導航:首頁 > 研究方法 > 隊列研究最常用的統計方法

隊列研究最常用的統計方法

發布時間:2022-10-07 14:45:26

㈠ 常用統計分析方法

數據分析師針對不同業務問題可以製作各種具體的數據模型去分析問題,運用各種分析方法去探索數據,這里介紹最常用的三種分析方法,希望可以對您的工作有一定的的幫助

文中可視化圖表均使用DataFocus數據分析工具製作。

1.相關分析

相關分析顯示變數如何與另一個變數相關。例如,它顯示了計件工資是否會帶來更高的生產率。

2.回歸分析

回歸分析是對一個變數值與另一個變數值之間差異的定量預測。回歸模擬依賴變數和解釋變數之間的關系,這些變數通常繪制在散點圖上。您還可以使用回歸線來顯示這些關系是強還是弱。

另請注意,散點圖上的異常值非常重要。例如,外圍數據點可能代表公司最關鍵供應商或暢銷產品的輸入。但是,回歸線的性質通常會讓您忽略這些異常值。

3.假設檢驗

假設檢驗是基於某些假設並從樣本到人口的數理統計中的統計分析方法。主要是為了解決問題的需要,對整體研究提出一些假設。通常,比較兩個統計數據集,或者將通過采樣獲得的數據集與來自理想化模型的合成數據集進行比較。提出了兩個數據集之間統計關系的假設,並將其用作理想化零假設的替代方案。建議兩個數據集之間沒有關系。

在掌握了數據分析的基本圖形和分析方法之後,數據分析師認為有一點需要注意:「在沒有確認如何表達你想要解決的問題之前,不要開始進行數據分析。」簡而言之,如果您無法解釋您試圖用數據分析解決的業務問題,那麼沒有數據分析可以解決問題。

㈡ 5種常用的統計學方法是什麼

1、大量觀察法

(2)隊列研究最常用的統計方法擴展閱讀

(一)大量觀察法

這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異。

但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。

(二)、統計分組法

由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);

在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。

(三)、綜合指標法

統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。

綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。

㈢ 統計研究的基本方法有哪些

統計學的基本研究方法有5種。
大量觀察法
這是統計活動過程中搜集數據資料階段(即統計調查階段)的基本方法:即要對所研究現象總體中的足夠多數的個體進行觀察和研究,以期認識具有規律性的總體數量特徵。大量觀察法的數理依據是大數定律,大數定律是指雖然每個個體受偶然因素的影響作用不同而在數量上幾存有差異,但對總體而言可以相互抵消而呈現出穩定的規律性,因此只有對足夠多數的個體進行觀察,觀察值的綜合結果才會趨向穩定,建立在大量觀察法基礎上的數據資料才會給出一般的結論。統計學的各種調查方法都屬於大量觀察法。
統計分組法
由於所研究現象本身的復雜性、差異性及多層次性,需要我們對所研究現象進行分組或分類研究,以期在同質的基礎上探求不同組或類之間的差異性。統計分組在整個統計活動過程中都佔有重要地位,在統計調查階段可通過統計分組法來搜集不同類的資料,並可使抽樣調查的樣本代表性得以提高(即分層抽樣方式);在統計整理階段可以通過統計分組法使各種數據資料得到分門別類的加工處理和儲存,並為編制分布數列提供基礎;在統計分析階段則可以通過統計分組法來劃分現象類型、研究總體內在結構、比較不同類或組之間的差異(顯著性檢驗)和分析不同變數之間的相關關系。統計學中的統計分組法有傳統分組法、判別分析法和聚類分析法等。
綜合指標法
統計研究現象的數量方面的特徵是通過統計綜合指標來反映的。所謂綜合指標,是指用來從總體上反映所研究現象數量特徵和數量關系的范疇及其數值,常見的有總量指標、相對指標,平均指標和標志變異指標等。綜合指標法在統計學、尤其是社會經濟統計學中佔有十分重要的地位,是描述統計學的核心內容。如何最真實客觀地記錄、描述和反映所研究現象的數量特徵和數量關系,是統計指標理論研究的一大課題。
統計模型法
在以統計指標來反映所研究現象的數量特徵的同時,我們還經常需要對相關現象之間的數量變動關系進行定量研究,以了解某一(些)現象數量變動與另一(些)現象數量變動之間的關系及變動的影響程度。在研究這種數量變動關系時,需要根據具體的研究對象和一定的假定條件,用合適的數學方程來進行模擬,這種方法就叫做統計模型法。
統計推斷法
在統計認識活動中,我們所觀察的往往只是所研究現象總體中的一部分單位,掌握的只是具有隨機性的樣本觀察數據,而認識總體數量特徵是統計研究的目的,這就需要我們根據概率論和樣本分布理論,運用參數估計或假設檢驗的方法,由樣本觀測數據來推斷總體數量特徵。這種由樣本來推斷總體的方法就叫統計推斷法。統計推斷法已在統計研究的許多領域得到應用,除了最常見的總體指標推斷外,統計模型參數的估計和檢驗、統計預測中原時間序列的估計和檢驗等,也都屬於統計推斷的范疇,都存在著誤差和置信度的問題。在實踐中這是一種有效又經濟的方法,其應用范圍很廣泛,發展很快,統計推斷法已成為現代統計學的基本方法。

