『壹』 需求分析的建模分析方法有哪兩種
資料庫設計需求
1. 需求概述
建立完善的資料庫結構管理設備的基本參數、運行狀態和各種工作計劃。
資料庫的框架和結構必須根據設備和運行狀態而設計,方便提供強大的錄入、查詢、統計、分析和報表等各種功能操作,較好的反映平台業務的基本情況和運行狀況,滿足平台的基本要求。
2. 外部設計需求
2.1 標識符和狀態
資料庫表前綴:根據模塊名定義(如用戶模塊:sys_)
用戶名:root
密碼:待定
許可權:全部
有效時間:開發階段
說明:系統正式發布後,可能更改資料庫用戶/密碼。
2.2 使用它的程序
本系統主要利用java作為後端的應用開發工具,使用MySQL作為後台的資料庫, Linux或Windows均可作為系統平台。
2.3 約定
所有命名一定要具有描述性,杜絕一切拼音、或拼音英文混雜的命名方式。
字元集採用 UTF-8,請注意字元的轉換。
所有數據表第一個欄位都是系統內部使用主鍵列,自增欄位,不可空,名稱為:id,確保不把此欄位暴露給最終用戶。
除特別說明外,所有日期格式都採用date格式。
除特別說明外,所有欄位默認都設置不充許為空, 需要設置默認值。
所有普通縮影的命名都是表名加設置縮影的欄位名組合,例如用戶表User中name欄位設置普通所以,則縮影名稱命名方式為user_name_index。
2.4 專門指導
對本系統的開發者、使用這、測試員和維護人員,提出以下參考意見:
在使用資料庫時,首先要參考上面的約定內容,做好軟體的安裝以及表格的建立。
資料庫的輸入統一採用鍵盤。對於資料庫的使用許可權,請參考本系統其他相關文檔。
資料庫的後台管理員沒用等級差異,可根據實際情況添加刪除管理員。
2.5 支持軟體
操作系統: Linux / Windows
資料庫系統:MySQL
查詢瀏覽工具:Navicat Premium
命令行工具:mysql
注意:mysql 命令行環境下對中文支持不好,可能無法書寫帶有中文的 SQL 語句。
3. 結構設計需求
3.1 概念結構設計需求
概念資料庫的設計是進行具體資料庫設計的第一步,概念資料庫設計的好壞直接影響到邏輯資料庫的設計,影響到整個資料庫的好壞。
我們已經得到了系統的數據流程圖和數據字典,現在就是要結合數據規范化的理論,用一種模型將用戶的數據要求明確地表示出來。
概念資料庫的設計應該極易於轉換為邏輯資料庫模式,又容易被用戶所理解。概念資料庫設計中最主要的就是採用「實體-關系數據」模型來確定資料庫的結構。
數據是表達信息的一種重要的量化符號,是信息存在的一種重要形式。數據模型則是數據特徵的一種抽象。它描述的是數據的共性,而不是描述個別的數據。一般來說,數據模型包含兩方面內容:
數據的靜態特性:主要包括數據的基本結構、數據間的關系和數據之間的相互約束等特性。
數據的動態特性:主要包括對數據進行操作的方法。
在資料庫系統設計中,建立反映客觀信息的數據模型,是設計中最為重要的,也最基本的步驟之一。
數據模型是連接客觀信息世界和資料庫系統數據邏輯組織的橋梁,也是資料庫設計人員與用戶之間進行交流的共同基礎。概念資料庫中採用的實體-關系模型,與傳統的數據模型有所不同。「實體-關系」模型是面向現實世界,而不是面向實現方法的,它主要是用使用方便,因而在資料庫系統應用的設計中,得到了廣泛應用。「實體-關系」模型可以用來說明資料庫中實體的等級和屬性。
以下是實體-關系模型中的重要標識:
在資料庫中存在的實體;
實體的屬性;
實體之間的關系;
3.2 邏輯結構設計需求
物理結構設計需求
1)定義資料庫、表及欄位的命名規范:
資料庫、表及欄位的命名要遵守可讀性原則。
資料庫、表及欄位的命名要遵守表意性原則。
資料庫、表及欄位的命名要遵守長名原則。
2)選擇合適的存儲引擎:
3)為表中的欄位選擇合適的數據類型。
4)建立資料庫結構
