導航:首頁 > 研究方法 > 鋰電池研究的基本思路和方法

鋰電池研究的基本思路和方法

發布時間:2022-10-25 05:21:49

❶ 鋰電池的工作原理和化學反應式

「鋰電池」,是一類由鋰金屬或鋰合金為正/負極材料、使用非水電解質溶液的電池。1912年鋰金屬電池最早由Gilbert N. Lewis提出並研究。20世紀70年代時,M. S. Whittingham提出並開始研究鋰離子電池。由於鋰金屬的化學特性非常活潑,使得鋰金屬的加工、保存、使用,對環境要求非常高。隨著科學技術的發展,鋰電池已經成為了主流。

鋰電池大致可分為兩類:鋰金屬電池和鋰離子電池。鋰離子電池不含有金屬態的鋰,並且是可以充電的。可充電電池的第五代產品鋰金屬電池在1996年誕生,其安全性、比容量、自放電率和性能價格比均優於鋰離子電池。由於其自身的高技術要求限制,只有少數幾個國家的公司在生產這種鋰金屬電池。

中文名
鋰電池
外文名
Lithium Cell
發明家
M. S. Whittingham
化學反應
氧化還原反應
材料
金屬鋰
快速
導航
早期研發

發展進程

種類

主要材料

電池膨脹損壞

導電塗層

塗碳鋁箔

辨別電池

選購方法

鋰原電池

鋰離子

核聚變

電池結構

電池應用

發展前景

電池產量

電池特點

電池特徵

安全性

充電知識

相關知識

充電速度

水溶液電池

使用方法
工作原理
鋰金屬電池:
鋰金屬電池一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負極材料、使用非水電解質溶液的電池。

鋰電池基本原理
放電反應:Li+MnO2=LiMnO2
鋰離子電池:
鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負極材料、使用非水電解質的電池。
充電正極上發生的反應為
LiCoO2==Li(1-x)CoO2+XLi++Xe-(電子)
充電負極上發生的反應為
6C+XLi++Xe- = LixC6
充電電池總反應:LiCoO2+6C = Li(1-x)CoO2+LixC6
正極
正極材料:可選的正極材料很多,目前市場常見的正極活性材料如下表所示:
正極材料
化學成分
標稱電壓
結構
能量密度
循環壽命
成本
安全性
鈷酸鋰(LCO)
LiCoO2
3.7 V
層狀




錳酸鋰(LMO)
Li2Mn2O4
3.6V
尖晶石




展開全部
正極反應:放電時鋰離子嵌入,充電時鋰離子脫嵌。 充電時:LiFePO4 → Li1-xFePO4 + xLi+ + xe-放電時:Li1-xFePO4 + xLi+ + xe- → LiFePO4。
負極
負極材料:多採用石墨。另外鋰金屬、鋰合金、硅碳負極、氧化物負極材料等也可用於負極。
負極反應:放電時鋰離子脫嵌,充電時鋰離子嵌入。
充電時:xLi+ + xe- + 6C → LixC6
放電時:LixC6→ xLi+ + xe- + 6C
早期研發
鋰電池最早期應用在心臟起搏器中。鋰電池的自放電率極低,放電電壓平緩等優點,使得植入人體的起搏器能夠長期運作而不用重新充電。鋰電池一般有高於3.0伏的標稱電壓,更適合作集成電路電源。二氧化錳電池,就廣泛用於計算器,數碼相機、手錶中。
為了開發出性能更優異的品種,人們對各種材料進行了研究,從而製造出前所未有的產品。

❷ 鋰離子電池的工作原理是怎樣的它是如何充放電的

一、發展及分類

「鋰電池」,是一類由鋰金屬或鋰合金為正/負極材料、使用非水電解質溶液的電池。

鋰電池最早期應用在心臟起搏器中。鋰電池的自放電率極低,放電電壓平緩等優點,使得植入人體的起搏器能夠長期運作而不用重新充電。鋰電池一般有高於3.0伏的標稱電壓,更適合作集成電路電源。二氧化錳電池,就廣泛用於計算器,數碼相機、手錶中。

為了開發出性能更優異的品種,人們對各種材料進行了研究,從而製造出前所未有的產品。

1912年鋰金屬電池最早由Gilbert N. Lewis提出並研究。

20世紀70年代時,M. S. Whittingham提出並開始研究鋰離子電池。

1992年Sony成功開發鋰離子電池。它的實用化,使人們的行動電話、筆記本、計算器等攜帶型電子設備的重量和體積大大減小。

由於鋰金屬的化學特性非常活潑,使得鋰金屬的加工、保存、使用,對環境要求非常高。隨著科學技術的發展,鋰電池已經成為了主流。

鋰電池大致可分為兩類:鋰金屬電池和鋰離子電池。

鋰離子電池不含有金屬態的鋰,並且是可以充電的。可充電電池的第五代產品鋰金屬電池在1996年誕生,其安全性、比容量、自放電率和性能價格比均優於鋰離子電池。由於其自身的高技術要求限制,只有少數幾個國家的公司在生產這種鋰金屬電池。

二、工作原理

1. 鋰金屬電池

一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負極材料、使用非水電解質溶液的電池。

放電反應:Li+MnO2=LiMnO2

2.鋰離子電池:

鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負極材料、使用非水電解質的電池。

充電正極上發生的反應為

LiCoO2=Li(1-x)CoO2+xLi++xe-(電子)

充電負極上發生的反應為

6C+xLi++xe-= LixC6

充電電池總反應:LiCoO2+6C = Li(1-x)CoO2+LixC6

三、特徵

高能量密度鋰離子電池的重量是相同容量的鎳鎘或鎳氫電池的一半,體積是鎳鎘的20-30%,鎳氫的35-50%。

高電壓一個鋰離子電池單體的工作電壓為3.7V(平均值),相當於三個串聯的鎳鎘或鎳氫電池。

無污染鋰離子電池不含有諸如鎘、鉛、汞之類的有害金屬物質。

不含金屬鋰鋰離子電池不含金屬鋰,因而不受飛機運輸關於禁止在客機攜帶鋰電池等規定的限制。

循環壽命高在正常條件下,鋰離子電池的充放電周期可超過500次,磷酸亞鐵鋰則可以達到2000次。

無記憶效應記憶效應是指鎳鎘電池在充放電循環過程中,電池的容量減少的現象。鋰離子電池不存在這種效應。

快速充電使用額定電壓為4.2V的恆流恆壓充電器,可以使鋰離子電池在1.5-2.5個小時內就充滿電;而新開發的磷鐵鋰電池,已經可以在35分鍾內充滿電。

三、優缺點分析

1.優點

(1)能量比較高。具有高儲存能量密度,已達到460-600Wh/kg,是鉛酸電池的約6-7倍;

(2)使用壽命長,使用壽命可達到6年以上,磷酸亞鐵鋰為正極的電池1C(100%DOD)充放電,有可以使用10,000次的記錄;