㈣ 統計學簡答題統計研究的具體方法有哪些

統計研究的具體方法有以下5種,具體為:

1、大量觀察法:即對研究總體的全部或足夠多數的單位進行調查並進行綜合分析。

2、統計分組法:應用分組來研究總體內部差異的方法。

3、統計指標法:應用統計指標來反映和研究現象總體的數量狀況。

4、歸納推斷法:以一定的置信標准,根據樣本數據來判斷總體數量特徵。

5、實驗設計:即對實驗進行科學合理的安排,以達到最好的實驗效果。

統計學其他情況簡介。

統計學是一門很古老的科學,一般認為其學理研究始於古希臘的亞里士多德時代,迄今已有兩千三百多年的歷史。它起源於研究社會經濟問題,在兩千多年的發展過程中,統計學至少經歷了「城邦政情」、「政治算數」和「統計分析科學」三個發展階段。

所謂「數理統計」並非獨立於統計學的新學科,確切地說,它是統計學在第三個發展階段所形成的所有收集和分析數據的新方法的一個綜合性名詞。概率論是數理統計方法的理論基礎,但是它不屬於統計學的范疇,而是屬於數學的范疇。

㈤ 隊列研究專用的卡方檢驗的專用公式是什麼

卡方檢驗是用途很廣的一種假設檢驗方法,它在分類資料統計推斷中的應用,包括:兩個率或兩個構成比比較的卡方檢驗;多個率或多個構成比比較的卡方檢驗以及分類資料的相關分析等。目錄一、卡方檢驗基本思想 二、四格表資料的卡方檢驗 三、行X列表資料的卡方檢驗 四、列聯表資料的卡方檢驗:編輯本段一、卡方檢驗基本思想在分類資料統計分析中我們常會遇到這樣的資料,如兩組大白鼠在不同致癌劑作用下的發癌率如下表,問兩組發癌率有無差別? -------------------------------------------------------------------------------- 處理 發癌數 未發癌數 合計 發癌率% -------------------------------------------------------------------------------- 甲組 52 19 71 73.24 乙組 39 3 42 92.86 -------------------------------------------------------------------------------- 合計 91 22 113 80.33 -------------------------------------------------------------------------------- 52 19 39 3 是表中最基本的數據,因此上表資料又被稱之為四格表資料。卡方檢驗的統計量是卡方值,它是每個格子實際頻數A與理論頻數T差值平方與理論頻數之比的累計和。每個格子中的理論頻數T是在假定兩組的發癌率相等(均等於兩組合計的發癌率)的情況下計算出來的,如第一行第一列的理論頻數為71*91/113=57.18,故卡方值越大,說明實際頻數與理論頻數的差別越明顯,兩組發癌率不同的可能性越大。 利用統計學軟體分析結果如下: data kafang; input row column number @@; cards; 1 1 52 1 2 19 2 1 39 2 2 3 ; run; proc freq; tables row*column/chisq; weight number; run; 統計量自由度值概率卡方16.47770.0109(有統計學意義)似然比卡方17.31010.0069連續校正卡方15.28680.0215Mantel-Haenszel 卡方16.42030.0113Phi 系數