4. 運用設計需求
4.1 表名的命名規范
表名以英文單詞、單詞縮寫、簡寫、下劃線構成,總長度要求小於30位。
4.2 表欄位的命名規范
欄位名以英文單詞、單詞縮寫、簡寫、下劃線構成,總長度要求不超過30位。
欄位名以名詞或名詞短語,欄位採用單數形式。若表名由多個單片語成,則取各個單詞的縮寫組成,單詞縮寫間使用下劃線作為分隔。
若某個欄位是引用某個表的外鍵,則欄位名應盡量與源表的欄位名保持一致,一面混淆。
5. 安全保密設計需求
5.1 防止用戶直接操作資料庫的方法
通過把關鍵應用伺服器和資料庫伺服器進行分離,防止用戶對資料庫伺服器的直接操作,保證資料庫安全。
5.2 應用系統的用戶口令進行加密
在軟體系統中,對於數據的保護、業務操作的許可是通過識別用戶身份和許可權來完成的。用戶口令相比較,相同的話系統將該用戶的操作許可權分配給用戶,用戶再根據所分配的許可權對系統進行操作。
由以上過程可知,用戶口令在傳輸過程中容易被竊取泄漏,另外如果資料庫被非法進入則其中保存的口令能夠被非法查看。因此,在傳輸過程中和資料庫中的口令記錄欄位不應使用明文傳遞和保存,應該在口令被傳遞前對其明文口令使用有效的主流技術,對傳輸數據進行加密部分描述的加密演算法進行加密,在加密後傳輸到系統。系統將用戶提交的經過加密的口令數據保存的加密口令進行比較,相一致則進行後續操作。
『貳』 系統分析方法與步驟,和模型建立
上面那個人的回答好搞笑= =
簡單來說,包括四個部分:建立概念模型,建立定量模型,模型檢驗,模型應用。
建立生態數學模型的方法一般認為至少有兩種途徑:
一種是分室方法,用以研究生態系統中各分室的物質與能量的流動,並給出定量的表示。
一種是實驗組成成分法,主要用於復雜生態系統的生態過程(如捕食,競爭等)的分析。
可以概括如下:
模型准備 首先要明確地定義所研究的問題,確定建模目的,確定系統邊界,確定模型的組分(輸入和輸出變數,初始和驅動變數,參數,時空尺度),建立流程圖。了解問題的實際背景,明確建模的目的搜集建模必需的各種信息如現象、數據等,盡量弄清對象的特徵,由此初步確定用哪一類模型,總之是做好建模的准備工作.情況明才能方法對,這一步一定不能忽視,碰到問題要虛心向從事實際工作的同志請教,盡量掌握第一手資料.
模型假設 根據對象的特徵和建模的目的,對問題進行必要的、合理的簡化,用精確的語言做出假設,可以說是建模的關鍵一步.一般地說,一個實際問題不經過簡化假設就很難翻譯成數學問題,即使可能,也很難求解.不同的簡化假設會得到不同的模型.假設作得不合理或過份簡單,會導致模型失敗或部分失敗,於是應該修改和補充假設;假設作得過分詳細,試圖把復雜對象的各方面因素都考慮進去,可能使你很難甚至無法繼續下一步的工作.通常,作假設的依據,一是出於對問題內在規律的認識,二是來自對數據或現象的分析,也可以是二者的綜合.作假設時既要運用與問題相關的物理、化學、生物、經濟等方面的知識,又要充分發揮想像力、洞察力和判斷力,善於辨別問題的主次,果斷地抓住主要因素,舍棄次要因素,盡量將問題線性化、均勻化.經驗在這里也常起重要作用.寫出假設時,語言要精確,就象做習題時寫出已知條件那樣.
模型構成 根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量(常量和變數)之間的等式(或不等式)關系或其他數學結構.這里除需要一些相關學科的專門知識外,還常常需要較廣闊的應用數學方面的知識,以開拓思路.當然不能要求對數學學科門門精通,而是要知道這些學科能解決哪一類問題以及大體上怎樣解決.相似類比法,即根據不同對象的某些相似性,借用已知領域的數學模型,也是構造模型的一種方法.建模時還應遵循的一個原則是,盡量採用簡單的數學工具,因為你建立的模型總是希望能有更多的人了解和使用,而不是只供少數專家欣賞.