(3)額定電壓高(單體工作電壓為3.7V或3.2V),約等於3隻鎳鎘或鎳氫充電電池的串聯電壓,便於組成電池電源組;鋰電池可以通過一種新型的鋰電池調壓器的技術,將電壓調至3.0V,以適合小電器的使用。

(4)具備高功率承受力,其中電動汽車用的磷酸亞鐵鋰鋰離子電池可以達到15-30C充放電的能力,便於高強度的啟動加速;

(5)自放電率很低,這是該電池最突出的優越性之一,一般可做到1%/月以下,不到鎳氫電池的1/20;

(6)重量輕,相同體積下重量約為鉛酸產品的1/6-1/5;

(7)高低溫適應性強,可以在-20℃--60℃的環境下使用,經過工藝上的處理,可以在-45℃環境下使用;

(8)綠色環保,不論生產、使用和報廢,都不含有、也不產生任何鉛、汞、鎘等有毒有害重金屬元素和物質。

(9)生產基本不消耗水,對缺水的我國來說,十分有利。

比能量指的是單位重量或單位體積的能量。比能量用Wh/kg或Wh/L來表示。Wh是能量的單位,W是瓦、h是小時;kg是千克(重量單位),L是升(體積單位)。


2.缺點

1.鋰原電池均存在安全性差,有發生爆炸的危險。

2.鈷酸鋰的鋰離子電池不能大電流放電,價格昂貴,安全性較差。

3.鋰離子電池均需保護線路,防止電池被過充過放電。

4.生產要求條件高,成本高。

5.使用條件有限制,高低溫使用危險大。

❸ 鋰電池的工作原理

鋰電池分為鋰金屬電池和鋰離子電池兩種。

1、鋰金屬電池

鋰金屬電池一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負極材料、使用非水電解質溶液的電池。放電反應原理為:Li+MnO2=LiMnO2

2、鋰離子電池

鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負極材料、使用非水電解質的電池。充電正極上發生的反應為:LiCoO2==Li(1-x)CoO2+XLi++Xe-(電子);充電負極上發生的反應為:6C+XLi++Xe- = LixC6;充電電池總反應:LiCoO2+6C = Li(1-x)CoO2+LixC6

(3)鋰電池研究的基本思路和方法擴展閱讀:

相較於以化石燃料為基礎的傳統能源供給方式,鋰電池的出現打破了以往的碳基供能方式,減少了碳排放量,為可持續發展提供了新路徑。

從上世紀90年代開始,鋰電池開始進入市場,逐漸成為電器和IT終端設備的動力選擇。更小的體積、更穩定的性能、更好的循環性,使鋰電池逐漸遍布人們日常生活的各個方面,助力人類向清潔世界邁出重要一步。

❹ 我想了解一下鋰電池的工作原理和怎麼保養鋰電池

我們愛機的鋰電池究竟要如何保養才算正確?這個問題一直困擾著很多手機的忠實用戶,包
括我。在查閱了一些資料之後,不久前有機會咨詢了一位電化學專業的在讀博士和國內某知
名電池研究所的副所長。現將最近獲得的一些相關知識和心得寫出來,以饗諸位讀者。

鋰離子電池的正極材料通常有鋰的活性化合物組成,負極則是特殊分子結構的碳。常見
的正極材料主要成分為 LiCoO2 ,充電時,加在電池兩極的電勢迫使正極的化合物釋出鋰離
子,嵌入負極分子排列呈片層結構的碳中。放電時,鋰離子則從片層結構的碳中析出,重新
和正極的化合物結合。鋰離子的移動產生了電流。

化學反應原理雖然很簡單,然而在實際的工業生產中,需要考慮的實際問題要多得多:
正極的材料需要添加劑來保持多次充放的活性,負極的材料需要在分子結構級去設計以容納
更多的鋰離子;填充在正負極之間的電解液,除了保持穩定,還需要具有良好導電性,減小
電池內阻。

雖然鋰離子電池很少有鎳鎘電池的記憶效應,記憶效應的原理是結晶化,在鋰電池中幾
乎不會產生這種反應。但是,鋰離子電池在多次充放後容量仍然會下降,其原因是復雜而多
樣的。主要是正負極材料本身的變化,從分子層面來看,正負極上容納鋰離子的空穴結構會
逐漸塌陷、堵塞;從化學角度來看,是正負極材料活性鈍化,出現副反應生成穩定的其他化
合物。物理上還會出現正極材料逐漸剝落等情況,總之最終降低了電池中可以自由在充放電
過程中移動的鋰離子數目。

過度充電和過度放電,將對鋰離子電池的正負極造成永久的損壞,從分子層面看,可以直觀
的理解,過度放電將導致負極碳過度釋出鋰離子而使得其片層結構出現塌陷,過度充電將把
太多的鋰離子硬塞進負極碳結構里去,而使得其中一些鋰離子再也無法釋放出來。這也是鋰
離子電池為什麼通常配有充放電的控制電路的原因。

不適合的溫度,將引發鋰離子電池內部其他化學反應生成我們不希望看到的化合物,所
以在不少的鋰離子電池正負極之間設有保護性的溫控隔膜或電解質添加劑。在電池升溫到一
定的情況下,復合膜膜孔閉合或電解質變性,電池內阻增大直到斷路,電池不再升溫,確保
電池充電溫度正常。

而深充放能提升鋰離子電池的實際容量嗎?專家明確地告訴我,這是沒有意義的。他們
甚至說,所謂使用前三次全充放的「激活」,在他們兩位博士的知識里,也想不通這有什麼
必要。然而為什麼很多人深充放以後 Battery Information 里標示容量會發生改變呢 ? 後
面將會提到。

鋰離子電池一般都帶有管理晶元和充電控制晶元。其中管理晶元中有一系列的寄存器,
存有容量、溫度、 ID 、充電狀態、放電次數等數值。這些數值在使用中會逐漸變化。我個
人認為,使用說明中的「使用一個月左右應該全充放一次」的做法主要的作用應該就是修正
這些寄存器里不當的值,使得電池的充電控制和標稱容量吻合電池的實際情況。

充電控制晶元主要控制電池的充電過程。鋰離子電池的充電過程分為兩個階段,恆流快
充階段(電池指示燈呈黃色時)和恆壓電流遞減階段 ( 電池指示燈呈綠色閃爍。恆流快充
階段,電池電壓逐步升高到電池的標准電壓,隨後在控制晶元下轉入恆壓階段,電壓不再升
高以確保不會過充,電流則隨著電池電量的上升逐步減弱到 0 ,而最終完成充電。

電量統計晶元通過記錄放電曲線(電壓,電流,時間)可以抽樣計算出電池的電量,這
就是我們在 Battery Information 里讀到的 wh. 值。而鋰離子電池在多次使用後,放電曲
線是會改變的,如果晶元一直沒有機會再次讀出完整的一個放電曲線,其計算出來的電量也
就是不準確的。所以我們需要深充放來校準電池的晶元。

最後我對電池的保養的看法是:

1. 不必刻意保證每一次都放完電了再充;