-0.2394
列聯系數
0.2328
Cramer 的 V
-0.2394編輯本段二、四格表資料的卡方檢驗四格表資料的卡方檢驗用於進行兩個率或兩個構成比的比較。 1. 專用公式: 若四格表資料四個格子的頻數分別為a,b,c,d,則四格表資料卡方檢驗的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d), 自由度v=(行數-1)(列數-1) 2. 應用條件: 要求樣本含量應大於40且每個格子中的理論頻數不應小於5。當樣本含量大於40但理論頻數有小於5的情況時卡方值需要校正,當樣本含量小於40時只能用確切概率法計算概率。 編輯本段三、行X列表資料的卡方檢驗行X列表資料的卡方檢驗用於多個率或多個構成比的比較。 1. 專用公式: r行c列表資料卡方檢驗的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1] 2. 應用條件: 要求每個格子中的理論頻數T均大於5或1<T<5的格子數不超過總格子數的1/5。當有T<1或1<T<5的格子較多時,可採用並行並列、刪行刪列、增大樣本含量的辦法使其符合行X列表資料卡方檢驗的應用條件。而多個率的兩兩比較可採用行X列表分割的辦法。 編輯本段四、列聯表資料的卡方檢驗:同一組對象,觀察每一個個體對兩種分類方法的表現,結果構成雙向交叉排列的統計表就是列聯表。 1. R*C 列聯表的卡方檢驗: R*C 列聯表的卡方檢驗用於R*C列聯表的相關分析,卡方值的計算和檢驗過程與行X列表資料的卡方檢驗相同。 2. 2*2列聯表的卡方檢驗: 2*2列聯表的卡方檢驗又稱配對記數資料或配對四格表資料的卡方檢驗,根據卡方值計算公式的不同,可以達到不同的目的。當用一般四格表的卡方檢驗計算時,卡方值=n(ad-bc)^2/[(a+b)(c+d)(a+c)(b+d)],此時用於進行配對四格表的相關分析,如考察兩種檢驗方法的結果有無關系;當卡方值=(|b-c|-1)2/(b+c)時,此時卡方檢驗用來進行四格表的差異檢驗,如考察兩種檢驗方法的檢出率有無差別。 列聯表卡方檢驗應用中的注意事項同R*C表的卡方檢驗相同。 卡方檢驗就是統計樣本的實際觀測值與理論推斷值之間的偏離程度,實際觀測值與理論推斷值之間的偏離程度就決定卡方值的大小,卡方值越大,越不符合,偏差越小,卡方值就越小,越趨於符合,若量值完全相等時,卡方值就為0,表明理論值完全符合。

㈥ 統計分析 請問這個是用什麼統計方法做到的

很顯然,這是隊列研究,分析方法是卡方檢驗
用SPSS的話,在「分析菜單」的「描述統計」里的「交叉表」里,進入界面後,在「統計量」里選擇卡方、風險,前者是求P值的,後者求OR及其95%可信區間

