均值作為擦鏡紙熱值。

6 儀器設備
6.1 熱量計
6.1.1 總則
熱量計是由燃燒氧彈、內筒、外筒、攪拌器、溫度感測器和試樣點火裝置、溫度測量和控制系統以及水構成
熱量計的精密度和准確度要求為,測試精密度:5次苯甲酸測試結果的相對標准差不大於0.20%;准確度:標准煤樣測試結果與標准值之差都在不確定度范圍內,或者用苯甲酸作為樣品進行5次發熱量測定,其平均值與標准熱值之差不超過50J/g。
註:除燃燒不完全的結果外,所有的測試結果不能隨意舍棄。
6.1.2 氧彈
由耐熱、耐腐蝕的鎳鉻合金鋼製成,需要具備3個主要性能:
a) 不受燃燒過程中出現的高溫和腐蝕性產物的影響而產生熱效應;
b) 能承受充氧壓力和燃燒過程中產生的瞬時高壓;
c) 試驗過程中能保持完全氣密。
彈筒容積為250mL~350 mL,彈頭上應裝有供充氧和排氣的閥門以及點火熱源的接線電極。
新氧彈和新換部件(彈桶、彈頭、連接環)的氧彈應經20.0MPa的水壓試驗,證明無問題後方能使用。此外,應經常注意觀察與氧彈強度有關的結構,如彈筒和連接環的螺紋、進氣閥、出氣閥和電極與彈頭的連接處等,如發現顯著磨損或松動,應進行修理,並經水壓試驗合格後再用。
氧彈還應定期進行水壓試驗,每次水壓試驗後,氧彈的使用時間一般不應超過2年。
當使用多個設計製作相同的氧彈時,每一個氧彈都必須作為一個完整的單元使用。氧彈部件的交換使用可能導致發生嚴重事故。
6.1.3 內筒
用紫銅、黃銅或不銹鋼製成,斷面可為橢圓形、菱形或其他適當形狀。筒內裝水2000 mL~3000 mL,以能浸沒氧彈(進、出氣閥和電極除外)為准。
內筒外面應高度拋光,以減少與外筒間的輻射作用。
壓力表通過內徑1mm~2mm的無縫銅管與氧彈連接,或通過高強度尼龍管與充氧裝置連接,以便導入氧氣。
壓力表和各連接部分禁止與油脂接觸或使用潤滑油。如不慎沾污,必須依次用苯和酒精清洗,待風干後再用。
6.2 分析天平:感量 0.1mg 。
6.3 工業天平:載量 4 kg~5 kg,感量1g。

7 測定步驟
7.1 概述
發熱量的測定由兩個獨立的實驗組成,即在規定的條件下基準量熱物質的燃燒實驗(熱容量標定)和試樣的燃燒試驗。為了消除未受控制的熱交換引起的系統誤差,要求兩種試驗的條件盡量相近。
試驗包括定量進行燃燒反應到定義的產物和測量整個燃燒過程引起的溫度變化。
試驗過程分為初期、主期(反應期)和末期。對於絕熱式熱量計,初期和末期是為了確定開始點火的溫度和終點溫度;對於恆溫式熱量計,初期和末期的作用是確定熱量計的熱交換性,以便在燃燒反應期間內對熱量計內筒和外筒間的熱交換進行校正。初期和末期的時間應足夠長。
7.2 恆溫式熱量計法
7.2.1按使用說明書安裝調試熱量計
7.2.2 在燃燒皿中稱取粒度小於0.2 mm的空氣乾燥生物質燃料樣0.9~1.1 g(稱准到0.0002 g)。
燃燒時易於飛濺的試樣,可用已知質量的擦鏡紙包緊再進行測試,或先在壓餅機中壓餅並切成2 mm~4 mm的小塊使用。不易燃燒完全的試樣,可先在燃燒皿底部鋪上一個石棉網,或用石棉絨做襯墊(先在皿底鋪上一層石棉絨,然後以手壓實)。石英燃燒皿不需任何襯墊。如加襯墊仍燃燒不完全,可提高充氧壓力至3.2MPa,或用已知質量和熱值的擦鏡紙包裹稱好的試樣並用手壓緊,然後放入燃燒皿中。
7.2.3 取一段已知質量的點火絲,把兩端分別接在兩個電極柱上,彎曲點火絲接近試樣,注意與試樣保持良好接觸或保持微小的距離(對易飛濺和易燃的樣品);並注意勿使點火絲接觸燃燒皿,以免形成短路而導致點火失敗,甚至燒毀燃燒皿。同時還應注意防止兩電極間以及燃燒皿與另一電極之間的短路。
往氧彈中加入10 ml蒸餾水。小心擰緊氧彈蓋,注意避免燃燒皿和點火絲的位置因受震動而改變,往氧彈中緩緩充入氧氣,直至壓力到2.8MPa~3.0 MPa,充氧時間不得少於15s;如果不小心充氧壓力超過3.3 MPa,停止實驗,放掉氧氣後,重新充氧至3.2 MPa以下。當鋼瓶中氧氣壓力降到5.0 MPa以下時,充氧時間應酌量延長,壓力降至4.0 MPa以下時,應更換新的氧氣瓶。
7.2.4 往內筒中加入足夠的蒸餾水,使氧彈蓋的頂面(不包括突出的進、出氣壓力閥和電極)淹沒在水面下10mm~20mm。每次實驗時用水量應與標定熱容量時一致(相差1g以內)。
水量最好用稱量法測定。如用容量法,則需對溫度變化進行修正。注意恰當調節內筒水溫,使終點時內筒比外筒溫度高1K左右,以使終點時內筒溫度出現明顯下降。外筒溫度應盡量靠近室溫,相差不得超過1.5K。
7.2.5把氧彈放入裝好水的內筒中,如氧彈中無氣泡漏出,則表明氣密性良好,即可把內筒放在外筒的絕緣架上;如有氣泡出現,則表明漏氣,應找出原因,加以糾正,重新充氧。然後接上點火電極插頭,裝上攪拌器和量熱溫度計,並蓋上外筒的蓋子。
注 :一 般 熱量計由點火到終點的時間為8min-10min。對一台具體熱量計,可根據經驗恰當掌握。
7.2.6 實驗結束,取出內筒和氧彈,開啟放氣閥,放出燃燒廢氣,打開氧彈,仔細觀察彈筒和燃燒皿內部,如果有試樣燃燒不完全的跡象或有炭黑存在,試驗應作廢。
量出未燒完的點火絲長度,以便計算實際消耗量。
用蒸餾水充分沖洗氧彈內各部分、放氣閥,燃燒皿內外和燃燒殘渣。把全部洗液(共約100m L)收集在一個燒杯中供測硫使用。

