導航:首頁 > 研究方法 > 系統的可靠性設計方法研究

系統的可靠性設計方法研究

發布時間:2022-10-01 18:11:16

Ⅰ 可靠性設計方法有哪些

(1)可靠性建模是進行可靠性分配/預計的基礎,因此必須盡早開展,並隨著產品的研製進展不斷細化迭代。

(2)應該先建立產品的可靠性框圖,然後據此建立相應的數學模型。

(3)在建立基本可靠性模型時,要包括產品的所有組成單元。當單元工作在多個環境條件下,應該採用可靠性最差的數據進行分析。

(4)不同的任務剖面應該分別建立各自的任務可靠性模型,模型中應該包括在該任務剖面中工作的所有單元。

(5)任務可靠性框圖應該與系統的任務故障判據一致。

(6)當提高單元的可靠性所花的費用高於使用冗餘模型的費用時,則應採用冗餘模型。

(7)對於簡單並聯模型,n=2時,可靠度的提高最顯著;當冗餘單元超過一定數量時,可靠性提高的速度大為減慢,因此需要進行權衡。

(8)當採用冗餘時,在產品層次較低的地方採用冗餘的效果比層次較高的地方好。例如,在元件級採用冗餘比部件級好。但工程上有時不允許進行級別低的冗餘,工程上常用的是部件級及設備的冗餘。