㈦ 常用的統計方法有哪些

統計方法有:
1、計量資料的統計方法
分析計量資料的統計分析方法可分為參數檢驗法和非參數檢驗法。
參數檢驗法主要為t檢驗和 方差分析(ANOVN,即F檢驗)等,兩組間均數比較時常用t檢驗和u檢驗,兩組以上均數比較時常用方差分析;非參數檢驗法主要包括秩和檢驗等。t檢驗可分為單組設計資料的t檢驗、配對設計資料的t檢驗和成組設計資料的t檢驗;當兩個小 樣本比較時要求兩 總體分布為 正態分布且方差齊性,若不能滿足以上要求,宜用t 檢驗或非參數方法( 秩和檢驗)。 方差分析可用於兩個以上 樣本均數的比較,應用該方法時,要求各個樣本是相互獨立的隨機樣本,各樣本來自正態總體且各處理組總體方差齊性。根據設計類型不同,方差分析中又包含了多種不同的方法。對於 定量資料,應根據所採用的設計類型、資料所具備的條件和分析目的,選用合適的統計分析方法,不應盲目套用t檢驗和 單因素方差分析。
2、計數資料的統計方法
計數資料的統計方法主要針對四格表和R×C表利用檢驗進行分析。
檢驗或u檢驗,若不能滿足 檢驗:當計數資料呈配對設計時,獲得的四格表為配對四格表,其用到的檢驗公式和校正公式可參考書籍。 R×C表可以分為雙向無序,單向有序、雙向有序屬性相同和雙向有序屬性不同四類,不同類的行列表根據其研究目的,其選擇的方法也不一樣。
3、等級資料的統計方法
等級資料(有序變數)是對性質和類別的等級進行分組,再清點每組觀察單位個數所得到的資料。在臨床醫學資料中,常遇到一些定性指標,如臨床療效的評價、疾病的臨床分期、病症嚴重程度的臨床分級等,對這些指標常採用分成若干個等級然後分類計數的辦法來解決它的量化問題,這樣的資料統計上稱為等級資料。
統計方法的選擇:
統計資料豐富且錯綜復雜,要想做到合理選用統計分析方法並非易事。對於同一 個資料,若選擇不同的統計分析方法處理,有時其結論是截然不同的。
正確選擇統計方法的依據是:
①根據研究的目的,明確研究試驗設計類型、研究因素與水平數;
②確定數據特徵(是否正態分布等)和樣本量大小;
③ 正確判斷統計資料所對應的類型(計量、計數和等級資料),同時應根據統計方法的適宜條件進行正確的統計量值計算;
最後,還要根據專業知識與資料的實際情況,結合統計學原則,靈活地選擇統計分析方法。

㈧ 正確選擇相關性分析的統計方法

轉自: https://www.medsci.cn/article/show_article.do?id=55c91839569a

相關性分析主要用於:(1)判斷兩個或多個變數之間的統計學關聯;(2)如果存在關聯,進一步分析關聯強度和方向。

那麼,什麼樣的研究可以進行相關性分析呢?我們在這里列舉了幾個相關性研究的例子供大家參考:

確定要進行相關性分析後,對兩個變數或多個變數進行相關性分析所採取的統計方法是不同的。那麼,怎麼判斷研究變數的數量呢?

我們分別就兩個變數的研究和三個及以上變數的研究進行了舉例,幫助大家理解。同時,我們也對例子中變數數據類型進行了描述(如,連續變數、二分類變數、無序分類變數和有序分類變數)。

確定擬分析變數之間的相關性後,我們需要判斷變數的數據類型。

變數的數據類型主要分為連續變數、二分類變數、無序分類變數和有序分類變數4類。擬分析的變數可以同屬於一個數據類型,也可以分屬不同的數據類型。根據這兩個變數數據類型的不同,應採用的統計分析方法也不同。

連續變數是指對連續的指標測量所得到的數值,比如體重。其特點是等距區間的差異相同,例如體重在50kg-60kg之間的差異與60kg-70kg之間的差異相同。連續變數的示例如下:

有序分類變數可以有兩個或者多個已排序的類別。舉例來說,如果某患者的治療結果是「痊癒」、「好轉」、「不變」或者「惡化」。這就是一個有序分類變數,因為可以對四個類別進行排序。

需要注意的是,雖然我們可以對有序分類變數的類別排序,但還需要判斷這種類別排序是不是等距的。例如,用各年齡段的近似中位數代表年齡類別,即24(18-30)歲、40(31-50)歲、60(51-70)歲、80(70歲以上)歲,可以將年齡視為定距變數。