建立定量模型(或概念模型的定量化): 選擇模型類型,建立模型(確定變數間的函數關系), 參數估計和校準(calibration),編寫計算機程序,模型確認(model verification):仔細檢查數學公式和計算機程序,撰寫模型文檔資料。
模型求解 可以採用解方程、畫圖形、證明定理、邏輯運算、數值計算等各種傳統的和近代的數學方法,特別是計算機技術.
模型分析 對模型解答進行數學上的分析,有時要根據問題的性質分析變數間的依賴關系或穩定狀況,有時是根據所得結果給出數學上的預報,有時則可能要給出數學上的最優決策或控制,不論哪種情況還常常需要進行誤差分析、模型對數據的穩定性或靈敏性分析等.
模型檢驗 把數學上分析的結果翻譯回到實際問題,並用實際的現象、數據與之比較,檢驗模型的合理性和適用性.這一步對於建模的成敗是非常重要的,要以嚴肅認真的態度來對待.當然,有些模型如核戰爭模型就不可能要求接受實際的檢驗了.模型檢驗的結果如果不符合或者部分不符合實際,問題通常出在模型假設上,應該修改、補充假設,重新建模.有些模型要經過幾次反復,不斷完善,直到檢驗結果獲得某種程度上的滿意.
模型時空延擴:把建立好的模型在時間和空間尺度進行擴展
模型應用: 應用的方式自然取決於問題的性質和建模的目的。
模型運行和評價 Levins(1966)曾提出組建數學模型的三條標准:
⑴真實性,模型的數學描述要符合生態系統實際;
⑵精確性,是指模型的預測值與實際值之間的差異程度,
⑶普遍性,即模型的適用范圍和廣度。
實際中,一個模型要同時滿足這三條標準是十分困難的,Walters對此做了較精闢的論述,同時還介紹了兩個與真實性和普遍性有關的指標,即分辯率(resolution)和完整性(wholeness)。這兩個概念分別由Bledsoe和Jamieson(1969)及Holling(1966)提出的。
總之,並不是所有建模過程都要經過這些步驟,有時各步驟之間的界限也不那麼分明.建模時不應拘泥於形式上的按部就班,在實際建模過程中可以靈活採取。
『叄』 信息系統建模5中主要方法分別是什麼,並對這5種方法進行描述
與其它具體問題一樣,為了方便研究而建立的數學模型,只是有其在信息系統的特性! 信息系統通常十分復雜,很難直接對它進行分析設計,人們經常藉助模型來設計分析系統。模型是現實世界中的某些事物的一種抽象表示。抽象的含義是抽取事物的本質特性,忽略事物的其他次要因素。因此,模型既反映事物的原型,又不等於該原型。模型是理解、分析、開發或改造事物原型的一種常用手段。例如,建造大樓前常先做大樓的模型,以便在大樓動工前就能使人們對未來的大樓有一個十分清晰的感性認識,顯然,大樓模型還可以用來改進大樓的設計方案。 在信息系統中,模型是開發過程中的一個不可缺少的工具。信息系統包括數據處理、事務管理和決策支持。實質上,信息系統可以看成是由一系列有序的模型構成的,這些有序模型通常為:功能模型、信息模型、數據模型、控制模型和決策模型,所謂有序是指這些模型上分別在系統的不同開發階段、不同開發層次上建立的。 信息建模表示形式一般有數學公式、縮小的物理裝置、圖表文字說明,也可以是專用的形式化語言。模型建立的思路有兩種:自頂向下、逐步求精和自底向上、綜合集成。 總而言之,就是為了簡化問題方便處理問題!把握問題的主要矛盾,忽略次要矛盾,呵呵,這樣說有點大了哈!
『肆』 有哪些建立控制系統數學模型的方法
在控制系統的分析和設計中,首先要建立系統的數學模型.控制系統的數學模型是描述系統內部物理量(或變數)之間關系的數學表達式.在靜態條件下(即變數各階導數為零),描述變數之間關系的代數方程叫靜態數學模型;而描述變數各階導數之間關系的微分方程叫數學模型.如果已知輸入量及變數的初始條件,對微分方程求解就可以得到系統輸出量的表達式,並由此可對系統進行性能分析.因此,建立控制系統的數學模型是分析和設計控制系統的首要工作
建立控制系統數學模型的方法有分析法和實驗法兩種.分析法是對系統各部分的運動機理進行分析,根據它們所依據的物理規律或化學規律分別列寫相應的運動方程.例如,電學中有基爾霍夫定律,力學中有牛頓定律,熱力學中有熱力學定律等.實驗法是人為地給系統施加某種測試信號,記錄其輸出響應,並用適當的數學模型去逼近,這種方法稱為系統辨識.近幾年來,系統辨識已發展成一門獨立的學科分支,本章重點研究用分析法建立系統數學模型的方法.