2. 一段時間可做一次保護電路控制下的深充放以修正電池的電量統計,但這不會提高
你電池的實際容量。

3. 長期不用的電池,應放在陰涼的地方以減弱其內部自身鈍化反應的速度。

4. 保護電路也無力監控電池的自放電,長期不用的電池,應充入一定的電量以防電池
在存貯中自放電過量導致過度放電的損壞。

其實電池沒有太多要顧及的使用注意,換句話說是顧及也沒有太大用。一個電池能使用
多少次,也許差別更多的來自電池本身製造中的個體差異,而不是使用方法。選擇具有良好
口碑的手機品牌,無疑是日後電池使用長壽命的保障之一。

由於現在絕大多數電子產品,如數碼相機、行動電話、手提電腦等都採用的是鋰電池,所以筆者作重講解一下此類電池的原理。目前筆記本的主流電池都是採用的,而最普遍採用的是是鋰離子(Li-ion)電池。原因是鋰電(Li)在使用的同時比較危險,我們都知道鋰是比較活躍的金屬元素,使用時不太安全,經常會有在充電時出現燃燒、爆裂的情況出現。而鋰離子電池(Li-ion)加入了能抑制鋰元素活躍的成份,它是鋰電池的替代產品,它的陽極採用能吸藏鋰離子的碳極,放電時,鋰變成鋰離子,脫離電池陽極,到達鋰離子電池陰極。充電時,陰極中鋰原子電離成鋰離子和電子,並且鋰離子向陽極運動與電子合成鋰原子。放電時,鋰原子從石墨晶體內陽極表面電離成鋰離子和電子,並在陰極處合成鋰原子。所以,在該電池中鋰永遠以鋰離子的形態出現,不會以金屬鋰的形態出現,當然也就不會出現燃燒、爆炸等危險。鋰離子在陽極和陰極之間移動,電極本身不發生變化。這是鋰離子電池與鋰電池本質上的差別。從而使鋰電真正達到了安全、高效、方便,而老的鋰電也隨之淘汰了。區分它們的方法也相當簡單:從電池的標識上就能識別,鋰電的標識為Li,而鋰離子電池為Li-ion。現在,筆記本和手機使用的所謂鋰電,其實就是鋰離子電池。
鋰離子電池有著其他電池所不能比擬的優點:工作電壓高;體積小、重量輕、能量高;安全快速充電;允許溫度范圍寬;放電電流小、無記憶效應、無環境污染等等,這些決定了它在筆記本電池中的主流地位。
當然鋰離子電池也有自身的不足,那便是價格高、充電次數少也不能快速充電、與干電池無互換性、工作電壓變化大、放電速率大,容量下降快,無法大電流放電。
所以對於目前的電池來說,並不能找到一類十全十美的解決方法,就算鋰離子電池只能是相對來說它的固有一些優點更有利於移動罷了。

關於鋰電池的使用,簡單的講三方面:

首先,鋰電池不需要超常時間充電來激活,你也做不到,充電電路本來就有保護,插上也沒用的

其次,對鋰電池的激活(其實是校正充電曲線)一般出現在首次使用,長時間放置未用,或者頻繁即充即用一段時間後,方法就是一次完全的充放電,之後電池就可以即用即充,只有在長時間使用後才需要再次進行再次完全充放電重新校正

最後,鋰電池的壽命主要體現在充放電周期上,這個周期是一個絕對概念,舉例如果你上次使用了30%電力,充滿電,下次又使用了70%的電力,又充滿電,這個剛好是一個充電周期,而不是兩個,所以那些喜歡把電池使用盡再充電的玩家自己合計吧,這樣做實際上加速了電池壽命的終結

詳細介紹和圖片說明請閱讀全文。。。

解釋充電周期:

一些誤解的來源

每次用盡電池再充電這個是從古老的NICD電池而來的,這種鎳鎘電池有記憶效應,如果不放盡電量,電池會隨使用次數的增加而呈現出電量愈來愈少的狀態
後來的NIMH電池,其實已經沒有明顯的記憶效應,但是仍然需要經常的徹底充放電來保持其正常的電量顯示,這就是某些日本鎳氫充電器提供refresh功能的原理
而鋰電池則基本上沒有記憶效應,當然長時間使用後充電曲線還是會有略微失准,蘋果提供了一個簡單的ical提示你定時為電池進行充放電校正,但是頻率不需要很高。
關於激活,剛出廠的鋰電池需要在若干次使用後才能達到最佳狀態,這個沒錯,但是使用10幾個小時的激活是絕對沒有必要的(也是沒有意義的)現在的充電電路都考慮的用戶使用的方便,電池充滿後會自動切斷充電電路,這樣你才能安心睡覺不是,這個時候插不插上電源其實已經沒有區別了
談到充電10幾個小時的習慣,這個還是要從古老的nicd或者nimh等電池的慢充模式說起,由於原先電池充電電路設計上的落後,一般為了保持電池溫度的正常和防止電池受損,都使用的小電流緩慢充電的方式,而且這種電路一般情況下都沒有準確的電量判斷功能,所以都是建議用戶充電14-16個小時這樣,看看,其誤差一般都在2,3個小時,如果充電流過大,過充後將對電池造成嚴重的傷害
而後來的針對nimh和現在鋰電池的快速充電電路,已經有了很好的電量檢測功能,就可以使用脈沖式的大電流快速充電,且還能維持電池在正常的溫度范圍內,而到接近電量快滿的時候,為了防止過充,電路會從高電流脈沖轉換為一種逐漸縮小的涓流充電,這樣即使滿電檢測有部分偏差,由於越接近滿電電流越小,在最後時刻的充電電流已經接近0,對電池沒有什麼損害了,這就是為什麼看到鋰電池前80%充電1個小時就可以完成,而充滿最後20%的電卻要4個小時的原因。

❺ 鋰動力電池的科學研究

為了開發出性能更優異的品種,人們對各種材料進行了研究。從而製造出前所未有的產品。比如,鋰二氧化硫電池和鋰亞硫醯氯電池就非常有特點。它們的正極活性物質同時也是電解液的溶劑。這種結構只有在非水溶液的電化學體系才會出現。所以,鋰電池的研究,也促進了非水體系電化學理論的發展。除了使用各種非水溶劑外,人們還進行了聚合物薄膜電池的研究。
21世紀,科學家研發了一種新型的鹽酸鐵鋰動力電池。磷酸鐵鋰動力電池可歸納下述特點。 1 高效率輸出:標准放電為2~5C、連續高電流放電可達10C,瞬間脈沖放電(10S)可達20C;2 高溫時性能良好:外部溫度65℃時內部溫度則高達95℃,電池放電結束時溫度可達160℃,電池的結構安全、完好;3 即使電池內部或外部受到傷害,電池不燃燒、不爆炸、安全性最好;4 極好的循環壽命,經500次循環,其放電容量仍大於95%;5 過放電到零伏也無損壞;6 可快速充電;7 低成本;8 對環境無污染。
由於磷酸鐵鋰動力電池具有上述特點,並且生產出各種不同容量的電池,很快得到廣泛地應用。它主要應用領域有:1 大型電動車輛:公交車、電動汽車、景點游覽車及混合動力車等;2 輕型電動車:電動自行車、高爾夫球車、小型平板電瓶車、鏟車、清潔車、電動輪椅等;3 電動工具:電鑽、電鋸、割草機等;4 遙控汽車、船、飛機等玩具;5 太陽能及風力發電的儲能設備;6 UPS及應急燈、警示燈及礦燈(安全性最好);7 替代照相機中3V的一次性鋰電池及9V的鎳鎘或鎳氫可充電電池(尺寸完全相同);8 小型醫療儀器設備及攜帶型儀器等。