8 測定結果的計算
8.1點火熱校正
在熔斷式點火法中,應由點火絲的實際消耗量(原用量減掉殘餘量)和點火絲的燃燒熱計算試驗中點火絲放出的熱量。
在棉線點火法中,首先算出所用一根棉線的燃燒熱(剪下一定數量適當長度的棉線,稱出它們的質量,然後算出一根棉線的質量,再乘以棉線的單位熱值),然後確定每次消耗的電能熱。
註:電能產生的熱量(J)=電壓(V)× 電流(A)× 時間(S).
二者放出的總熱量即為點火熱。
8.2 高位發熱量的計算
8.2.1 試驗結束後,空氣乾燥生物質燃料樣的彈筒發熱量Qb,ad儀器會自動顯示在相應表格內。
8.2.2 按式(2)計算空氣乾燥生物質燃料樣的恆容高位發熱量Qgr,ad
Qgr。ad =Qb,ad -(94.1Sb,ad+aQb,ad) ---------(2)
式中 :
Qgr,ad—空氣乾燥生物質燃料樣的恆容高位發熱量,單位為焦耳每克(J/g);
Qb,ad— 空氣乾燥生物質燃料樣的彈筒發熱量,單位為焦耳每克(J/g);
Sb,ad— 由彈筒洗液測得的生物質燃料的含硫量,單位為百分數(%);當全硫含量低於4.00%時,或發熱量大於 14 .60 M J/ kg 時 , 用 全硫代替Sb,ad ;
94. 1— 空氣乾燥生物質燃料樣中每1.00%硫的校正值,單位為焦耳(J);
a— 硝酸生成熱校正系數:
當 Qb ≤16 .7 0M J /kg a= 0. 0010 ;
當 16 .7 0M J /kg < Q b< 25 .1 0 M J/kg,a=0.00 12 ;
當Q b > 25 .10 M J/ kg ,a= 0. 0016 。
加助燃劑後,應按總釋熱量考慮。
在需要測定彈筒洗液中硫Sb,ad的情況下,把洗液煮沸2 -3m in,取下稍冷後,以甲基紅 (或相應的混合指示劑)為指示劑,用氫氧化鈉標准溶液滴定,以求出洗液中的總酸量,然後按式(3)計算出彈筒洗液硫Sb,ad (%) :
Sb,ad=(c×V/ m-aQb,ad/60)×1.6 ---------(3)
式中 :
c— 氫氧化鈉標准溶液的物質的量濃度,單位mol/L;
V— 滴定用去的氫氧化鈉溶液體積,單位為毫升(mL);
60— 相當1m mol硝酸的生成熱,單位為焦耳(J);
m— 稱取的試樣質量,單位為克(g);
1.6 —將每摩爾硫酸1/2(H2SO4)轉換為硫的質量分數的轉換因子;
註:這里規定的對硫的校正方法中,略去了對生物質燃料樣中硫酸鹽的考慮。這對絕大多數生物質燃料來說影響不大,因生物質燃料的硫酸鹽硫含量一般很低。但有些特殊生物質燃料樣,硫酸鹽硫的質量分數可達0.5%以上。根據實際經驗,生物質燃料樣燃燒後,由於灰的飛濺,一部分硫酸鹽硫也隨之落入彈筒,因此無法利用彈筒洗液來分別測定硫酸鹽硫和其他硫。遇此情況,為求高位發熱量的准確,只有另行測定生物質燃料中的硫酸鹽硫或可燃硫,然後做相應的校正。關於發熱量大於14. 60 M J /k g的規定,在用擦鏡紙或摻苯甲酸的情況下,應按擦鏡紙或摻添加物後放出的總熱量來掌握。