在自動控制理論中,數學模型有多種形式.時域中常用的數學模型有微分方程、差分方程和狀態方程;復數域中有傳遞函數、結構圖;頻域中有頻率特性等.
『伍』 電路或電子系統的建模與分析方法有哪些
電路可看作兩部分:線性部分→輸出u0,輸入ui;非線性部分(開關網路) →輸出ui,輸入ur(調制波)。
分析:ui有兩種電平,當S1、S4導通時,ui=E;
當S2、S3導通時,ui=-E;
(1)
由於開關函數S的存在,使得ui的幅值變化不連續,故對上式取開關周期平均值;
(2)
假設採用如圖所示規則采樣,則D(t)可推導如下(設載波頻率為fW,對應周期為T
建模
建模就是建立模型,就是為了理解事物而對事物做出的一種抽象,是對事物的一種無歧義的書面描述。 建立系統模型的過程,又稱模型化。建模是研究系統的重要手段和前提。凡是用模型描述系統的因果關系或相互關系的過程都屬於建模
『陸』 求一個系統的可靠度有哪些方法
可靠度可以通過數學方式計算。可靠度函數可用關於時間 t 的函數表示,可表示為R(t)=P(T>t)。其中,t 為規定的時間,T表示產品的壽命。由可靠度的定義可知,R(t)描述了產品在(0,t)時間內完好的概率,且R(0)=1,R(+∞)=0。
可靠度一般可分成兩個層次,首先是所謂組件可靠度(Reliability of component)。也就是將產品拆解成若干不同的零件或組件,先就這些組件的可靠度進行研究,然後再探討整個系統、整個產品的整體可靠度,也就是系統可靠度(Reliability of system)。
可靠性的概率度量叫可靠度,壽命是指產品使用的持續期。以「壽命單位」度量。在規定的條件下和在規定的時間內,產品故障的總數與壽命單位總數之比稱為「故障率」。故障率是可靠性基本參數,其倒數為平均故障間隔時間(MTBF)。
可靠性分為固有可靠性和使用可靠性。固有可靠性用於描述產品的設計和製造的可靠性水平,使用可靠性綜合考慮了產品設計、製造、安裝環境、維修策略和修理等因素。從設計的角度出發,把可靠性分為基本可靠性和任務可靠性。
『柒』 系統分析方法有哪幾種
系統分析方法(System Analysis Method)
什麼是系統分析方法
系統分析方法是指把要解決的問題作為一個系統,對系統要素進行綜合分析,找出解決問題的可行方案的咨詢方法。蘭德公司認為,系統分析是一種研究方略,它能在不確定的情況下,確定問題的本質和起因,明確咨詢目標,找出各種可行方案,並通過一定標准對這些方案進行比較,幫助決策者在復雜的問題和環境中作出科學抉擇。
系統分析方法來源於系統科學。系統科學是20世紀40年代以後迅速發展起來的一個橫跨各個學科的新的科學部門,它從系統的著眼點或角度去考察和研究整個客觀世界,為人類認識和改造世界提供了科學的理論和方法。它的產生和發展標標志著人類的科學思維由主要以「實物為中心」逐漸過渡到以「系統為中心」,是科學思維的一個劃時代突破。
系統分析是咨詢研究的最基本的方法,我們可以把一個復雜的咨詢項目看成為系統工程,通過系統目標分析、系統要素分析、系統環境分析、系統資源分析和系統管理分析,可以准確地診斷問題,深刻地揭示問題起因,有效地提出解決方案和滿足客戶的需求。
咨詢工具
安索夫矩陣
案例面試分
析工具/框架
ADL矩陣
安迪·格魯夫的
六力分析模型
波士頓矩陣
標桿分析法
波特五力分析
模型
波特價值鏈
分析模型
波士頓經驗曲線
波特鑽石理論模型
貝恩利潤池
分析工具
波特競爭戰略
輪盤模型
波特行業競爭結構
分析模型
波特的行業組織
模型
變革五因素
BCG三四規則矩陣
產品/市場演變
矩陣
差距分析
策略資訊系統
策略方格模型
CSP模型
創新動力模型
定量戰略計劃矩陣
大戰略矩陣
多點競爭戰略
杜邦分析法
定向政策矩陣
德魯克七種
革新來源
二元核心模式
服務金三角
福克納和鮑曼的
顧客矩陣
福克納和鮑曼的
生產者矩陣
FRICT籌資分析法
GE矩陣
蓋洛普路徑
公司層戰略框架
高級SWOT分析法
股東價值分析
供應和需求模型
關鍵成功因素