(9)採用並聯模型可以提高產品的任務可靠性,但也會降低產品的基本可靠性,同時增加產品的重量、體積、復雜度、費用及設計時間。因此,必須進行綜合權衡。

Ⅱ 中,可採用哪些措施來提高系統的精度和可靠性

高速、高精度始終是數控技術追求的目標。在高速加工中,必須要求各運動軸能在極短的時間內達到給定的速度並能在高速行程中瞬間准停。如果僅從時間上去考慮縮短過渡過程,而不對機床的加減速動態過程進行合理的控制,必將給機床結構帶來很大的沖擊。隨著計算機匯流排技術越來越成熟,數控系統也由固定模式發展為具有開放性結構高速、高精度始終是數控技術追求的目標。在高速加工中,必須要求各運動軸能在極短的時間內達到給定的速度並能在高速行程中瞬間准停。如果僅從時間上去考慮縮短過渡過程,而不對機床的加減速動態過程進行合理的控制,必將給機床結構帶來很大的沖擊。隨著計算機匯流排技術越來越成熟,數控系統也由固定模式發展為具有開放性結構,能方便用戶進行客制化重組的柔性模式。結合資料庫原理,將影響系統過渡過程的加減速曲線,採用變結構控制方式,能有效提高數控機床的動態性能和穩態精度。變加減速結構控制原理傳統數控系統中,一般由系統程序直接實現單一特定的加減速控制。它無法保證在機床啟停頻繁的情況下,同時滿足高進給速度的瞬間起停和機床運行的平穩性。為解決此問題,一方面要求數控系統能因機而異、因時而異來動態確定加減速控制規律;另一方面,需在控制系統中採用特殊方法來實現這種加減速曲線。本文提出的變加減速結構控制方法採用資料庫原理,將加減速控制分為加減速描述與實施兩部分,並將加減速描述與系統程序相分離。這樣,若要改變系統的加減速控制規律只需獨立地修改加減速描述數據,而不需要修改數控系統程序,從而為用戶提供一種開放的改變加減速曲線新方法。其原理為:將各種理想的加減速曲線事先進行數字式處理,得到其離散化,並以樣板數表的形式存放於數控系統內的加減速曲線庫中。在數控系統軟體中,則設計一條通用的與加減速資料庫內容無關的控制通道,由其獨立完成加減速計算和軌跡控制。該方法的實現原理。加減速曲線庫中存放著各種樣板曲線。系統運行時,首先根據數據處理模塊給出的有關控制數據和來自檢測反饋環節的機床實際運行數據進行加減速分析。如需加減速控制,則通知曲線選擇模塊從加減速曲線庫中選出最合適的加減速曲線,並發出加減速控制指令給加減速計算模塊,由其根據所選定的加減速曲線計算出當前采樣周期的瞬時速度。進一步由插補軌跡計算模塊生成工作台運動軌跡,並發出運動指令送往驅動裝置,最後由驅動裝置以希望的加減速控制規律驅動機床運動,從而使機床運動的動態特性達到最佳。三軸運動工作台組成及特點整個系統以基於「工業PC機+專業運動控制卡」為核心,採用松下數字交流伺服系統構成一個開放式硬體結構。同時配備內容豐富、功能強大的運動函數庫,採用VC++面向對象的編程技術,實現PC機、運動控制卡和伺服驅動器之間的通訊,其結構。PC機主要實現加工程序的輸入、編輯、參數設置、運動狀態顯示以及加減速分析計算等非實時控制。運動控制卡完成各運動軸插補軌跡計算、輸出脈沖/方向運動指令信號以及接收機床上一些與運動控制有關的I/O量輸入。其中,脈沖信號控制電機所走的步數,方向信號控制電機正反轉,以實現三軸的位置控制。X軸、Y軸、Z軸原點、限位檢測是通過一組機械開關來實現,原點檢測開關用來生成用戶三維運動系統坐標系原點,限位檢測開關確保每軸工作行程極限。這些狀態信號經邏輯電平整形電路、光電隔離電路後送入運動控制卡狀態寄存器中,由CPU隨時讀出,達到對I/O狀態信號的檢測。在硬體上,由於採用了光電隔離措施,這樣,既隔離了外設對內部數字系統的干擾,又能有效地防止過電壓、過電流等外界突發事件對計算機系統的損壞,大大提高了系統的控制精度和可靠性。本系統充分發揮了PC機軟體資源豐富和計算速度快的優點,吸收CAD/CAM的特點,在利用造型軟體生成零件圖後,再利用數控系統轉化為加工G代碼,將指令G代碼與機床實際位置進行分析比較產生瞬時速度,然後由板卡將其解釋為運動軌跡控制函數,最後通過調用運動函數庫內的插補程序段,輸出脈沖和方向信號,控制半閉環位置伺服系統帶動工作台運轉,實現所希望的空間軌跡路徑動態特性和穩態精度。基於松下交流伺服電機驅動器半閉環位置控制的實現在松下伺服驅動器接線端子上,PULS1、SIGN1分別與運動控制器的脈沖信號和方向信號相連,PULS2、SIGN2接+5V信號,形成集電極開路的位置傳輸信號。COM+,COM-分別接+15V電源正負端。SRV-ON與COM-相連。這樣,就完成了位置控制模式下的基本連線。其它連線可根據系統的需要進行適當連接。參數設置通過觸摸面板進行,控制方式選擇置為位置控制,轉矩限制置為輸入無效,驅動禁止置為輸入無效,指令脈沖輸入方式選擇置為脈沖/符號方式,指令脈沖禁止置為輸入無效。每轉輸出脈沖數置為2500。電子齒輪比可根據實際需要進行設置。由於伺服電機通過聯軸器與工作台的滾株絲杠相連,機械剛性高,將自動增益調整時,機械剛性置為9,保證整個傳動系統的高速響應性。增益參數採用自動調整方式:按照預定(內部設定)的模式使電機加速和減速,從所需轉矩計算負荷的慣量,然後根據慣量,自動地決定適當的增益。其它參數按出廠時的預設設置。由於傳動機構採用了半閉環交流伺服驅動,控制精度和運行速度得到極大的提高,大大提高了產品的性價比。在位置控制方式下,伺服驅動器接收運動控制器發出的位置指令信號(脈沖/方向),送入脈沖列形態,經電子齒輪分倍頻後,在偏差可逆計數器中與反饋脈沖信號比較後形成偏差信號。反饋脈沖是由光電編碼器檢測到電機旋轉時所產生的實際脈沖數,經四倍頻後產生的。位置偏差信號經位置環的復合前饋控制器調節後,形成速度指令信號。速度指令信號與速度反饋信號(與位置檢測裝置相同)比較後的偏差信號經速度環比例積分控制器調節後產生電流指令信號,在電流環中經矢量變換後,由SPWM輸出轉矩電流,控制交流伺服電機的運行。位置控制精度由光電編碼器每轉產生的脈沖數控制。它分增量式光電編碼器和絕對式光電編碼器。增量式編碼器構造簡單,易於掌握,平均壽命長,解析度高,實際應用較多。本系統採用的是增量式光電編碼器。絕對式光電編碼器按二進制編碼輸出,信號線多,由於精度取決於位數,所以高解析度不易得到。但是這種編碼器即使不動時也能輸出絕對角度信息,主要用於全閉環高級數控機床中。結語合理的自動加減速控制是保證高速運動系統動態性能和穩態精度的重要環節。傳統的基於固定曲線的自動加減速控制由於缺乏柔性,不易保證在機床運行平穩的前提下,實現以過渡過程時間最短為目標的最優加減速控制規律,難以滿足高速加工對精度的要求。採用變加減速結構,利用系統的開放性,將加減速描述與數控系統程序相分離,使得改變系統加減速性能時只需獨立地修改加減速描述數據,它可方便地用實時離散資料庫來實現。這樣,系統可按實際情況改變升降速控制曲線,保證機床運行的平滑性,是一種適合於高速加工的柔性自動加減速控制方式。