9 熱容量和儀器常數標定
9.1 在不加襯墊的燃燒皿中稱取經過乾燥和壓片的苯甲酸,苯甲酸片的質量以0.9~1.1 g左右為宜。
苯甲酸應預先研細並在盛有濃硫酸的乾燥器中乾燥3天或在60℃~ 70℃烘箱中乾燥3h~4h 。
9.2 苯甲酸也可以在燃燒皿中熔融後使用。熔融可在121℃~126℃的烘箱中放置1h,或在酒精燈的小火焰上進行,放入乾燥器中冷卻後使用。熔體表面出現的針狀結晶,應用小刷刷掉,以防燃燒不完全。
9.3 試驗結束後,打開氧彈,注意檢查內部,如發現有炭黑存在,試驗應作廢。
9.4 熱容量標定中硝酸生成可按式(4)求得:
qn=Q×m×0.001 5 ··················(4)
式中:
qn——硝酸的生成熱,單位為焦耳(J);
Q——苯甲酸的標准熱值,單位焦耳每克(J/g);
m——苯甲酸的用量,單位為克(g);
0.0015——苯甲酸燃燒時的硝酸生成熱校系數。

9.5按照本標准第8.1條的方法進行必要的校正。
9.6 熱容量標定一般應進行5次重復試驗,計算5次重復試驗結果的平均值和標准差S,其相對標准差不應超過0.20%,再補做一次試驗,取符合要求的5次結果的平均值(修約至1J/K)作為該儀器的熱容量,若任何5次結果的相對標准差都超過0.20%,則應對試驗條件和操作技術仔細檢查並糾正存在問題後,重新進行標定,舍棄已有的全部結果。
9.7 在使用新型熱量計前,需確定其熱容量的有效工作范圍。方法是:用苯甲酸至少進行8次熱容量標定試驗,苯甲酸片的質量一般從0.7g至1.3g,或根據被測樣品可能涉及的熱值范圍(溫升)確定苯甲酸片的質量。
9.8 熱容量標定值的有效期為3個月,超過此期限時應重新標定。但有下列情況時,應立即重測:
9.8.1更換量熱溫度計;
9.8.2更換熱量計大部件如氧彈頭、連接環(由廠家供給的或自製
的相同規格的小部件如氧彈的密封圈、電極柱、螺母等不在此列);
9.8.3標定熱容量和測定發熱量時的內筒溫度相差超過5K;
9.8.4熱量計經過較大的搬動之後。
如果熱量計量熱系統沒有顯著改變,重新標定的熱容量值與前一次的熱容量值相差不應大於0.25%,否則,應檢查試驗程序,解決問題後再重新進行標定。

10 結果的表述
彈筒發熱量和高位發熱量的結果計算到1J/g,取高位發熱量的兩次重復測定的平均值,按GB/T 483數字修約到最接近的10J/g的倍數,按J/g或MJ/kg的形式報出。

11方法的精密度
發熱量測定的重復性和再現性如表2規定:

12 低位發熱量的計算
12.1 恆容低位發熱量
工業上是根據生物質燃料的收到基低位發熱量進行計算和設計,生物質燃料的收到基恆容低位發熱量的計算方法如式(13):

式中:
Qnet,v,ar——生物質燃料的收到基恆容低位發熱量,單位為焦耳每克(J/g);
Qgr,v,ad——生物質燃料的空氣乾燥基恆容高位發熱量,單位為焦耳每克(J/g);
Mt——生物質燃料的收到基全水分,單位為百分數(%);
Mad——生物質燃料的空氣乾燥基水分,單位為百分數(%);
Had——生物質燃料的空氣乾燥基氫含量,單位為百分數(%)。
12.2 恆壓低位發熱量
由彈筒發熱量算出的高位發熱量和低位發熱量都屬恆容狀態,在實際工業燃燒中則是恆壓狀態,嚴格地講,工業計算中應使用恆壓低位發熱量。如有必要,恆壓低位發熱量可按式(14)計算:

式中:
Qnet,p,ar——生物質燃料的收到基恆壓低位發熱量,單位為焦耳每克(J/g);
Oad——生物質燃料的空氣乾燥基氧含量,單位為百分數(%);
Nad——生物質燃料的空氣乾燥基氮含量,單位為百分數(%)。
其餘符號意義同前

13 各種不同基的生物質燃料的發熱量換算
13.1 高位發熱量基的換算
生物質燃料的各種不同基的高位發熱量按式(16)、式(17)、式(18)換算:

式中:
Qgr——高位發熱量,單位為焦耳每克(J/g);
Aad——空氣乾燥基生物質燃料樣的灰分,單位為百分數(%);ar,ad,d,daf——分別代表收到基、空氣乾燥基、乾燥基和乾燥無灰基。
其餘符號意義同前。
13.2 低位發熱量基的換算
生物質燃料的各種不同水分基的恆容低位發熱量按式(19)換算:

式中:
Qnet,v,m——水分為M的生物質燃料的恆容低位發熱量,單位為焦耳每克(J/g);
M——生物質燃料樣的水分,單位為百分數(%);
乾燥基時M=0,空氣乾燥基時M=Mad,收到基時,M=Mt。
其餘符號意義同前。

14 試驗報告
試驗結果報告應包括以下信息:
a)試樣編號;
b)依據標准;
c)試驗結果;
d)與標準的任何偏離;
e)試驗中出現的異常現象;
f)試驗日期;

⑦ 生物質燃燒後的主要產物是什麼

生物質燃燒後,主要產物就是一氧化碳和二氧化碳。
一氧化碳分子是不飽和的亞穩態分子,在化學上就分解而言是穩定的。常溫下,一氧化碳不與酸、鹼等反應,但與空氣混合能形成爆炸性混合物,遇明火、高溫能引起燃燒、爆炸,屬於易燃、易爆氣體。因一氧化碳分子中碳元素的化合價是+2,能被氧化成+4價,具有還原性;且能被還原為低價態,具有氧化性。在一定條件下,一氧化碳和水蒸氣等摩爾反應生成氫氣和二氧化碳:CO + H2O → H2+ CO2。在工業裝置中,早期的一氧化碳變換反應通常分兩段進行,即高(中)溫變換和低溫變換。高(中)溫變換用鐵系作催化劑,典型水蒸汽和一氧化碳比為3左右,在溫度為300~500℃、空速為2000~4000 h-1的條件下,高溫變換爐出口一氧化碳含量為2%~5%;低溫變換用高活性銅鋅催化劑,在溫度為180~280℃、空速為2000~4000 h-1的條件下,低溫變換爐出口一氧化碳含量為0.2%~0.5%、二氧化碳(carbon dioxide),一種碳氧化合物,化學式為CO2,化學式量為44.0095、常溫常壓下是一種無色無味[2]或無色無嗅而其水溶液略有酸味的氣體,也是一種常見的溫室氣體、還是空氣的組分之一(佔大氣總體積的0.03%-0.04%[5])。在物理性質方面,二氧化碳的熔點為-56.6℃,沸點為-78.5℃,密度比空氣密度大(標准條件下),溶於水。在化學性質方面,二氧化碳的化學性質不活潑,熱穩定性很高(2000℃時僅有1.8%分解),不能燃燒,通常也不支持燃燒,屬於酸性氧化物,具有酸性氧化物的通性,因與水反應生成的是碳酸,所以是碳酸的酸酐。
二氧化碳一般可由高溫煅燒石灰石或由石灰石和稀鹽酸反應製得,主要應用於冷藏易腐敗的食品(固態)、作致冷劑(液態)、製造碳化軟飲料(氣態)和作均相反應的溶劑(超臨界狀態)等。