分析法
崗位價值評估
規劃企業願景的
方法論框架
核心競爭力分析
模型
華信惠悅人力
資本指數
核心競爭力識別
工具
環境不確定性分析
行業內的戰略群體
分析矩陣
橫向價值鏈分析
行業內戰略集團
分析
IT附加價值矩陣
競爭態勢矩陣
基本競爭戰略
競爭戰略三角模型
競爭對手分析論綱
價值網模型
績效稜柱模型
價格敏感性測試法
競爭對手的成本分析
競爭優勢因果關系
模式
競爭對手分析工具
價值鏈分析方法
腳本法
競爭資源四層次模型
價值鏈信息化管理
KJ法
卡片式智力激勵法
KT決策法
擴張方法矩陣
利益相關者分析
雷達圖分析法
盧因的力場分析法
六頂思考帽
利潤庫分析法
流程分析模型
麥肯錫7S模型
麥肯錫七步分析法
麥肯錫三層面理論
麥肯錫邏輯樹分析法
麥肯錫七步成詩法
麥肯錫客戶盈利性
矩陣
麥肯錫5Cs模型
內部外部矩陣
內部因素評價矩陣
諾蘭的階段模型
牛皮紙法
內部價值鏈分析
NMN矩陣分析模型
PEST分析模型
PAEI管理角色模型
PIMS分析
佩羅的技術分類
PESTEL分析模型
企業素質與活力分析
QFD法
企業價值關聯分析
模型
企業競爭力九力分析
模型
企業戰略五要素分析法
人力資源成熟度模型
人力資源經濟分析
RATER指數
RFM模型
瑞定的學習模型
GREP模型
人才模型
ROS/RMS矩陣
3C戰略三角模型
SWOT分析模型
四鏈模型
SERVQUAL模型
SIPOC模型
SCOR模型
三維商業定義
虛擬價值鏈
SFO模型
SCP分析模型
湯姆森和斯特克蘭
方法
V矩陣
陀螺模型
外部因素評價矩陣
威脅分析矩陣
新7S原則
行為錨定等級評價法
新波士頓矩陣
系統分析方法
系統邏輯分析方法
實體價值鏈
信息價值鏈模型
戰略實施模型
戰略鍾模型
戰略地位與行動
評價矩陣
戰略地圖
組織成長階段模型
戰略選擇矩陣
專利分析法
管理要素分析模型
戰略群模型
綜合戰略理論
縱向價值鏈分析
重要性-迫切性模型
知識鏈模型
知識價值鏈模型
知識供應鏈模型
組織結構模型
[編輯]
系統分析方法的分類
1)系統特徵分析方法;
2)系統邏輯分析方法;
3)系統工程技術。
系統分析方法的步驟
系統分析方法的具體步驟包括:限定問題、確定目標、調查研究收集數據、提出備選方案和評價標准、備選方案評估和提出最可行方案。
1、 限定問題
所謂問題,是現實情況與計劃目標或理想狀態之間的差距。系統分析的核心內容有兩個:其一是進行「診斷」,即找出問題是及其原因;其二是「開處方」,即提出解決問題的最可行方案。所謂限定問題,就是要明確問題的本質或特性、問題存在范圍和影響程度、問題產生的時間和環境、問題的症狀和原因等。限定問題是系統分析中關鍵的一步,因為如果「診斷」出錯,以後開的「處方」就不可能對症下葯。在限定問題時,要注意區別症狀和問題,探討問題原因不能先入為主,同時要判別哪些是局部問題,哪些是整體問題,問題的最後確定應該在調查研究之後。
2、確定目標
系統分析目標應該根據客戶的要求和對需要解決問題的理解加以確定,如有可能應盡量通過指標表示,以便進行定量分析。對不能定量描述的目標也應該盡量用文字說明清楚,以便進行定性分析和評價系統分析的成效。
3、調查研究,收集數據
調查研究和收集數據應該圍繞問題起因進行,一方面要驗證有限定問題階段形成的假設,另一方面要探討產生問題的根本原因,為下一步提出解決問題的備選方案做准備。
調查研究常用的有四種方式,即閱讀文件資料、訪談、觀察和調查。
收集的數據和信息包括事實(facts)、見解(opinions)和態度(attitudes)。要對數據和信息去偽存真,交叉核實,保證真實性和准確性。
4、提出備選方案和評價標准
通過深入調查研究,使真正有待解決的問題得以最終確定,使產生問題的主要原因得到明確,在此基礎上就可以有針對性地提出解決問題的備選方案。備選方案是解決問題和達到咨詢目標可供選擇的建議或設計,應提出兩種以上的備選方案,以便提供進一步評估和篩選。為了對備選方案進行評估,要根據問題的性質和客戶具備的條件。提出約束條件或評價標准,供下一步應用。