但將患者的診療結果「痊癒」、「好轉」、「無變化」或者「惡化」就不能認為是等距的,換句話說,不能認為「好轉」是「無變化」的2倍;也不能認為「痊癒」和「好轉」的差異與「不變」和「惡化很滿意」的差異一樣,即有序分類變數各類別之間不是可能是定距、也可能不是定距的,這是與連續變數的根本不同。有序分類變數的示例如下:

患者對醫療效果的滿意程度,用5類測量:1-非常不滿意、2-不滿意、3-一般、4-滿意、5-非常滿意

對疾病的療效:用4類測量:1-痊癒、2-好轉、3-不變、4-變差

BMI指數是一種用於評估體重水平的指標。一般來說,BMI是連續變數(例如BMI為23.7或BMI為34.1),但按以下方式分類時可以視為有序分類變數:體重過輕(BMI小於18.5)、健康/正常體重(BMI在18.5—23.9之間)、超重(BMI在24—27.9之間)和肥胖(BMI大於28)。

二分類變數是只有兩個類別的分類變數。二分類變數的類別之間沒有順序,不能像有序分類變數的類別那樣進行排序。比如,性別變數就是一個二分類變數,可以分為「男性」和「女性」兩個分類。再如,罹患心臟病也是一個二分類變數,分為「是」和「否」兩個分類。

二分類變數類別是互斥的,一個研究對象不能同時分屬於兩個類別,比如一個人不能同時是男性或者女性,也不能同時患有心臟病又沒有心臟病。二分類變數的示例如下:

性別,兩個類別:男性或女性

罹患心臟病,兩個類別:是或否

研究分組,兩個類別:實驗組或對照組

無序分類變數是具有三個及以上類別的分類變數。無序分類變數的類別之間沒有內在順序,也不能像有序分類變數類別那樣進行排序。比如,出行方式是一個典型的無序分類變數,可以分為自行車、自駕、計程車、地鐵或公交5個類別。無序分類變數的類別也是互斥的,一個研究對象不能同時分屬於不同的類別,比如一次出行不能同時坐地鐵又自己開車。無序分類變數的示例如下:

手機品牌,四個類別:蘋果、三星、華為或其他

頭發的顏色,五個類別:棕色、黑色、金色、紅色或者灰色

民族,七個類別:漢族、回族、蒙古族、滿族、維吾爾族、朝鮮族或其他

自變數也稱為預測變數或解釋變數,因變數也稱為應答變數或結局變數。兩者的區分在於,自變數可以影響因變數,因變數的值取決於對應自變數的值。也可以用因果關系來區分自變數和因變數,即自變數的變化導致了因變數的變化(但自變數和因變數之間並不一定真的存在因果關系)。自變數是對因變數的描述,而因變數可以被自變數所解釋。

研究設計也可以幫助我們區分自變數和因變數。舉例來說,我們計劃開展一項研究分析不同劑量葯物的治療效果,治療葯物就是這個研究的自變數,治療效果則是因變數。

比如我們想知道抗感染葯物劑量(1.5 mg / d、4 mg /d或者 8 mg/d)與患者發熱時長的關系,抗感染葯物劑量就是自變數,因為這個劑量的是由研究者干預產生的,且很可能是發熱時長差異的原因;而同時發熱時長就是這項研究的因變數。

橫斷面調查並不區分自變數和因變數。舉例來說,研究者根據問卷調查研究對象的工作效率(1-5類:1代表非常高效、5代表非常低效)和鍛煉情況(1-4類:1代表經常鍛煉、4代表不鍛煉)的關系。

在該研究中,受調查者的工作效率和鍛煉情況並不存在明確的因果關系,因為效率高可能意味著受調查者有更多的鍛煉時間,而反之經常鍛煉可能也會提高工作效率。因此,我們就不區分該研究的自變數和因變數。

本文先說說研究中涉及兩個變數的情況。

Pearson相關用於評估兩個連續變數之間的線性關聯強度。這種統計方法本身不區分自變數和因變數,但如果您根據研究背景已經對變數進行了區分,我們仍可以採用該方法判斷相關性。