❻ 鋰電池的基本設計工藝及原理是什麼

鋰離子電池原理: 鋰離子電池作為一種化學電源,指分別用兩個能可逆地嵌入與脫嵌鋰離子的化合物作為正負極構成的二次電池。當電池充電時,鋰離子從正極中脫嵌,在負極中嵌入,放電時反之。鋰離子電池是物理學、材料科學和化學等學科研究的結晶。鋰離子電池所涉及的物理機理,目前是以固體物理中嵌入物理來解釋的,嵌入(intercalation)是指可移動的客體粒子(分子、原子、離子)可逆地嵌入到具有合適尺寸的主體晶格中的網路空格點上。電子輸運鋰離子電池的正極和負極材料都是離子和電子的混合導體嵌入化合物。電子只能在正極和負極材料中運動。已知的嵌入化合物種類繁多,客體粒子可以是分子、原子或離子.在嵌入離子的同時,要求由主體結構作電荷補償,以維持電中性。電荷補償可以由主體材料能帶結構的改變來實現,電導率在嵌入前後會有變化。鋰離子電池電極材料可穩定存在於空氣中與其這一特性息息相關。嵌入化合物只有滿足結構改變可逆並能以結構彌補電荷變化才能作為鋰離子電池電極材料。 生產工藝流程及控制 原材料 → 原材料檢驗 → 原材料預處理 → 配料 → 配料檢驗 → 真空感應熔煉 → 快冷鑄錠 → 半成品檢驗 → 熱處理 → 粗碎 → 制粉 → 篩分 → 後處理→真空或充氮氣包裝 → 成品檢驗 → 產品 A:冶煉:1) 工藝要求材料供應商提供材質單,QC部門還要進行測試,其成份和雜質含量滿足工藝要求的辦理入庫備用。2) 原料預處理主要是清除原材料表面的污染物和氧化層,確保原材料的潔凈。3) 配料要根據不同情況按規定指標補足某些易揮發元素如稀土、錳的燒損。4) 真空感應熔煉要在0.1Pa的真空度下充入氬氣,在1300℃高溫下將各成份金屬熔化成合金,快冷鑄錠,以獲得晶粒細化、組織均勻的合金。 B:半成品:半成品檢驗有三方面內容:1) 外觀:合金外觀應具金屬光澤,無明顯氧化變色,合金組織結構應均勻緻密,無疏鬆和雜質;2) 化學成分:合金化學成份應與設計成份相符;3) 電化學容量:應滿足企業標准要求,否則不能下轉。 C:熱處理:採用真空熱處理爐,抽真空後再充入氬氣保護。熱處理工藝主要使產品均質化和穩定化(消除內應力),保證合金平坦的平台壓力,良好的均一性和良好的循環壽命特性。重點保證溫度及真空度,做氧含量測定。 D:合金粗碎、制粉和包裝全過程均在氬氣保護下全封閉進行,確保合金的含氧量很低。成品檢驗有四方面內容:1) 外觀:表面無變色氧化現象,無結塊現象;2) 物理性能、粒度分布、松裝比符合企業標准;3) 化學特性:合金粉的成份和雜質含量、合金的PCT曲線符合企業標准;4) 電化學性能:合金的電化學容量、充放電特性、循環壽命、大電流脈沖放電特性和溫度特性。產品內包裝為尼龍復合塑料袋抽真空雙層包裝,整箱再充氮氣塑料袋包裝,外箱:紙箱。