⑧ 液體燃料的簡介

liquid fuel
燃料的一大類。能產生 熱能或 動力的 液態可燃 物質。 主要含有碳氫化合物或其混合物。 天然的有天然石油或 原油。 加工而成的有由石油加工而得的汽油、煤油、柴油、燃料油等,同油頁岩干餾而得的頁岩油,以及由一氧化碳和 氫 合成的 人造石油等。
液體燃料是用來產生熱量或動力的液態可燃燒的物質。主要為碳氫化合物或其混合物,天然的有石油及其某些加工產品如汽油、煤油、柴油、燃料油等;也有通過煤的液化或煤、油頁岩經干餾以及一氧化碳和氫氣用費一托合成法等製得的人造汽油。
液體燃料比固體燃料有下列優點:(1)比具有同量熱能的煤約輕30%,所佔空間約少50%;(2)可貯存在離爐子較遠的地方,貯油櫃可不拘形式,貯存便利還勝過氣體燃料;(3)可用較細管道輸送,所費人工也少;(4)燃燒容易控制;(5)基本上無灰分。
液體燃料用於內燃機和噴氣機等。可用作製造油氣和增碳水煤氣的原料,也可用作有機合成工業的原料。
固體煤變成液體燃料有哪幾種方法?
煤變成油通常有直接液化和間接液化兩種方法。直接液化又稱「加氫液化」,主要是指在高溫高壓和催化劑作用下,對煤直接催化加氫裂化,使其降解和加氫轉化為液體油品的工藝過程;煤的間接液化是先將煤氣化,生產出原料氣,經凈化後再進行合成反應,生成油的過程。煤直接液化就是用化學方法,把氫加到煤分子中,提高它的氫碳原子比。在煤直接液化過程中,催化劑是降低生產成本和降低反應條件苛刻度的關鍵。

⑨ 「生物柴油」是怎樣生產的

生物柴油是清潔的可再生能源,它以大豆和油菜籽等油料作物、油棕和黃連木等油料林木果實、工程微藻等油料水生植物以及動物油脂、廢餐飲油等為原料製成的液體燃料,是優質的石油柴油代用品。生物柴油是典型「綠色能源」,大力發展生物柴油對經濟可持續發展,推進能源替代,減輕環境壓力,控制城市大氣污染具有重要的戰略意義。

生物柴油的主要特性

眾所周知,柴油分子是由15個左右的碳鏈組成的,研究發現植物油分子則一般由14-18個碳鏈組成,與柴油分子中碳數相近。因此生物柴油就是一種用油菜籽等可再生植物油加工製取的新型燃料。按化學成分分析,生物柴油燃料是一種高脂酸甲烷,它是通過以不飽和油酸C18為主要成分的甘油脂分解而獲得的.與常規柴油相比,生物柴油具有下述無法比擬的性能:

1.具有優良的環保特性。主要表現在由於生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可減少約30%(有催化劑時為70%);生物柴油中不含對環境會造成污染的芳香族烷烴,因而廢氣對人體損害低於柴油。檢測表明,與普通柴油相比,使用生物柴油可降低90%的空氣毒性,降低94%的患癌率;由於生物柴油含氧量高,使其燃燒時排煙少,一氧化碳的排放與柴油相比減少約10%(有催化劑時為95%);生物柴油的生物降解性高。

2.具有較好的低溫發動機啟動性能。無添加劑冷濾點達-20℃。

3.具有較好的潤滑性能。使噴油泵、發動機缸體和連桿的磨損率低,使用壽命長。

4.具有較好的安全性能。由於閃點高,生物柴油不屬於危險品。因此,在運輸、儲存、使用方面的安全性又是顯而易見的。

5.具有良好的燃料性能。十六烷值高,使其燃燒性好於柴油,燃燒殘留物呈微酸性,使催化劑和發動機機油的使用壽命加長。

6.具有可再生性能。作為可再生能源,與石油儲量不同,其通過農業和生物科學家的努力,可供應量不會枯竭。

7.無須改動柴油機,可直接添加使用,同時無需另添設加油設備、儲存設備及人員的特殊技術訓練。

8.生物柴油以一定比例與石化柴油調和使用,可以降低油耗、提高動力性,並降低尾氣污染。

生物柴油的優良性能使得採用生物柴油的發動機廢氣排放指標不僅滿足目前的歐洲II號標准,甚至滿足隨後即將在歐洲頒布實施的更加嚴格的歐洲Ⅲ號排放標准。而且由於生物柴油燃燒時排放的二氧化碳遠低於該植物生長過程中所吸收的二氧化碳,從而改善由於二氧化碳的排放而導致的全球變暖這一有害於人類的重大環境問題。因而生物柴油是一種真正的綠色柴油。

生物柴油的生產方法

目前生物柴油主要是用化學法生產,即用動物和植物油脂與甲醇或乙醇等低碳醇在酸或者鹼性催化劑和高溫(230-250℃)下進行轉酯化反應,生成相應的脂肪酸甲酯或乙酯,再經洗滌乾燥即得生物柴油。甲醇或乙醇在生產過程中可循環使用,生產設備與一般制油設備相同,生產過程中可產生10%左右的副產品甘油。

目前生物柴油的主要問題是成本高。據統計,生物柴油制備成本的75%是原料成本。因此採用廉價原料及提高轉化從而降低成本是生物柴油能否實用化的關鍵。美國己開始通過基因工程方法研究高油含量的植物,日本採用工業廢油和廢煎炸油,歐洲是在不適合種植糧食的土地上種植富油脂的農作物。