Ⅲ 求一個系統的可靠度有哪些方法

可靠度可以通過數學方式計算。可靠度函數可用關於時間 t 的函數表示,可表示為R(t)=P(T>t)。其中,t 為規定的時間,T表示產品的壽命。由可靠度的定義可知,R(t)描述了產品在(0,t)時間內完好的概率,且R(0)=1,R(+∞)=0。

可靠度一般可分成兩個層次,首先是所謂組件可靠度(Reliability of component)。也就是將產品拆解成若干不同的零件或組件,先就這些組件的可靠度進行研究,然後再探討整個系統、整個產品的整體可靠度,也就是系統可靠度(Reliability of system)。

(3)系統的可靠性設計方法研究擴展閱讀

可靠性的概率度量叫可靠度,壽命是指產品使用的持續期。以「壽命單位」度量。在規定的條件下和在規定的時間內,產品故障的總數與壽命單位總數之比稱為「故障率」。故障率是可靠性基本參數,其倒數為平均故障間隔時間(MTBF)。

可靠性分為固有可靠性和使用可靠性。固有可靠性用於描述產品的設計和製造的可靠性水平,使用可靠性綜合考慮了產品設計、製造、安裝環境、維修策略和修理等因素。從設計的角度出發,把可靠性分為基本可靠性和任務可靠性。

Ⅳ 可靠性工程的系統可靠性

reliability engineering
衡量系統可靠性有三個重要指標。①保險期:系統建成後能有效地完成規定任務的期限,超過這一期限系統可靠性就會逐漸降低。②有效性:系統在規定時間內能正常工作的概率。概率的大小取決於系統故障率的高低、發現故障部分的快慢和故障修復時間的長短。③狹義可靠性:由結構可靠性和性能可靠性兩部分組成。前者指系統在工作時不出故障的概率,後者指系統性能滿足原定要求的概率。
系統可靠性不能僅僅依靠對系統的檢驗和試驗來獲得,還必須從設計、製造和管理等方面加以保證。首先,設計是決定系統固有可靠性的重要環節,製造部門力求使系統達到固有的可靠性,而管理則是保證系統的規劃、設計、試驗、製造、使用等階段都按科學的程序和規律進行,即對整個系統研製實行嚴格的可靠性控制。 產品的可靠性是設計出來的,生產出來的,管理出來的。可靠性工程是為了達到系統可靠性要求而進行的有關設計、管理、試驗和生產一系列工作的總和,它與系統整個壽命周期內的全部可靠性活動有關。可靠性工程是產品工程化的重要組成部分,同時也是實現產品工程化的有力工具。利用可靠性的工程技術手段能夠快速、准確地確定產品的薄弱環節,並給出改進措施和改進後對系統可靠性的影響。可靠性工程具體如下圖1所示。產品在需求分析階段、設計階段、工程研製階段和生產製造階段都需開展一定的可靠性設計分析、管理、試驗工作。開展的時機和推薦開展的項目如下表所示:
按照產品的層次結構,產品的系統層次、裝置層次、部件層次和零件層次都分別有相應的可靠性工作內容,即產品不同層次的可靠性影響因素和薄弱環節各有特點,需要分別開展相應的可靠性設計、管理、試驗工作項目解決。總師和項目管理者需要在產品的工程化角度把握可靠性工程的開展和實施。影響器件可靠性的主要因素包括器件的種類和數量、器件的額定工作電參數和電應力、額定工作溫度和環境溫度、元器件的質量等級和品質保證等級,器件的降額特性和熱敏感特性,器件的儲存可靠性;影響部件可靠性的主要因素包括器件本身的可靠性與器件相互影響,主要需要考慮的因素為熱分析、電磁兼容、耐環境、信號完整性、潛通路和工藝工裝;影響裝置可靠性的主要因素包括部件之間的相互影響和結構、工藝、連接;影響系統可靠性的主要因素包括冗餘設計、人機工程和系統可靠性設計。
建立可靠性工程體系,開展和實施可靠性工程是產品高可靠性的必要條件,可靠性設計分析是可靠性工程的基礎,可靠性設計水平差的產品可靠性必然低;可靠性的設計需要可靠性管理,可靠性管理是開展可靠性設計的技術管理保證和組織結構保證;設計出的產品在生產階段難免引入「瑕疵」,需要可靠性試驗「暴露」。