5、備選方案評估
根據上述約束條件或評價標准,對解決問題備選方案進行評估,評估應該是綜合性的,不僅要考慮技術因素,也要考慮社會經濟等因素,評估小組應該有一定代表性,除咨詢項目組成員外,也要吸收客戶組織的代表參加。根據評估結果確定最可行方案。
6、提交最可行方案
最可行方案並不一定是最佳方案,它是在約束條件之內,根據評價標准篩選出的最現實可行的方案。如果客戶滿意,則系統分析達到目標。如果客戶不滿意,則要與客戶協商調整約束條件或評價標准,甚至重新限定的問題,開始新一輪系統分析,直到客戶滿意為止。
系統分析方法的案例分析
案例一:某鍛造廠系統分析方法分析
某鍛造廠是以生產解放、東風140和東風130等汽車後半軸為主的小型企業,現在年生產能力為1.8萬根,年產值為130元。半軸生產工藝包括鍛造、熱處理、機加工、噴漆等23道工序,由於設備陳舊,前幾年對某些設備進行了更換和改造,但效果不明顯,生產能力仍然不能提高。廠領導急於要打開局面,便委託M咨詢公司進行咨詢。M咨詢公司採用系統分析進行診斷,把半軸生產過程作為一個系統進行解剖分析。通過限定問題,咨詢人員發現,在半軸生產23道工序中,生產能力嚴重失調,其中班產能力為120-190根的有9道工序,主要是機加工設備。班產能力為70-90根的有6道工序,主要是淬火和矯直設備。其餘工序班產能力在30-45根之內,都是鍛造設備。由於機加工和熱處理工序生產能力大大超過鍛造工序,造成前道工序成為「瓶頸」,嚴重限制後道工序的局面,使整體生產能力難於提高。所以,需要解決的真正問題是如何提高鍛造設備能力?
在限定問題的基礎上,咨詢人員與廠方一起確定出發展目標,即通過對鍛造設備的改造,使該廠汽車半軸生產能力和年產值都提高1倍。
圍繞如何改造鍛造設備這一問題,咨詢人員進行深入調查研究,初步提出了四個備選方案,即:新裝一台平鍛機;用軋同代替原有夾板錘;用軋制機和碾壓機代替原有夾板錘和空氣錘;增加一台空氣錘。
咨詢人員根據對廠家人力物力和資源情況的調查分析,提出對備選方案的評價標准或約束條件,即:投資不能超過20萬元;能與該廠技術水平相適應,便於維護;耗電量低;建設周期短,回收期快。咨詢小組吸收廠方代表參加,根據上述標准對各備選方案進行評估。第1個方案(新裝一台平鍛機),技術先進,但投資高,超過約束條件,應予以淘汰。對其餘三個方案,採取打分方式評比,結果第4方案(增加一台空氣錘)被確定為最可行方案,該方案具有成本低,投產周期短,耗電量低等優點,技術上雖然不夠先進,但符合小企業目前的要求,客戶對此滿意,系統分析進展順利,為該項咨詢提供了有力的工具。
本條目對我有幫助
70
分享到:
『捌』 常用的系統建模方法的適用范圍和局限性
常用的系統建模方法的適用范圍和局限性?系統建模方法
2.1系統抽象與數學描述
2.1.1 實際系統的抽象
本質上講,系統數學模型是從系統概念出發的關於現實世界的一小部分或幾個方面的抽象的「映像」。
為此,系統數學模型的建立需要建立如下抽象:輸入、輸出、狀態變數及其間的函數關系。這種抽象過程稱為模型構造。抽象中,必須聯系真實系統與建模目標,其中描述變數起著很重要的作用,它可觀測,或不可觀測。
從外部對系統施加影響或干擾的可觀測變數稱為輸入變數。 系統對輸入變數的響應結果稱為輸出變數。
輸入、輸出變數對的集合,表徵著真實系統的「輸入-輸出」性狀(關系)。
綜上述,真實系統可視為產生一定性狀數據的信息源,而模型則是產生與真實系統相同性狀數據的一些規則、指令的集合,抽象在其中則起著媒介作用。系統數學建模就是將真實系統抽象成相應的數學表達式(一些規則、指令的集合)。
- 1 -
(可觀測)
輸入變數 (可觀測) 輸出變數
ωt) 黑箱
1/18頁
灰箱
白箱 ω(t)、ρ(t)---輸入輸出變數對
真實系統建模的抽象過程
- 2 -
2.1.2 系統模型的一般描述及描述級(水平)
2.1.2.1 系統模型的一般描述:
一個系統的數學模型可以用如下七元組集合來描述:
S??T,X,?,Q,Y,?,??