但化學法合成生物柴油有以下缺點:工藝復雜,醇必須過量,後續工藝必須有相應的醇回收裝置,能耗高:色澤深,由於脂肪中不飽和脂肪酸在高溫下容易變質;酯化產物難於回收,成本高;生產過程有廢鹼液排放。

為解決上述問題,人們開始研究用生物酶法合成生物柴油,即用動物油脂和低碳醇通過脂肪酶進行轉酯化反應,制備相應的脂肪酸甲酯及乙酯。酶法合成生物柴油具有條件溫和、醇用量小、無污染排放的優點。但目前主要問題有:對甲醇及乙醇的轉化率低,一般僅為40%-60%。由於目前脂肪酶對長鏈脂肪醇的酯化或轉酯化有效,而對短鏈脂肪醇(如甲醇或乙醇等)轉化率低,而且短鏈醇對酶有一定毒性,酶的使用壽命短。副產物甘油和水難於回收,不但對產物形成抑制,而且甘油對固定化酶有毒性,使固定化酶使用壽命短。

「工程微藻」生產柴油,為柴油生產開辟了一條新的技術途徑。美國國家可更新實驗室(NREL)通過現代生物技術建成「工程微藻」,即硅藻類的一種「工程小環藻」。在實驗室條件下可使「工程微藻」中脂質含量增加到60%以上,戶外生產也可增加到40%以上。而一般自然狀態下微藻的脂質含量為5%-20%。「工程微藻」中脂質含量的提高主要由於乙醯輔酶A羧化酶(ACC)基因在微藻細胞中的高效表達,在控制脂質積累水平方面起到了重要作用。目前,正在研究選擇合適的分子載體,使ACC基因在細菌、酵母和植物中充分表達,還進一步將修飾的ACC基因引入微藻中以獲得更高效表達。利用「工程微藻」生產柴油具有重要經濟意義和生態意義,其優越性在於:微藻生產能力高、用海水作為天然培養基可節約農業資源;比陸生植物單產油脂高出幾十倍;生產的生物柴油不含硫,燃燒時不排放有毒害氣體,排入環境中也可被微生物降解,不污染環境,發展富含油質的微藻或者「工程微藻」是生產生物柴油的一大趨勢。

國外生物柴油的發展狀況

生物柴油於1988年誕生,由德國聶爾公司發明,它是以菜籽油為原料,提煉而成的潔凈燃油。突出的環保性和可再生性,引起了世界發達國家,尤其是資源貧乏國家的高度重視。西方國家為發展生物柴油,在行業規范和政策鼓勵下採取了一系列積極措施。為了便於推廣使用,美德意等國都制定了生物柴油技術標准,如美國權威機構ASTM相繼在1996年和2000年發布標准,完善生物柴油的產業化條件,並且政府實行積極鼓勵的方式,在生物柴油的價格上給於一定的補貼。如德國農民種植為生物柴油作原料的油菜籽可獲得1000馬克/公頃補貼,並對製造生物柴油予以免稅。

歐洲和北美利用過剩的菜籽油和豆油為原料生產生物柴油獲得推廣應用。目前生物柴油主要用化學法生產,採用植物油與甲醇或乙醇在酸或鹼性催化劑和230-250℃下進行酯化反應,生成相應的脂肪酸甲酯或乙酯生物柴油。現還在研究生物酶法合成生物柴油技術。與普通柴油相比,生物柴油更有利環保,使柴油車尾氣中有毒有機物排放量僅為1/10,顆粒物為20%,C02和CO排放量僅為10%。按照京都議定書,歐盟2008-2012年間要減少排放8%。就燃料對整個大氣C02影響的生命循環分析看,生物柴油排放的C02比礦物柴油要少約50%。為此,歐盟最近發布了兩項新的指令以推進生物燃料在汽車燃料市場上的應用,這將進一步推動歐洲生物柴油工業的發展。與常規柴油相比,生物柴油價格要貴一倍以上,為此新指令要求歐盟各國降低生物柴油稅率,並對生物柴油在歐洲汽車燃料中的銷售比例作出規定。