❼ 鋰電池的原理及生產工藝流程

一、鋰離子電池原理
1.0 正極構造
LiCoO2(鈷酸鋰)+導電劑(乙炔黑)+粘合劑(PVDF)+集流體(鋁箔)正極
2.0 負極構造
石墨+導電劑(乙炔黑)+增稠劑(CMC)+粘結劑(SBR)+ 集流體(銅箔)負極
電芯的構造
電芯的正極是LiCoO2加導電劑和粘合劑,塗在鋁箔上形成正極板,負極是層狀石墨加導電劑及粘合劑塗在銅箔基帶上,目前比較先進的負極層狀石墨顆粒已採用納米碳。
根據上述的反應機理,正極採用LiCoO2、LiNiO2、LiMn2O2,其中LiCoO2本是一種層結構很穩定的晶型,但當從LiCoO2拿走XLi後,其結構可能發生變化,但是否發生變化取決於X的大小。通過研究發現當X>0.5時Li1-XCoO2的結構表現為極其不穩定,會發生晶型癱塌,其外部表現為電芯的壓倒終結。所以電芯在使用過程中應通過限制充電電壓來控制Li1-XCoO2中的X值,一般充電電壓不大於4.2V那麼X小於0.5 ,這時Li1-XCoO2的晶型仍是穩定的。負極C6其本身有自己的特點,當第一次化成後,正極LiCoO2中的Li被充到負極C6中,當放電時Li回到正極LiCoO2中,但化成之後必須有一部分Li留在負極C6中,心以保證下次充放電Li的正常嵌入,否則電芯的壓倒很短,為了保證有一部分Li留在負極C6中,一般通過限制放電下限電壓來實現。所以鋰電芯的安全充電上限電壓≤4 .2V,放電下限電壓≥2.5V。
3.0工作原理
鋰電池內部成螺旋型結構,正極與負極之間由一層具有許多細微小孔的薄膜紙隔開。鋰離子電芯是一種新型的電池能源,它不含金屬鋰,在充放電過程中,只有鋰離子在正負極間往來運動,電極和電解質不參與反應。鋰離子電芯的能量容量密度可以達到300Wh/L,重量容量密度可以達到125Wh/L。鋰離子電芯的反應機理是隨著充放電的進行,鋰離子在正負極之間嵌入脫出,往返穿梭電芯內部而沒有金屬鋰的存在,因此鋰離子電芯更加安全穩定。鋰離子電池的正極採用鈷酸鋰,正極集流體是鋁箔;負極採用碳,負極集流體是銅箔,鋰離子電池的電解液是溶解了LiPF6的有機體。
鋰離子電池的正極材料是氧化鈷鋰,負極是碳。當對電池進行充電時,電池的正極上有鋰離子生成,生茶鞥的鋰離子經過電解液運動到負極。而作為負極的碳呈現層狀結構,它有很多微孔,到達負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。同樣道理,黨對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出,有運動回到正極。回到正極的鋰離子越多,放電容量越高。我們通常所說的電池容量指的就是放電容量。
鋰離子電池蓋帽上有防爆孔,在內部壓力過大的情況下,防爆孔會自動打開泄壓,以防止出現爆炸的現象。
鋰離子電池的性能
1、高能量密度
與同等容量的NI/CD或NI/MH電池相比,鋰離子電池的重量輕,其體積比能量是這兩類電池的1.5~2倍。
2、高電壓
鋰離子電池使用高電負性的含元素鋰電極,使其端電壓高達3.7V,這一電壓是NI/CD或NI/MH電池電壓的3倍。
3、無污染,環保型
4、循環壽命長
壽命超過500次
5、高負載能力
鋰離子電池可以大電流連續放電,從而使這種電池可被應用於攝象機、手提電腦等大功率用電器上。
6、優良的安全性
由於使用優良的負極材料,克服了電池充電過程中鋰枝晶的生長問題,使得鋰離子電池的安全性大大提高。同時採用特殊的可恢復配件,保證了電池在使用過程中的安全性。
※在生產加工中如何保證設計好的C/A比成了生產加工中的關鍵。所以在生產中應就以下幾個方面進行控制:
1.負極材料的處理
1)將大粒徑及超細粉與所要求的粒徑進行徹底分離,避免了局部電化學反應過度激烈而產生負反應的情況,提高了電芯的安全性。
2)提高材料表面孔隙率,這樣可以提高10%以上的容量,同時在C/A 比不變的情況下,安全性大大提高。處理的結果使負極材料表面與電解液有了更好的相容性,促進了SEI膜的形成及穩定上。
2.制漿工藝的控制
1)制漿過程採用先進的工藝方法及特殊的化學試劑,使正負極漿料各組之間的表面張力降到了最低。提高了各組之間的相容性,阻止了材料在攪拌過程「團聚」的現象。
2)塗布時基材料與噴頭的間隙應控制在0.2mm以下,這樣塗出的極板表面光滑無顆粒、凹陷、劃痕等缺陷。
3)漿料應儲存6小時以上,漿料粘度保持穩定,漿料內部無自聚成團現象。均勻的漿料保證了正負極在基材上分布的均勻性,從而提高了電芯的一致性、安全性。
3.採用先進的極片製造設備
1)可以保證極片質量的穩定和一致性,大大提高電芯極片均一性,降低了不安全電芯的出現機率。
2)塗布機單片極板上面密度誤差值應小於±2%,極板長度及間隙尺寸誤差應小於2mm。
3)輥壓機的輥軸錐度和徑向跳動應不大於4μm,這樣才能保證極板厚度的一致性。設備應配有完善的吸塵系統,避免因浮塵顆粒而導致的電芯內部微短路,從而保證了電芯的自放電性能。
4)分切機應採用切刀為輥刀型的連續分切設備,這樣切出的極片不存在荷葉邊,毛刺等缺陷。同樣設備應配有完善的吸塵系統,從而保證了電芯的自放電性能。
4.先進的封口技術
目前國內外方形鋰離子電芯的封口均採用激光(LASER)熔接封口技術,它是利用YAG棒(釔鋁石榴石)激光諧振腔中受強光源(一般為氮燈)的激勵下發出一束單一頻率的光(λ=1.06mm)經過諧振折射聚焦成一束,再把聚焦的焦點對准電芯的筒體和蓋板之間,使其熔化後親合為一體,以達到蓋板與筒體的密封熔合的目的。為了達到密封焊,必須掌握以下幾個要素:
1)必須有能量大、頻率高、聚焦性能好、跟蹤精度高的激光焊機。
2)必須有配合精度高的適用於激光焊的電芯外殼及蓋板。
3)必須有高統一純度的氮氣保護,特別是鋁殼電芯要求氮氣純度高,否則鋁殼表面就會產生難以熔化的Al2O3(其熔點為2400℃)。
3.1 充電過程
如上圖一個電源給電池充電,此時正極上的電子e從通過外部電路跑到負極上,正鋰離子Li+從正極「跳進」電解液里,「爬過」隔膜上彎彎曲曲的小洞,「游泳」到達負極,與早就跑過來的電子結合在一起。
正極上發生的反應為
LiCoO2=充電=Li1-xCoO2+Xli++Xe(電子)
負極上發生的反應為
6C+XLi++Xe=====LixC6
3.2 電池放電過程
放電有恆流放電和恆阻放電,恆流放電其實是在外電路加一個可以隨電壓變化而變化的可變電阻,恆阻放電的實質都是在電池正負極加一個電阻讓電子通過。由此可知,只要負極上的電子不能從負極跑到正極,電池就不會放電。電子和Li+都是同時行動的,方向相同但路不同,放電時,電子從負極經過電子導體跑到正極,鋰離子Li+從負極「跳進」電解液里,「爬過」隔膜上彎彎曲曲的小洞,「游泳」到達正極,與早就跑過來的電子結合在一起。
二、 工藝流程
鋰離子電池的工藝技術非常嚴格、復雜,這里只能簡單介紹一下其中的幾個主要工序。
1、制漿:用專門的溶劑和粘結劑分別與粉末狀的正負極活性物質混合,經高速攪拌均勻後,製成漿狀的正負極物質。
2塗膜:將製成的漿料均勻地塗覆在金屬箔的表面,烘乾,分別製成正負極極片。
3、裝配:按正極片—隔膜—負極片—隔膜自上而下的順序放好,經卷繞支持呢個電池極芯,再經注入電解液、封口等工藝過程,即完成電池的裝配過程,製成成品電池。
4、化成:用專用的電池充放電設備對成品電池進行充放電測試,對每一隻鋰電池都進行檢測,篩選出合格的成品電池,待出廠。

❽ 電動汽車鋰離子電池的研究

上圖為鋰離子電池的工作原理圖。其主要通過離子的遷移來實現化學能與電能之間的轉換,從而實現儲能和放電。鋰離子電池的單體電壓為鎳氫電池的3倍,並且
具有比能量密度相對較大、無記憶效應、充放電效率高、自放電率低、循環壽命長和無污染性等優點,因此,鋰離子電池成為了目前在純電動汽車上應用最廣泛的動
力電池。其中,以磷酸鐵鋰三元材料為代表的鋰離子電池,因其能量密度可達到130Wh/kg-140Wh/kg,且充放電平台穩定、安全性能良好、低溫性
能和循環壽命較好2015年10月11日,在合肥中國新能源汽車動力電池材料高峰論壇上,華中科技大學材料學材料與工程學院院長黃雲輝也表示,磷酸鐵鋰電
池通過納米技術和富鋰技術等手段而應用,其實際能量密度將會大幅度提升,並且磷酸鐵鋰電池實現2元/瓦時以下的成本沒有問題。因此,以磷酸鋰鐵為代表的三
元材料電池,現在是目前純電動汽車主要的動力電源。


雖然鋰離子電池經過發展能量密度及其他性能都得到了很大的提高,但是按照現在車輛油箱的位置大小,且電池重量符合車輛承載能力和軸荷分配要求,動力電
池比能量應達到
500-700Wh/kg。而目前的鋰離子電池的能量密度遠遠低於該值。因此目前提高動力電池能量密度是制約鋰離子電池發展的一個瓶頸問題。