Pearson相關不區分自變數和因變數。雖然這不影響我們採用Pearson相關分析兩個連續變數的相關性,但如果還是想通過統計方法區分一下,可以採用線性回歸。

這里還需要判斷有序分類變數是否為定距變數。如果認為擬分析的有序分類變數是定距變數,我們就可以為變數中的類別賦值,然後根據這些數值進行分析(即看作連續變數),比如測量滿意度(從「完全同意」到「完全不同意」5個類別)就是一個定距變數,可以用1-5為各類別賦值,即1 =完全同意、2 =同意、3 =一般、4 =不同意、5 =完全不同意。

對於不能作為定距變數的有序分類變數,比如軍銜的類別(少將、中將、上將、大將等)之間就不是等距的,就不能賦值後對數值進行分析(只能對類別進行分析)。

實際上,將有序分類變數作為連續變數進行分析,這在大多數情況下可能不符合我們的研究目的。對類別進行分析是對有序分類變數相關性分析的常見選擇。但是,如果基於的研究背景,待分析的有序分類變數確實可以作為定距變數處理,也是可以的。

Mantel-Haenszel 趨勢檢驗。該檢驗也被稱為Mantel-Haenszel 卡方檢驗、Mantel-Haenszel 趨勢卡方檢驗。該檢驗根據研究者對有序分類變數類別的賦值,判斷兩個有序分類變數之間的線性趨勢。

Spearman相關又稱Spearman秩相關,用於檢驗至少有一個有序分類變數的關聯強度和方向。

Kendall's tau-b 相關系數是用於檢驗至少有一個有序分類變數關聯強度和方向的非參數分析方法。該檢驗與Spearman相關的應用范圍基本一致,但更適用於存在多種關聯的數據(如列聯表)。

卡方檢驗常用於分析無序分類變數之間的相關性,也可以用於分析二分類變數之間的關系。但是該檢驗只能分析相關的統計學意義,不能反映關聯強度。因此,我們常聯合Cramer's V檢驗提示關聯強度。

Fisher精確檢驗可以用於檢驗任何R C數據之間的相關關系,但最常用於分析2 2數據,即兩個二分類變數之間的相關性。與卡方檢驗只能擬合近似分布不同的是,Fisher精確檢驗可以分析精確分布,更適合分析小樣本數據。但是該檢驗與卡方檢驗一樣,只能分析相關的統計學意義,不能反映關聯強度。

確定進行兩個二分類變數的相關性分析後,我們需要判斷是否區分自變數和因變數。

相對風險是流行病學或前瞻性隊列研究中的常用指標,可以在一定條件下比較兩個比例之間的關系,但其提示的結果是比值而不是差異。

比值比可以計算多類研究的關聯強度,也是很多統計檢驗(如二分類logistic回歸)的常用指標。在相對風險指標不適用的病例對照研究中,比值比仍可以很好地反映結果。

卡方檢驗可用於分析兩個二分類變數之間的關系。但是該檢驗只能分析相關的統計學意義,不能反映關聯強度。因此,該檢驗可以聯合Phi (φ)系數提示關聯強度。

Fisher精確檢驗可以用於檢驗任何R C數據之間的關系,但最常用於分析2 2數據,即兩個二分類變數之間的相關性。與卡方檢驗只能擬合近似分布不同的是,Fisher精確檢驗可以分析數據的精確分布,更適用於小樣本數據。但是該檢驗與卡方檢驗一樣,只能分析相關的統計學意義,不能反映關聯強度。

Point-biserial相關。Point-biserial相關適用於分析二分類變數和連續變數之間的相關性。其實,該檢驗是Pearson相關的一種特殊形式,與Pearson相關的數據假設一致,也可以在SPSS中通過Pearson相關模塊進行計算,我們會在教程中具體介紹。

確定進行二分類變數和有序分類變數的相關性分析後,我們需要判斷是否區分自變數和因變數:

有序Logistic回歸。有序Logistic回歸在本質上並不是為了分析二分類變數和有序分類變數之間的相關性。但我們仍可以用有序logistic回歸及其對應的OR值判斷這兩類變數之間的統計學關聯。