Ⅳ 機械可靠性設計是指什麼

機械可靠性設計(Reliability Design)是一種很重要的現代化設計方法。從20世紀50年代起,國外就興起了可靠性技術的研究。第二次世界大戰期間,美國的通信設備、航空設備、水聲設備有相當數量因發生失效而不能使用。因此,美國便開始研究電子元件和系統的可靠性問題。1957年,美國發表了《軍用電子設備可靠性》的重要報告,被公認為是可靠性的奠基文獻。20世紀六七十年代,隨著航空航天事業的發展,可靠性問題的研究取得了長足的進展,引起了國際社會的普遍重視。許多國家相繼成立了可靠性研究機構,對可靠性理論展開了廣泛的研究。

1990年,我國機械電子工業部印發的《加強機電產品設計工作的規定》中明確指出:可靠性、適應性、經濟性三性統籌作為我國機電產品設計的原則,在新產品鑒定時,必須要有可靠性設計資料和實驗報告,否則不能通過鑒定。現今,可靠性的觀點和方法已經成為質量保證、安全性保證、產品責任預防等不可缺少的依據和手段,也是我國工程技術人員掌握現代設計方法所必須掌握的重要內容之一。

可靠性是指產品在規定條件下和規定時間內,完成規定功能的能力。這里的產品可以泛指任何系統、設備和元器件。產品可靠性定義的要素是三個規定:「規定條件」、「規定時間」、「規定功能」。

(1)「規定條件」。

「規定條件」包括使用時的環境條件和工作條件,如溫度、濕度、振動、沖擊、輻射等環境條件,使用時的應力條件,維護方法,儲存時的儲存條件,使用時對操作人員的技術等級要求等。在不同的規定條件下產品的可靠性是不同的。例如,同一型號的汽車在高速公路和在崎嶇山路上行駛,其可靠性的表現就大不一樣。要談論產品的可靠性必須指明規定的條件是什麼。

(2)「規定時間」。

「規定時間」是指產品規定了的任務時間。隨著產品任務時間的增加,產品出現故障的概率將增加,而產品的可靠性將是下降的。因此,談論產品的可靠性離不開規定的任務時間。不同類型的產品對應的時間單位可能不同。例如,火箭發射裝置,其可靠性對應的時間以秒計;海底通信電纜則以年計。此外,時間單位不僅可以是年、月、日、時、分、秒,也可以是工作次數(如繼電器)、循環次數(如發動機)、行駛里程(如車輛)等。要確定產品規定的環境條件和規定的任務時間,必須對產品的任務和壽命進行分析研究。

(3)「規定功能」。

「規定功能」是指產品規定了的必須具備的功能及其技術指標。要求產品功能的多少和技術指標的高低,直接影響到產品可靠性指標的高低。例如,電風扇的主要功能有轉葉、搖頭、定時,規定功能是三者都要,還是僅需要轉葉,所得出的可靠性指標是大不一樣的。因此,在分析評價產品的可靠性時,必須首先明確要求產品完成的規定功能是什麼,只有規定了清晰的功能及性能界限,才能給出明確的產品故障判據,如圖4-23所示。

圖4-23機電產品典型的失效曲線機械可靠性設計是將概率論、數理統計、失效物理和機械學相互結合而形成的一種設計方法。其主要特點是將傳統設計方法中視為單值而實際上具有多值性的設計變數(如載荷、應力、強度、壽命等),看成某種分布規律的隨機變數,用概率統計方法設計出符合機械產品可靠性指標要求的零部件和整機的主要參數及結構尺寸。機械強度可靠性設計過程如圖4-24所示。