目前,為了突破能量密度低這個電池的瓶頸問題,國內外學者主要做了以下幾個方面的研究。


在材料方面,而以硅基和錫基合金作為鋰離子電池的負極材料。通過這種材料的改進的鋰離子電池其理論的容量可分別高達4200Wh/kg和990Wh
/kg,完全能滿足純動力汽車動力電池能量的要求,但是硅基鋰離子電池由於充放電過程產生巨大材料體積膨脹效應,以及鋰在硅膜中擴散系數相對較小、電化學
性能顯著惡化;錫基合金負極材料電池理需解決首次不可逆容量高,充放電循環性能差的問題,目前未能在純電動汽車動力電池領域得到產業化。


另外一方面,主要是從制備技術和成組技術上進行突破。從電池的制備技術綜合考慮,採用納米技術制備來提高電池的性能,開發新型的納米材料。從成組技術
上考慮,可合理設計動力電池系統模塊化結構,減少由電池單體組成的電池組產生的性能衰減,減小電池組中電池單體一致性的影響;並且通過對實車上電池系統進
行能量管理,實現能量的進一步合理分配利用。目前主要集中在對電池組的能量管理、充放電均衡、以及SOC估算等方面。在電池組能量管理研究方面,針對混合
動力電動汽車能量分配,國內外學者對電池組能量管理分配策略做了大量的研究,總結出了功率跟隨控制策略、開關式控制策略、固定因子功率分配控制策略、模糊
控制策略等一系列能量管理控制策略。


綜合以上分析,目前純電動汽車動力電池,主要採用的是鋰離子電池。其提高性能的主要的技術瓶頸在於進一步提高純電動汽車單體電池的性能水平,以及提升純電動汽車動力電池系統的管理等方面。

❾ 鋰離子電池

 鋰離子電池的組成簡介

鋰離子電池(Li-ion Batteries)是鋰電池發展而來。所以在介紹Li-ion之前,先介紹鋰電池。舉例來講,以前照相機里用的扣式電池就屬於鋰電池。鋰電池的正極材料是二氧化錳或亞硫醯氯,負極是鋰。電池組裝完成後電池即有電壓,不需充電.這種電池也可能充電,但循環性能不好,在充放電循環過程中,容易形成鋰枝晶,造成電池內部短路,所以一般情況下這種電池是禁止充電的。後來,日本索尼公司發明了以炭材料為負極,以含鋰的化合物作正極,在充放電過程中,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。當對電池進行充電時,電池的正極上有鋰離子生成,生成的鋰離子經過電解液運動到負極。而作為負極的碳呈層狀結構,它有很多微孔,達到負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。同樣,當對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出, 又運動回正極。回正極的鋰離子越多,放電容量越高。我們通常所說的電池容量指的就是放電容量。在Li-ion的充放電過程中,鋰離子處於從正極→負極→正極的運動狀態。Li-ion Batteries就像一把搖椅,搖椅的兩端為電池的兩極,而鋰離子就象運動員一樣在搖椅來回奔跑。所以Li-ion Batteries又叫搖椅式電池。

鋰離子電池電池組成部分

(1)電池上下蓋

(2)正極——活性物質一般為氧化鋰鈷

(3)隔膜——一種特殊的復合膜

(4)負極——活性物質為碳

(5)有機電解液

(6)電池殼(分為鋼殼和鋁殼兩種)

鋰離子電池優缺點

鋰離子電池具有以下優點:

1) 電壓高,單體電池的工作電壓高達3.6-3.9V,是Ni-Cd、Ni-H電池的3倍

2) 比能量大,目前能達到的實際比能量為100-125Wh/kg和240-300Wh/L(2倍於Ni-Cd,1.5倍於Ni-MH),未來隨著技術發展,比能量可高達150Wh/kg和400 Wh/L

3) 循環壽命長,一般均可達到500次以上,甚至1000次以上.對於小電流放電的電器,電池的使用期限 將倍增電器的競爭力.

4) 安全性能好,無公害,無記憶效應.作為Li-ion前身的鋰電池,因金屬鋰易形成枝晶發生短路,縮減了其應用領域:Li-ion中不含鎘、鉛、汞等對環境有污染的元素:部分工藝(如燒結式)的Ni-Cd電池存在的一大弊病為「記憶效應」,嚴重束縛電池的使用,但Li-ion根本不存在這方面的問題。

5) 自放電小,室溫下充滿電的Li-ion儲存1個月後的自放電率為10%左右,大大低於Ni-Cd的25-30%,Ni、MH的30-35%。

6) 可快速充放電,1C充電是容量可以達到標稱容量的80%以上。

7) 工作溫度范圍高,工作溫度為-25~45°C,隨著電解質和正極的改進,期望能擴寬到-40~70°C。

鋰離子電池也存在著一定的缺點,如:

1) 電池成本較高。主要表現在正極材料LiCoO2的價格高(Co的資源較小),電解質體系提純困難。

2) 不能大電流放電。由於有機電解質體系等原因,電池內阻相對其他類電池大。故要求較小的放電電流密度,一般放電電流在0.5C以下,只適合於中小電流的電器使用。

3) 需要保護線路控制。

A、 過充保護:電池過充將破壞正極結構而影響性能和壽命;同時過充電使電解液分解,內部壓力過高而導致漏液等問題;故必須在4.1V-4.2V的恆壓下充電;

B、 過放保護:過放會導致活性物質的恢復困難,故也需要有保護線路控制。
摘要:綜述了鋰離子電池的發展趨勢,簡述了鋰離子電池的充放電機理理論研究狀況,總結歸納了作為核心技術的鋰電池正負電極材料的現有的制備理論和近來發展動態,評述了正極材料和負極材料的各種制備方法和發展前景,重點介紹了目前該領域的問題和改進發展情況。

材料

電子信息時代使對移動電源的需求快速增長。由於鋰離子電池具有高電壓、高容量的重要優點,且循環壽命長、安全性能好,使其在攜帶型電子設備、電動汽車、空間技術、國防工業等多方面具有廣闊的應用前景,成為近幾年廣為關注的研究熱點。鋰離子電池的機理一般性分析認為,鋰離子電池作為一種化學電源,指分別用兩個能可逆地嵌入與脫嵌鋰離子的化合物作為正負極構成的二次電池。當電池充電時,鋰離子從正極中脫嵌,在負極中嵌入,放電時反之。鋰離子電池是物理學、材料科學和化學等學科研究的結晶。鋰離子電池所涉及的物理機理,目前是以固體物理中嵌入物理來解釋的,嵌入(intercalation)是指可移動的客體粒子(分子、原子、離子)可逆地嵌入到具有合適尺寸的主體晶格中的網路空格點上。電子輸運鋰離子電池的正極和負極材料都是離子和電子的混合導體嵌入化合物。電子只能在正極和負極材料中運動[4][5][6]。已知的嵌入化合物種類繁多,客體粒子可以是分子、原子或離子.在嵌入離子的同時,要求由主體結構作電荷補償,以維持電中性。電荷補償可以由主體材料能帶結構的改變來實現,電導率在嵌入前後會有變化。鋰離子電池電極材料可穩定存在於空氣中與其這一特性息息相關。嵌入化合物只有滿足結構改變可逆並能以結構彌補電荷變化才能作為鋰離子電池電極材料。