其中:
T:時間基,描述系統變化的時間坐標,T為整數則稱為離散時間系統,為實數則稱為連續時間系統;
X:輸入集,代表外部環境對系統的作用。
?:輸入段集,描述某個時間間隔內的輸入模式,是?X,T?的一個子集。
Q:內部狀態集,描述系統內部狀態量,是系統內部結構建模的核心。 ?:狀態轉移函數,定義系統內部狀態是如何變化的,是一個映射。 Y:輸出集,系統通過它作用於環境。
?:輸出函數,是一個映射,給出了一個輸出段集。
2.1.2.2 系統模型描述級(水平):
按照系統論的觀點,實際系統可在某種級(水平)上被分解,因此系統的數學模型可以有不同的描述級(水平):
? 性狀描述級
性狀描述級或稱為行為描述級(行為水平)。在此級上描述系統是將
2/18頁
系統堪稱黑箱,並施加輸入信號,同時測得輸出響應,結果是得出一個輸入-輸出對:(ω,ρ) 及其關系Rs={(ω,ρ):Ω,ω,ρ}。 - 3 -
因此,系統的性狀級描述只給出輸入-輸出觀測結果。其模型為五元組集合結構:
S=(T,X,Ω,Y, R)
當ω,ρ滿足ρ =f(ω)函數關系時,其集合結構變為: S=(T,X,Ω,Y, F)
黑箱
? 狀態描述級
在狀態結構級(狀態結構水平)上,系統模型不僅能反映輸入-輸出關系,而且應能反映出系統內部狀態,以及狀態與輸入、輸出間的關系。即不僅定義了系統的輸入與輸出,而且定義了系統內部的狀態集及狀態轉移函數
系統的數學模型對於動態結構可用七元組集合來描述:
S=(T,X,Ω,Q,Y,δ,λ)
對於靜態結構有:
S=(X,Q,Y,λ)
白箱
? 復合結構級
系統一般由若干個分系統組成,對每個分系統都給出行為級描述,被視為系統的一個「部件」。這些部件有其本身的輸入、輸出變數,以及部件間的連接關系和介面。於是,可以建立起系統在復合結構級(分解結構
3/18頁
級)上的數學模型。
這種復合結構級描述是復雜系統和大系統建模的基礎。
應該強調:
? 系統分解為復合結構是無止境的,即每個分系統還會有自己的復合結構;
? 一個有意義的復合結構描述只能給出唯一的狀態結構描述, - 4 -
而一個有意義的狀態結構描述本身只有唯一的性狀(行為)描述;
? 系統上述概念必須允許分解停止,又允許進一步分解,既包含遞歸可分解性。
灰箱
- 5 -
2.2 相似概念簡介
2.2.1 相似概念及含義
模擬的理論依據:相似論。
自然界中廣泛存在著「相似」概念,最普遍的是:
幾何相似:最簡單、最直觀,如多變形、三角形相似;
現象相似:幾何相似的拓展,如物理量之間存在的比例關系。 採用相似技術來建立實際系統的相似模型,這是相似理論在系統模擬中基礎作用的根本體現。
2.2.2 相似分類
絕對相似:兩個系統(如系統原型與模型)全部幾何尺寸和其他相應參數在時空域上產生的全部變化(或全部過程)都是相似的;
4/18頁
完全相似:兩個系統在某一相應方面的過程上相似,如發電機的電流電壓問題,模型與原型在電磁現象方面是完全相似即可,而無需考慮熱工和機械方面的相似;
不完全相似(局部相似):僅保證研究部分的系統相似,而非研究和不要求部分的過程可能被歪曲,為研究目的所允許;
近似相似:某些簡化假設下的現象相似,數學建模要保證有效性。
不同領域中的相似有各自的特點,對領域的認識水平也不一樣: 環境相似(幾何相似、參量比例相似等):結構尺寸按比例縮小得到的模型-縮比模型,如風洞、水洞實驗所用的模型。