圖4-24機械強度可靠性設計過程機械可靠性設計的主要內容有:

①從已知的目標可靠度出發,設計零、部件和整機的有關參數及結構尺寸,這是可靠性設計最基本的內容。

②可靠性預測,根據零、部件和整機(或系統)目前的狀況及失效數據,預測其實際可能達到的可靠度,預報它們在規定的條件下和在規定的時間內完成規定功能的概率。

③可靠性分配,即根據確定的機器(或系統)的可靠度,分配其組成零部件或子系統的可靠度。這對復雜產品和大型系統來說尤為重要。

可靠性是一個涉及面很廣的學科,已逐漸形成了一些獨立分支,如可靠性工程(包括可靠性分析、可靠性設計及可靠性實驗等)、可靠性數學(以概率論和數理統計為基礎發展起來的一門數學分支,研究可靠性的定量規律)、可靠性物理(也稱失效機理,研究零、部件的失效物理原因、物理模型,並提出改進措施)和可靠性管理等。可靠性研究正處於方興未艾的發展時期,它起源於電子工業,已滲透到機械工程及其他各學科領域,並逐漸滲透到社會科學領域,如人的可靠性、工作可靠性等。

Ⅵ 簡述和分析可靠性的定義

可靠性:產品在規定的條件下和規定的時間內,完成規定功能的能力。可靠性的概率度量叫可靠度[1] 。
壽命是指產品使用的持續期。以「壽命單位」度量。在規定的條件下和在規定的時間內,產品故障的總數與壽命單位總數之比稱為「故障率」。故障率是可靠性基本參數,其倒數為平均故障間隔時間(MTBF)[1] 。
可靠性分為固有可靠性和使用可靠性。固有可靠性用於描述產品的設計和製造的可靠性水平,使用可靠性綜合考慮了產品設計、製造、安裝環境、維修策略和修理等因素。從設計的角度出發,把可靠性分為基本可靠性和任務可靠性,前者考慮包括與維修和供應有關的可靠性,用平均故障間隔時間(MTBF)表示;後者僅考慮造成任務失敗的故障影響,用任務可靠度(MR)和致命性故障間隔任務時間(MTBCF)表示。對多數企業主要關心產品的固有可靠性和基本可靠性。對可修產品用平均故障間隔時間表示,對不可修產品用平均失效率表示,對一次性使用產品用平均壽命表示[1] 。
對產品而言,可靠度越高就越好。可靠度高的產品,可以長時間正常工作(這正是所有消費者需要得到的);從專業術語上來說,就是產品的可靠度越高,產品可以無故障工作的時間就越長。
可靠度分析即求出各系統的運作機率的學問,例如機具的可靠度,將影響整個生產製造的流程規劃及控制。此外,可靠度的討論,也往往離不開系統的可用度(Availability)及維修度(Maintainability)。一般談到可靠度,多是指產品的可靠程度,顧名思義,也就是將產品的好壞特別以可靠度的方法表達出來,這種定義方式對於現今許多高單價及講求售後服務的產品而言,顯得十分重要。
分類
可靠度一般可分成兩個層次,首先是所謂組件可靠度(Reliability of component)。也就是將產品拆解成若干不同的零件或組件,先就這些組件的可靠度進行研究,然後再探討整個系統、整個產品的整體可靠度,也就是系統可靠度(Reliability of system)。組件可靠度分析的方法,其實就是統計分析,至於系統可靠度分析,較為復雜,可採行的方法也較多,
①按重要程度分配可靠度。
②按復雜程度分配可靠度。
③按技術水平、任務情況等的綜合指標分配可靠度。
④按相對故障率分配可靠度。
各部分有了明確的可靠性指標後,根據不同計算準則,進行零件的設計計算。主要的計算方法為:根據載荷和強度的分布計算可靠度或所需尺寸;根據載荷和壽命的分布計算可靠度或安全壽命;求出可靠度與安全系數間的定量關系,沿用常規設計方法計算所需尺寸或驗算安全系數。與可靠性設計有關的載荷、強度、尺寸和壽命等數據都是隨機變數,必須用概率統計方法進行處理。
數學表達式
可靠度函數可用關於時間 t 的函數表示,可表示為
R(t)=P(T>t)
其中,t 為規定的時間,T表示產品的壽命。
由可靠度的定義可知,R(t)描述了產品在(0,t)時間內完好的概率,且R(0)=1,R(+∞)=0。
可靠度工程
可靠度工程是結合管理與工程技術的一種科學,它牽涉到的工程技術主要有三方面:電子(機)工程、機械工程、及材料工程。高精密的科技產品,鮮有不與此三者有關者。惟可靠度本質上是將統計方法應用在各專業領域上的一種品保技術,並將可靠度實際設計進入產品中,方能確保產品品質。
可靠度試驗
測試產品可靠度指標的試驗就是可靠度試驗。可靠度試驗有環境試驗、機械應力試驗、耐氣候測試試驗、功能試驗、EMC及安規試驗等。
可靠性工程的發展
萌芽階段:二次世界大戰期間,德國在研製V1火箭中提出了系統可靠性的基本理論,據此V1火箭的可靠度達到75%。在朝鮮戰爭時期,美國60%的機載電子設備運到遠東後不能使用,50%的電子設備在儲存期間就失效。美國海軍有16、7萬台電子設備,每年需更換100萬個電子元件,其中電子管的更換率比其他元件高5倍。1943年美國成立了「電子管研究委員會,專門研究電子管的可靠性問題。1949年美國無線電工程師學會成立了可靠性技術組——第一個可靠性專業學術組織誕生了[1] 。
可靠性工程創建階段:20世紀50年代美國在朝鮮戰爭中發現,不可靠的電子設備影響戰爭的進行,而且需要大量的維修費用,每年的維修費是設備采購費用的2倍!軍方和製造公司及學術界都捲入了可靠性的研究工作。1950年12月美國成立了「電子設備可靠性專門委員會」,到1952年3月便提出了有深遠影響的建議[1] :
可靠性工程全面發展階段:20世紀60年代,隨著航空航天工業的迅速發展,可靠性設計和試驗方法被接受和應用於航空電子系統中,可靠性工程得到迅速發展[1] 。主要表現在:
改善可靠性管理,建立了可靠性研究中心,美國於1965年頒發了《系統與設備的可靠性大綱要求》,可靠性工程活動與傳統的設計、研製和生產相結合,獲得了較好的效益。羅姆航空發展中心組建了可靠性分析中心,從事與電子設備有關的電子與機電、機械件及電子系統的可靠性研究,包括可靠性預計、可靠性分配、可靠性試驗、可靠性物理、可靠性數據採集、分析等[1] 。