控制鋰離子電池性能的關鍵材料——電池中正負極活性材料是這一技術的關鍵,這是國內外研究人員的共識。

1 正極材料的性能和一般制備方法

正極中表徵離子輸運性質的重要參數是化學擴散系數,通常情況下,正極活性物質中鋰離子的擴散系數都比較低。鋰嵌入到正極材料或從正級材料中脫嵌,伴隨著晶相變化。因此,鋰離子電池的電極膜都要求很薄,一般為幾十微米的數量級。正極材料的嵌鋰化合物是鋰離子電池中鋰離子的臨時儲存容器。為了獲得較高的單體電池電壓,傾向於選擇高電勢的嵌鋰化合物。正極材料應滿足:

1)在所要求的充放電電位范圍內,具有與電解質溶液的電化學相容性;

2)溫和的電極過程動力學;

3)高度可逆性;

4)全鋰化狀態下在空氣中的穩定性。

研究的熱點主要集中在層狀LiMO2和尖晶石型LiM2O4結構的化合物及復合兩種M(M為Co,Ni,Mn,V等過渡金屬離子)的類似電極材料上。作為鋰離子電池的正極材料,Li+離子的脫嵌與嵌入過程中結構變化的程度和可逆性決定了電池的穩定重復充放電性。正極材料制備中,其原料性能和合成工藝條件都會對最終結構產生影響。多種有前途的正極材料,都存在使用循環過程中電容量衰減的情況,這是研究中的首要問題。已商品化的正極材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它們作為鋰離子電池正極材料各有優劣。鋰鈷氧為正極的鋰離子電池具有開路電壓高,比能量大,循環壽命長,能快速充放電等優點,但安全性差;鋰鎳氧較鋰鈷氧價格低廉,性能與鋰鈷氧相當,具有較優秀的嵌鋰性能,但制備困難;而鋰錳氧價格更為低廉,制備相對容易,而且其耐過充安全性能好,但其嵌鋰容量低,並且充放電時尖晶石結構不穩定。從應用前景來看,尋求資源豐富、價廉、無公害,還有在過充電時對電壓控制和電路保護的要求較低等優點的,高性能的正極材料將是鋰離子電池正極材料研究的重點。國外有報道LiVO2亦能形成層狀化合物,可作為正極電極材料[9]。從這些報道看出,雖然電極材料化學組成相同,但制備工藝發生變化後,其性能改變較多。成功的商品化電極材料在制備工藝上都有其獨到之處,這是國內目前研究的差距所在。各種制備方法優缺點列舉如下。

1)固相法一般選用碳酸鋰等鋰鹽和鈷化合物或鎳化合物研磨混合後,進行燒結反應[10]。此方法優點是工藝流程簡單,原料易得,屬於鋰離子電池發展初期被廣泛研究開發生產的方法,國外技術較成熟;缺點是所製得正極材料電容量有限,原料混合均勻性差,制備材料的性能穩定性不好,批次與批次之間質量一致性差。

2)絡合物法用有機絡合物先制備含鋰離子和鈷或釩離子的絡合物前驅體,再燒結制備。該方法的優點是分子規模混合,材料均勻性和性能穩定性好,正極材料電容量比固相法高,國外已試驗用作鋰離子電池的工業化方法,技術並未成熟,國內目前還鮮有報道。

3)溶膠凝膠法利用上世紀70年代發展起

來的制備超微粒子的方法,制備正極材料,該方法具備了絡合物法的優點,而且制備出的電極材料電容量有較大的提高,屬於正在國內外迅速發展的一種方法。缺點是成本較高,技術還屬於開發階段[11]。

4)離子交換法Armstrong等用離子交換法制備的LiMnO2,獲得了可逆放電容量達270mA•h/g高值,此方法成為研究的新熱點,它具有所制電極性能穩定,電容量高的特點。但過程涉及溶液重結晶蒸發等費能費時步驟,距離實用化還有相當距離。

正極材料的研究從國外文獻可看出,其電容量以每年30~50mA•h/g的速度在增長,發展趨向於微結構尺度越來越小,而電容量越來越大的嵌鋰化合物,原材料尺度向納米級挺進,關於嵌鋰化合物結構的理論研究已取得一定進展,但其發展理論還在不斷變化中。困擾這一領域的鋰電池電容量提高和循環容量衰減的問題,已有研究者提出添加其它組分來克服的方法[12][13][14][15][16][17]。但就目前而言,這些方法的理論機理並未研究清楚,導致日本學者Yoshio.Nishi認為,過去十年以來在這一領域實質進展不大[1],急須進一步地研究。

2 負極材料的性能和一般制備方法

負極材料的電導率一般都較高,則選擇電位盡可能接近鋰電位的可嵌入鋰的化合物,如各種碳材料和金屬氧化物。可逆地嵌入脫嵌鋰離子的負極材料要求具有:

1)在鋰離子的嵌入反應中自由能變化小;

2)鋰離子在負極的固態結構中有高的擴散率;

3)高度可逆的嵌入反應;

4)有良好的電導率;

5)熱力學上穩定,同時與電解質不發生反應。

研究工作主要集中在碳材料和具有特殊結構的其它金屬氧化物。石墨、軟碳、中相碳微球已在國內有開發和研究,硬碳、碳納米管、巴基球C60等多種碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等人利用聚對苯撐乙烯(Polyparaphenylene——PPP)的熱解產物PPP-700(以一定的加熱速度加熱PPP至700℃,並保溫一定時間得到的熱解產物)作為負極,可逆容量高達680mA•h/g。美國MIT的MJMatthews報道PPP-700儲鋰容量(Storagecapacity)可達1170mA•h/g。若儲鋰容量為1170mA•h/g,隨著鋰嵌入量的增加,進而提高鋰離子電池性能,筆者認為今後研究將集中於更小的納米尺度的嵌鋰微結構。幾乎與研究碳負極同時,尋找電位與Li+/Li電位相近的其他負極材料的工作一直受到重視。鋰離子電池中所用碳材料尚存在兩方面的問題:

1)電壓滯後,即鋰的嵌入反應在0~0.25V之間進行(相對於Li+/Li)而脫嵌反應則在1V左右發生;

2)循環容量逐漸下降,一般經過12~20次循環後,容量降至400~500mA•h/g。

理論上的進一步深化還有賴於各種高純度、結構規整的原料及碳材料的制備和更為有效的結構表徵方法的建立。日本富士公司開發出了鋰離子電池新型錫復合氧化物基負極材料,除此之外,已有的研究主要集中於一些金屬氧化物,其質量比能量較碳負極材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳電極成熟。鋰在碳材料中的可逆高儲存機理主要有鋰分子Li2形成機理、多層鋰機理、晶格點陣機理、彈性球-彈性網模型、層-邊端-表面儲鋰機理、納米級石墨儲鋰機理、碳-鋰-氫機理和微孔儲鋰機理。石墨,作為碳材料中的一種,早就被發現它能與鋰形成石墨嵌入化合物(Graphite Intercalation Compounds)LiC6,但這些理論還處於發展階段。負極材料要克服的困難也是一個容量循環衰減的問題,但從文獻可知,制備高純度和規整的微結構碳負極材料是發展的一個方向。