西方國家生物柴油產業發展迅速。近年來,西方國家加大生物柴油商業化投資力度,使生物柴油的投資規模增大,開工項目增多。美國、加拿大、巴西、日本、澳大利亞、印度等國都在積極發展這項產業。目前,美國有4家生物柴油生產廠,總能力為30萬噸/年。歐盟國家主要以油菜為原料,2001年生物柴油產量已超過100萬噸。2000年德國的生物柴油已達45萬噸,德國還於2001年月11日在海德地區投資5000萬馬克,興建年產10萬噸的生物柴油裝置。法國有7家生物柴油生產廠,總能力為40萬噸/年,使用標準是在普通柴油中摻加5%生物柴油,對生物柴油的稅率為零。義大利有9個生物柴油生產廠,總能力33萬噸/年,對生物柴油的稅率為零。奧地利有3個生物柴油生產廠,總能力5.5萬噸/年,稅率為石油柴油的4.6%。比利時有2個生物柴油生產廠,總能力24萬噸/年。日本生物柴油生產能力也達到40萬噸/年。

我國生物柴油的發展狀況

我國政府為解決能源節約、替代和綠色環保問題制定了一些政策和措施,早有一些學者和專家己致力於生物柴油的研究、倡導工作。我國生物柴油的研究與開發雖起步較晚,但發展速度很快,一部分科研成果已達到國際先進水平。研究內容涉及到油脂植物的分布、選擇、培育、遺傳改良及其加工工藝和設備。目前各方面的研究都取得了階段性成果,這無疑將有助於我國生物柴油的進一步研究與開發。可以預計,在2-3年內,我國在該領域的研究將會有突破性進展並達到實用水平。

著名學者閔恩澤院士在《綠色化學與化工》一書中首先明確提出發展清潔燃料生物柴油的課題:原機械工業部和原中國石化總公司在上世紀80年代就撥出專款立項,由上海內燃機研究所和貴外I山地農機所承擔課題,聯合研究長達10年之久,並邀請中國石化科學院的專家詹永厚做了大量基礎試驗探索;中國農業工程研究設計院的施德路先生也曾於1985年進行了生物柴油的試驗工作;遼寧省能源研究所承擔的中國——歐共體合作研究項目也涉及到生物柴油;中國科技大學、河南科學陸軍化學所等單位也都對生物柴油作了不同程度的研究。

系統研究始於中國科學院的「八五」重點科研項目:「燃料油植物的研究與應用技術」,完成了金沙江流域燃料油植物資源的調查及栽培技術研究,建立了30公頃的小桐子栽培示範片。自20世紀90年代初開始,長沙市新技術研究所與湖南省林業科學院對能源植物和生物柴油進行了長達10年的合作研究,「八五」期間完成了光皮樹油製取甲脂燃料油的工藝及其燃燒特性的研究;「九五」期間完成了國家重點科研攻關項目「植物油能源利用技術」。

1999-2002年,湖南省林業科學院承擔並主持了國家林業局引進國外先進林業技術(948項目)——《能源樹種綠王樹及其利用技術的引進》,從南非、美國和巴西引進了能源樹種綠玉樹(Euphorbia tim-calli)優良無性系;研製完成了綠玉樹乳汁榨取設備;進行了綠玉樹乳汁成份和燃料特性的研究:綠玉樹乳汁催化裂解研究有階段性成果。

但是,與國外相比,我國在發展生物柴油方面還有相當大的差距,長期徘徊在初級研究階段,未能形成生物柴油的產業化:政府尚未針對生物柴油提出一套扶植、優惠和鼓勵的政策辦法,更沒有制定生物柴油統一的標准和實施產業化發展戰略。因此,我國進入了WTO之後,在如何面對經濟高速發展和環境保護和雙重壓力這種背景下,加快高效清潔的生物柴油產業化進程就顯得更為迫切了。

我國生物柴油的產業化前景

2003年,受國民經濟持續快速增長的拉動,中國石油市場需求增勢強勁,石油產品需求總量增長幅度達到兩位數,為11.4%,比上年提高了7.4個百分點,這促進了石油進口量的大幅攀升,使我國成為石油消費和進口大國。石油市場資源供應出現緊缺,價格全面上漲。據中國物流信息中心統計,2003年我國石油及製品累計平均價格比上年提高11.8%。初步分析2004年中國石油市場供需形勢與2003年情況基本相似,將繼續保持消費需求旺盛,供需基本平衡的格局,但不排除受季節、運輸等因素影響而出現局部性和結構性的供應緊張。預計2004年中國原油消費量為2.7億噸,凈進口量有可能超過1億噸。

我國是一個石油凈進口國,石油儲量又很有限,大量進口石油對我國的能源安全造成威脅。因此,提高油品質量對中國來說就更有現實意義。而生物柴油具有可再生、清潔和安全三大優勢。專家認為,生物柴油對我國農業結構調整、能源安全和生態環境綜合治理有十分重大的戰略意義。目前,汽車柴油化已成為汽車工業的一個發展方向,據專家預測,到2010年,世界柴油需求量將從38%增加到45%,而柴油的供應量嚴重不足,這都為油菜製造生物柴油提供了廣闊的發展空間。發展生物柴油產業還可促進中國農村和經濟社會發展。如發展油料植物生產生物柴油,可以走出一條農林產品向工業品轉化的富農強農之路,有利於調整農業結構,增加農民收入。