Cochran-Armitage 檢驗。Cochran-Armitage 檢驗又稱Cochran-Armitage 趨勢檢驗,常用於分析有序分類自變數和二分類因變數之間的線性趨勢。該檢驗可以判斷隨著有序分類變數的增加,二分類因變數比例的變化趨勢,是對其線性趨勢的統計學分析。我們將在教程中進一步解釋這一問題。

此問題可以使用Mantel-Haenszel卡方檢驗或Cochran-Armitage趨勢檢驗。Mantel-Haenszel卡方檢驗也稱線性趨勢檢驗(Test for Linear Trend)或定序檢驗(Linear by Linear Test)。

Mantel-Haenszel卡方檢驗和Cochran-Armitage趨勢檢驗的區別是:Mantel-Haenszel卡方檢驗要求一個變數是有序分類變數,另一個變數可以是二分類變數,也可以是有序多分類變數。而Cochran-Armitage趨勢檢驗要求一個變數是有序分類變數,另一個變數是二分類變數。

SPSS不提供Cochran-Armitage趨勢檢驗, Mantel-Haenszel卡方可以得到近似的結果。Cochran-Armitage趨勢檢驗可以在SAS等其它軟體中實現(SAS可以同時提供Cochran-Armitage趨勢檢驗和Mantel-Haenszel卡方檢驗的結果)。

Biserial秩相關:Biserial秩相關可以用於分析二分類變數和有序分類變數之間的相關性。在用二分類變數預測有序分類變數時,該檢驗又稱為Somers' d檢驗。此外,Mann-Whitney U檢驗也可以輸出Biserial秩相關結果。

Spearman相關。沒有適用於分析有序分類變數和連續變數相關性的檢驗方法,我們需要將連續變數視為有序分類變數進行檢驗,即分析兩個有序分類變數之間的關系。在這種情況下,我們可以應用Spearman相關或者其他針對有序分類變數的檢驗方法。

㈨ 常用統計分析方法有哪些

1、對比分析法

對比分析法指通過指標的對比來反映事物數量上的變化,屬於統計分析中常用的方法。常見的對比有橫向對比和縱向對比。

橫向對比指的是不同事物在固定時間上的對比,例如,不同等級的用戶在同一時間購買商品的價格對比,不同商品在同一時間的銷量、利潤率等的對比。

縱向對比指的是同一事物在時間維度上的變化,例如,環比、同比和定基比,也就是本月銷售額與上月銷售額的對比,本年度1月份銷售額與上一年度1月份銷售額的對比,本年度每月銷售額分別與上一年度平均銷售額的對比等。利用對比分析法可以對數據規模大小、水平高低、速度快慢等做出有效的判斷和評價。

2、分組分析法

分組分析法是指根據數據的性質、特徵,按照一定的指標,將數據總體劃分為不同的部分,分析其內部結構和相互關系,從而了解事物的發展規律。

根據指標的性質,分組分析法分為屬性指標分組和數量指標分組。所謂屬性指標代表的是事物的性質、特徵等,如姓名、性別、文化程度等,這些指標無法進行運算;而數據指標代表的數據能夠進行運算,如人的年齡、工資收入等。分組分析法一般都和對比分析法結合使用。

3、預測分析法

預測分析法主要基於當前的數據,對未來的數據變化趨勢進行判斷和預測。預測分析一般分為兩種:一種是基於時間序列的預測,例如,依據以往的銷售業績,預測未來3個月的銷售額;另一種是回歸類預測,即根據指標之間相互影響的因果關系進行預測,例如,根據用戶網頁瀏覽行為,預測用戶可能購買的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是專注於某個事件在重要環節上的轉化率,在互聯網行業的應用較普遍。比如,對於信用卡申請的流程,用戶從瀏覽卡片信息,到填寫信用卡資料、提交申請、銀行審核與批卡。