離散相似:差分法、離散相似法把連續時間系統離散化為等價的離散時間系統。
性能相似(等效、動力學相似、控制響應相似等):數學描述相同或者頻率特性相同,用於構造各類模擬的相似原則。
感覺相似(運動感覺、視覺、音響感覺等):耳、眼、鼻、舌、 - 6 -
身等感官和經驗,MIL模擬把感覺相似轉化為感覺信息源相似,培訓模擬器、VR均是利用這種相似原則。
思維相似:邏輯思維相似和形象思維相似(比較、綜合、歸納等),專家系統、人工神經元網路。
系統具有內部結構和外部行為,因此系統的相似有兩個基本水平:結構水平和行為水平。
同構必具有行為等價的特性,但行為等價的兩個系統並不一定具有同構關系。
5/18頁
『玖』 機電一體化系統的數學建模是指什麼
數學建模就是根據實際問題來建立數學模型,對數學模型來進行求解,然後根據結果去解決實際問題。
當需要從定量的角度分析和研究一個實際問題時,人們就要在深入調查研究、了解對象信息、作出簡化假設、分析內在規律等工作的基礎上,用數學的符號和語言作表述來建立數學模型。
數學建模就是建立數學模型,建立數學模型的過程就是數學建模的過程。數學建模是一種數學的思考方法,是運用數學的語言和方法,通過抽象、簡化建立能近似刻畫並"解決"實際問題的一種強有力的數學手段。
(9)系統建模分析方法擴展閱讀:
該模型是根據物理基本定律和系統的結構數據推導出來的。
1、比例分析法——建立變數之間函數關系的最基本、最常用的方法。
2、代數方法——解決離散問題(離散數據、符號、圖形)的主要方法。
3、邏輯方法是數學理論研究的重要方法。它被廣泛應用於社會學、經濟學領域的決策、對策等學科,解決實際問題。
4、常微分方程——求解兩個變數之間變化規律的關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程——解決因變數與兩個或兩個以上自變數之間的變化規律。
根據大量的觀測數據,運用統計方法建立了數學模型。
1、回歸分析—一組觀測值(xi,Fi)I=1,2,…N是判定函數的表達式,由於它處理的是靜態獨立數據,故稱為數理統計方法。
2、時間序列分析——處理動態相關數據,也稱為過程統計。
3、回歸分析—一組觀測值(xi,fi)I=1,2,…N是判定函數的表達式,由於它處理的是靜態獨立數據,故稱為數理統計方法。
4、時間序列分析——處理動態相關數據,也稱為過程統計。
『拾』 什麼是電子系統的模型等效分析方法
模型等效分析法就是根據以往發生過的系統模型,然後套用新的系統模型。
建模方法很多,隨著具體對象系統的特性、復雜程度、用途不同而異。通常多採用物理模擬和數學模擬方法,現已發展到功能模擬和智能模擬方法。模型分析也需要採用一系列的方法和技術,如系統分析法、系統綜合法、結構分析法、要素分析法、功能分析法、優化分析法以及計算機運算技術和有關邏輯演繹方法等。該法有廣泛的應用,已成為理論研究和工程研究不可缺少的工具。
(10)系統建模分析方法擴展閱讀:
模型方法以研究模型來揭示原型的形態、特徵和本質的方法,是邏輯方法的一種特有形式。模型捨去了原型的一些次要的細節、非本質的聯系,以簡化和理想化的形式去再現原型的各種復雜結構、功能和聯系,是連接理論和應用的橋梁。
或者換句話說,模型方法是把認識對象作為一個比較完整的形象表示出來,從而使問題簡明扼要,以便窺見其本質的方法。從思維方法上遵循化繁為簡的原則,把復雜的實際問題轉化為理想的簡單問題。