Ⅶ 可靠性分析應用

1.設計方法已經比較成熟,在適用性(主要指樁基的沉降不致影響建築物正常使用)和耐久性的可靠性評估也仍有許多工作要做船舶與海洋、焊接、機械、服役工程、工程等所謂建築結構的可靠性是指結構在規定的時間內在規定的條件下完成預定功能的能力是建築結構安全性、適用性、耐久性的總稱。
2.工程結構的可靠性是指結構在規定時間內,在規定條件下,完成安全性、適用性和耐用性要求。

閱讀全文

與系統的可靠性設計方法研究相關的資料

熱點內容
室內牆壁隔熱的解決方法 瀏覽:917
上籃正確的訓練方法 瀏覽:258
筆畫設置方法在哪裡找 瀏覽:79
醫學全景拼接常用方法 瀏覽:681
哪些數學方法幫你解決了問題 瀏覽:852
卷簾百葉窗免打孔安裝的方法 瀏覽:715
自拍桿拍手機的方法 瀏覽:550
bod5分析方法名稱 瀏覽:255
小米5無線顯示在哪裡設置方法 瀏覽:445
燉汆悶屬於什麼加熱方法 瀏覽:209
激光方法治療胃息肉有沒有傷口 瀏覽:571
一個人轉移注意力的方法有哪些 瀏覽:211
魚缸除油膜最簡單的方法 瀏覽:440
咳嗽小便失禁鍛煉方法 瀏覽:904
簡單做魚方法 瀏覽:104
大小臉自我矯正方法圖片集 瀏覽:80
從台賬中快速抓取數據的方法 瀏覽:785
高血壓的剁遼方法有哪些 瀏覽:97
幼兒心理發展研究最基本的方法 瀏覽:53
商業研究方法和人力資源管理問題 瀏覽:249