最後用戶激活並使用信用卡,中間有很多重要的環節,每個環節的用戶量都是越來越少的,從而形成一個漏斗。使用漏斗分析法,能使業務方關注各個環節的轉化率,並加以監控和管理,當某個環節的轉換率發生異常時,可以有針對性地優化流程,採取適當的措施來提升業務指標。

5、AB測試分析法

AB 測試分析法其實是一種對比分析法,但它側重於對比A、B兩組結構相似的樣本,並基於樣本指標值來分析各自的差異。

例如,對於某個App的同一功能,設計了不同的樣式風格和頁面布局,將兩種風格的頁面隨機分配給使用者,最後根據用戶在該頁面的瀏覽轉化率來評估不同樣式的優劣,了解用戶的喜好,從而進一步優化產品。

除此之外,要想做好數據分析,讀者還需掌握一定的數學基礎,例如,基本統計量的概念(均值、方差、眾數、中位數等),分散性和變異性的度量指標(極差、四分位數、四分位距、百分位數等),數據分布(幾何分布、二項分布等),以及概率論基礎、統計抽樣、置信區間和假設檢驗等內容,通過相關指標和概念的應用,讓數據分析結果更具專業性。

㈩ 常見的數據統計方法有什麼

常見的數據統計方法有:表格、折線統計圖、條形統計圖、扇形統計圖。舉一個例子來具體分說明一下,比如說:我在淘寶開了個童裝店,為了方便統計每半個月的銷售額,現在用以上這四種統計方法來演示一下。

1.表格就是通過畫格子的方式來統計數據,在這里可以畫三行橫線,得到兩條細長的格子,再把這兩行均勻的分為15個上下格子。橫一為日期,橫二為銷售額,半個月下來都填進去就一目瞭然。

2.折線是通過畫點,把15天的銷售額都連成一條折線,通過上下起伏來看波動的數據。先畫一「L」形,橫線作日期,豎線作銷售額,銷售額可以自己寫一個數,一直往上數與數之間相差一樣。均勻的把橫豎線分為15份,每個日期對應多少銷售額,就在「L」的半框里,以對應的日期和銷售畫橫線和豎線,交叉的位置取一點。然後每天如此,再用直線連接這15個點,就能清楚的看到這半個月哪一天銷售最好,哪一天銷售墊底。

3.條形統計圖作出的是條狀的數據統計圖,和折線統計圖一樣,畫「L」,橫為日期豎為銷售額。只不過這里不畫點點,畫倒立的長方形,然後通過高高低低的條形圖來分析半個月的銷售額。

4.扇形統計圖就是把一個圓形,平均分為15份,一個月下來把所有的日銷售額加起來,用當天的數據除以總數,乘以百分數。每一分里寫上日期和當天銷售額占總數的百分比,用這個百分數來統計半個月的數據。每個圖的做法都不一樣,但表達的意思都是同樣的,這就是日常生活中最常見的幾種數據統計。

閱讀全文

與隊列研究最常用的統計方法相關的資料

熱點內容
六字訣快速練習方法 瀏覽:854
獲得金屬單質常用的方法 瀏覽:316
用什麼方法止癢好 瀏覽:631
瘦肚子後背運動方法視頻 瀏覽:186
冬天怎麼除甲醛最快最有效的方法 瀏覽:477
胸部熱敷的正確方法 瀏覽:447
三七食用方法降血壓 瀏覽:690
裁員的方法和技巧 瀏覽:724
uv膠水的使用方法 瀏覽:178
淋浴架子安裝方法 瀏覽:492
貼片電容萬用表測量方法 瀏覽:62
嬰兒病毒性感冒鼻塞用什麼方法 瀏覽:896
植物進化的研究方法 瀏覽:486
使用簡寫方法實現背景圖片不平鋪 瀏覽:139
如何自製消滅蟑螂最快最有效的方法 瀏覽:684
測距儀使用方法視頻 瀏覽:985
在家鍛煉屁股肌肉的好方法 瀏覽:100
西式糕點製作方法圖片 瀏覽:521
正確的剎車排空氣方法 瀏覽:992
火龍果冰粉的製作方法和步驟 瀏覽:83