柴油的供需平衡問題也將是我國未來較長時間石油市場發展的焦點問題。業內人士指出,到2005年,隨著我國原由加工量的上升,汽油和煤油擁有一定數量的出口餘地,而柴油的供應缺口仍然較大。預計到2010年柴油的需求量將突破1億噸,與2005年相比,將增長24%;至2015年市場需求量將會達到1.3億噸左右。近幾年來,盡管煉化企業通過持續的技術改造,生產柴汽比不斷提高,但仍不能滿足消費柴汽比的要求。目前,生產柴汽比約為1.8,而市場的消費柴汽比均在2.0以上,雲南、廣西、貴州1等省區的消費柴汽比甚至在2.5以上。隨著西部開發進程的加快,隨著國民經濟重大基礎項目的相繼啟動,柴汽比的矛盾比以往更為突出。因此,開發生物柴油不僅與目前石化行業調整油品結構、提高柴汽比的方向相契合,而且意義深遠。

目前我國生物柴油技術已取得重大成果:海南正和生物能源公司、四川古杉油脂化工公司和福建卓越新能源發展公司都已開發出擁有自主知識產權的技術,相繼建成了規模超過萬噸的生產廠,這標志著生物柴油這一高新技術產業已在中國大地上誕生。

中國工程院有關負責人介紹,中國「十五」計劃發展綱要提出發展各種石油替代品,將發展生物液體燃料確定為國家產業發展方向。生物柴油產業得到了國務院領導和國家計委、國家經貿委、科技部等政府部門的支持,並已列入有關國家計劃。

發展生物柴油,我國有十分豐富的原料資源。我國幅員遼闊,地域跨度大,水熱資源分布各異,能源植物資源種類豐富多樣,主要的科有大戟科、樟科、桃金娘科、夾竹桃科、菊科、豆科、山茱萸科、大風子科和蘿摩科等。目前我國生物柴油的開發利用還處於發展初期,要從總體上降低生物柴油成本,使其在我國能源結構轉變中發揮更大的作用,只有向基地化和規模化方向發展,實行集約經營,形成產業化,才能走符合中國國情的生物柴油發展之路。隨著改革開放的不斷深入,在全球經濟一體化的進程中,在中國加入WTO的大好形勢下,中國的經濟水平將進一步提高,對能源的需求會有增無減,只要把關於生物柴油的研究成果轉化為生產力,形成產業化,則其在柴油引擎、柴油發電廠、空調設備和農村燃料等方面的應用是非常廣闊的。

信息來源:北京燕山石化公司研究院信息中心

⑩ 生物質的工業分析和元素分析所用的儀器是什麼

提問太寬泛了。
據定義,生物質是一切直接或間接利用綠色植物光合作用形成的有機物質。包括除化石燃料外的植物、動物和微生物及其排泄與代謝物等。
那麼裡面主要是碳氫化合物了,不過生物體內也是包含各種金屬微量元素的。
所以問它的工業分析和元素分析用儀器,也不知怎麼回答,主要看是測什麼對象,具體可以看看儀器分析的書,對應找方法。
比如,金屬元素的分析常用原子吸收光度法(AAS)
生物體的復雜性,如果只是測其中某種碳氫化合物的含量,就需要使用色譜類(GC,HPLC等)分離分析方法了

閱讀全文

與液體生物質燃料工業分析方法相關的資料

熱點內容
成都中風鍛煉小方法 瀏覽:293
五星紅旗怎麼折的方法 瀏覽:762
成年人經常磨牙解決方法 瀏覽:318
預制剪力牆結構鋼筋連接方法 瀏覽:310
兒童遠視訓練方法 瀏覽:21
練字的技巧與方法視頻 瀏覽:235
塑料模具研究方法 瀏覽:778
系蝴蝶結最簡單的方法 瀏覽:479
高中檢測氨水的方法和現象 瀏覽:287
法壓壺的使用方法 瀏覽:126
環境檢測水質分析方法 瀏覽:223
眼鏡片卡槽拉絲與鏡架安裝方法 瀏覽:460
有什麼方法可以矯正近視眼 瀏覽:541
億萬台電腦列數字說明方法 瀏覽:36
初中生高考題解決方法 瀏覽:441
特殊測量技術方法特點 瀏覽:541
用化學方法鑒別真金和假金子黃銅 瀏覽:9
羊五號病怎麼治療土方法 瀏覽:486
增強手指肌力的訓練方法 瀏覽:184
擦車的正確方法 瀏覽:214