一般制備負極材料的方法可綜述如下。

1)在一定高溫下加熱軟碳得到高度石墨化的碳;嵌鋰石墨離子型化合物分子式為LiC6,其中的鋰離子在石墨中嵌入和脫嵌過程動態變化,石墨結構與電化學性能的關系,不可逆電容量損失原因和提高方法等問題,都得到眾多研究者的探討。2)將具有特殊結構的交聯樹脂在高溫下分解得到的硬碳,可逆電容量比石墨碳高,其結構受原料影響較大,但一般文獻認為這些碳結構中的納米微孔對其嵌鋰容量有較大影響,對其研究主要集中於利用特殊分子結構的高聚物來制備含更多納米級微孔的硬碳[25][26][27]。

3)高溫熱分解有機物和高聚物制備的含氫碳[28][29]。這類材料具有600~900mA•h/g的可逆電容量,因而受到關注,但其電壓滯後和循環容量下降的問題是其最大應用障礙。對其制備方法的改進和理論機理解釋將是研究的重點。

4)各種金屬氧化物其機理與正極材料類似[24],

也受到研究者的注意,研究方向主要是獲取新型結構或復合結構的金屬氧化物。

5)作為一種嵌鋰材料,碳納米管、巴基球C60等也是當前研究的一個新熱點,成為納米材料研究的一個分支。碳納米管、巴基球C60的特殊結構使其成為高電容量嵌鋰材料的最佳選擇[22][23][30]。從理論上說,納米結構可提供的嵌鋰容量會比目前已有的各種材料要高,其微觀結構已被廣泛研究並取得了很大進展,但如何制備適當堆積方式以獲得優異性能的電極材料,這應是研究的一個重要方向[31][32][33]。

3 結語

綜上所述,近年來鋰離子電池中正負極活性材料的研究和開發應用,在國際上相當活躍,並已取得很大進展。材料的晶體結構規整,充放電過程中結構不發生不可逆變化是獲得比容量高,循環壽命長的鋰離子電池的關鍵。然而,對嵌鋰材料的結構與性能的研究仍是該領域目前最薄弱的環節。鋰離子電池的研究是一類不斷更新的電池體系,物理學和化學的很多新的研究成果會對鋰離子電池產生重大影響,比如納米固體電極,有可能使鋰離子電池有更高的能量密度和功率密度,從而大大增加鋰離子電池的應用范圍。總之,鋰離子電池的研究是一個涉及化學、物理、材料、能源、電子學等眾多學科的交叉領域。目前該領域的進展已引起化學電源界和產業界的極大興趣。可以預料,隨著電極材料結構與性能關系研究的深入,從分子水平上設計出來的各種規整結構或摻雜復合結構的正負極材料將有力地推動鋰離子電池的研究和應用。鋰離子電池將會是繼鎳鎘、鎳氫電池之後,在今後相當長一段時間內,市場前景最好、發展最快的一種二次電池。

電池的分類有不同的方法其分類方法大體上可分為三大類
第一類:按電解液種類劃分包括:鹼性電池,電解質主要以氫氧化鉀水溶液為主的電池,如:鹼性鋅錳電池(俗稱鹼錳電池或鹼性電池)、鎘鎳電池、氫鎳電池等;酸性電池,主要以硫酸水溶液為介質,如鉛酸蓄電池;中性電池,以鹽溶液為介質,如鋅錳干電池(有的消費者也稱之為酸性電池)、海水激活電池等;有機電解液電池,主要以有機溶液為介質的電池,如鋰電池、鋰離子電池待。

第二類:按工作性質和貯存方式劃分包括:一次電池,又稱原電池,即不能再充電的電池,如鋅錳干電池、鋰原電池等;二次電池,即可充電電池,如氫鎳電池、鋰離子電池、鎘鎳電池等;蓄電池習慣上指鉛酸蓄電池,也是二次電池;燃料電池,即活性材料在電池工作時才連續不斷地 從外部加入電池,如氫氧燃料電池等;貯備電池,即電池貯存時不直接接觸電解液,直到電池使用時,才加入電解液,如鎂-氯化銀電池又稱海水激活電池等。

第三類:按電池所用正、負有為材料劃分包括:鋅系列電池,如鋅錳電池、鋅銀電池等;鎳系列電池,如鎘鎳電池、氫鎳電池等;鉛系列電池,如鉛酸電池等;鋰系列電池、鋰鎂電池;二氧化錳系列電池,如鋅錳電池、鹼錳電池等;空氣(氧氣)系列電池,如鋅空電池等

充電電池定義
充電電池又稱:蓄電池、二次電池,是可以反復充電使用的電池。常見的有:鉛酸電池(用於汽車時,俗稱「電瓶」)、鎘鎳電池、氫鎳電池、鋰離子電池。

電池的額定容量
電池的額定容量指在一定放電條件下,電池放電至截止電壓時放出的電量。IEC標准規定鎳鎘和鎳氫電池在20±5℃環境下,以0.1C充電16小時後以0.2C放電至1.0V時所放出的電量為電池的額定容量。單位有Ah, mAh (1Ah=1000mAh)

如何正確使用鋰離子電池?
正確使用鋰離子電池應注意以下幾點:
避免在嚴酷條件下使用,如:高溫、高濕度、夏日陽光下長時間暴曬等,避免將電池投入火中;
裝、拆電池時,應確保用電器具處於電源關閉狀態;使用溫度應保持在-20~55℃之間;
避免將電池長時間「存放」在停止使用的用電器具中;

閱讀全文

與鋰電池研究的基本思路和方法相關的資料

熱點內容
杠鈴鍛煉上臂肌肉的方法 瀏覽:421
如何去痣最有效的方法 瀏覽:912
女用噴劑的使用方法 瀏覽:499
e63主題安裝方法 瀏覽:849
超負荷工作計算方法 瀏覽:618
課文荷花教學方法 瀏覽:81
大明燈的正確使用方法 瀏覽:490
硃砂手串鑒別方法 瀏覽:646
吸煙污染的解決方法 瀏覽:659
家用貯水器安裝方法 瀏覽:411
pp霜的正確使用方法 瀏覽:95
10歲腦癱的治療方法 瀏覽:712
小水泵施肥方法視頻 瀏覽:567
白乾山葯片的食用方法 瀏覽:267
火棘盆栽結果後怎麼澆水養殖方法 瀏覽:518
大華錄像機安裝方法 瀏覽:173
打卡第二天鍛煉方法 瀏覽:968
應用文常見的照應方法有哪些 瀏覽:213
整流橋的電阻測量方法 瀏覽:527
干預性論文研究方法有哪幾種 瀏覽:578