⑴ 數據分析的5種細分方法有哪些
1.按時間細分時間可以細分為不同的跨度,包括年、月、周、日、時、分、秒等等,不同的時間跨度,數據表現可能大不相同。
比如說,按照月度來看,產品的銷量可能變化不大,但是如果細分到每一天,可能就有比較劇烈的變化,我們應該找到這些變化的數據,並分析變化背後的原因,而不是讓它淹沒在整月匯總數據的表象之中。
2.按空間細分
空間主要是指按地域進行劃分,包括世界、洲、國家、省份、城市、區等等。
比如說,把全國的 GDP 數據,細分到每一個省份。
空間作為一個相對抽象的概念,也可以代表其他與業務相關的各種事物,比如產品、人員、類別等等,只要有助於理解事物的本質,都可以嘗試拿來進行細分。
3.按過程細分
把業務細分為一些具體的過程,往往能夠讓復雜的問題簡單化。
比如說,把訂單發貨細分為 5 個過程,想辦法提升每個過程的效率,從而縮短發貨的時間。
再比如,把用戶的生命周期,細分為 5 個重要的過程,即:獲取、激活、留存、盈利、推薦。
4.按公式細分
有時候一個指標,是可以用公式計算出來的。
比如說,銷售額 = 銷售數量 * 平均單價,銷售數量 = 新客戶購買數量 + 老客戶購買數量,以此類推。
再比如,在財務分析中,權益凈利率 = 資產凈利率 * 權益乘數,其中:資產凈利率 = 銷售凈利率 * 資產周轉率,以此類推。
5.按模型細分
數據分析的模型有很多,我們可以根據業務的實際情況,選擇合適的模型,在此基礎上進行細分,得出相應的分析結論。
比如說,按照波士頓矩陣,把企業產品細分為「市場佔有率」和「銷售增長率」兩個維度,然後畫一個四象限矩陣圖,其中每個象限就代表一類產品,即:明星產品、金牛產品、瘦狗產品和問題產品,對每一類產品,分別建議採取不同的發展策略。
再比如,按照 RFM 模型,把客戶按三個維度進行細分,即:最近一次消費時間間隔(Recency)、消費頻率(Frequency)和消費金額(Monetary),從而得到 8 種客戶類別,從而有針對性地採取不同的營銷策略。
⑵ 數據分析中常見的業務分析方法有哪些
1、邏輯樹分析方法
將復雜的問題拆分成若干個簡單的子問題問題,可以通過多層拆分,直至問題足夠簡單到可以解決。
當每一個子問題解決完畢,那麼復雜的問題也就得到解決了。
2、多維度拆解分析方法
多維度拆解分析方法是指將整體拆解成各個部分,分析內部差異,挖掘數據內部隱含的規律和真相。
3、對比分析方法
通過與對標物的比較,達到認識事物的本質和規律並做出正確的判斷。多用於發現問題。
⑶ 常用的數據分析方法有哪些
①對比分析法通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。常見的對比有橫向對比和縱向對比。
②分組分析法
分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。
③預測分析法
預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。
④漏斗分析法
漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡,最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。
⑤AB測試分析法
AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。
⑷ 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
⑸ 常用的數據分析方法有哪些
1. 描述型分析:發生了什麼?
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析:為什麼會發生?
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析:可能發生什麼?
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析:需要做什麼?
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
⑹ 最常用的四種大數據分析方法有哪些
1.描述型分析:發生了什麼?
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2.診斷型分析:為什麼會發生?
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3.預測型分析:可能發生什麼?
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。
在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4.指令型分析:需要做什麼?
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
例如,交通規劃分析考量了每條路線的距離、每條線路的行駛速度、以及目前的交通管制等方面因素,來幫助選擇最好的回家路線。
⑺ 分享!三大類實用的數據分析方法
一、業務分析類
杜邦分析法目前主要用於財務領域,通過財務比率的關系來分析財務狀況,其核心要點是將一個大的問題拆分為更小粒度的指標,以此了解問題出在了哪兒,從而對症下葯。
以電商行業為例,GMV(網站成交金額)是考核業績最直觀的指標,當GMV同比或環比出現下滑時候,需要找到影響GMV的因素並逐一拆解。
二、用戶分析類
TGI指數又稱目標群體指數,可反映目標群體在特定研究范圍內的強勢或弱勢。TGI指數=用戶分類中具有某一特徵的群體所佔比例/總體中具有相同特徵的群體所佔比例*100
TGI指數表徵不同特徵用戶關注問題的差異情況,其中TGI指數等於100表示平均水平,高於100,代表該類用戶對某類問題的關注程度高於整體水平。
三、產品運營類
產品運營是一個長期的過程,需要定期對產品的使用數據進行監控,通過用戶行為分析發現問題,從而確定運營的方向,同時也可以用於評估運營的效果。
產品運營的常用指標如下:
使用廣度:總用戶數,月活;
使用深度:每人每天平均瀏覽次數,平均訪問時長;
使用粘性:人均使用天數;
綜合指標:月訪問時長=月活*人均使用天數*每人每天平均瀏覽次數*平均訪問時長。
關於大數據主要分析的數據類型是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
⑻ 常用的數據分析方法是什麼
1. 描述型分析
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
⑼ 數據分析方法一般分為哪三種
1、漏斗分析
漏斗分析是指通過數據分析找到有問題的業務環節,並對其優化。
漏斗分析兩大作用:其一,漏斗分析可以對各個業務階段的用戶、流量的變化進行監控,及時分析低轉化率的環節,找出流失的關鍵,並不斷優化。其二,漏斗分析可以根據不同的人群、渠道,進行差異化的分析,比如新渠道、新客戶,分析出最佳的和最差的,這樣能夠提高操作的准確性和效率。
3、對比分析法
對比分析法即對比數據,分析差別,可以直觀地看到某個方面的變化或差距,並能准確量化地表示這些變化或差距。對比分析既可以基於時間進行對比,也可以基於分類,如部門、地區、類別等進行對比。在工作中,我們會使用對比分析法比較多,比如,如上年的銷量對比、目標與實際對比等。我們在對比的過程中要注意要找相似的對比對象。比如,佛山的人口與上海的人口對比就沒有可比性,是毫無意義的。
⑽ 數據分析的方法有哪些
數據分析的方法有:對比分析法,分組分析法,預測分析法,漏斗分析法,AB測試分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假設性分析法。
1.對比分析法:對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。
橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。
數據分析方法是數據統計學當中應用非常廣泛的方法,具體方法有很多種,具體採用的時候因人而異。