導航:首頁 > 研究方法 > 聚類分析有什麼分類方法

聚類分析有什麼分類方法

發布時間:2022-09-27 20:51:07

⑴ 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。

k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。

其流程如下:

(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;

(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;

(3)重新計算每個(有變化)聚類的均值(中心對象);

(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。

優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。

缺點

1. K 是事先給定的,但非常難以選定;

2. 初始聚類中心的選擇對聚類結果有較大的影響。

⑵ 聚類分析的演算法有哪幾類

聚類分析的演算法可以分為以下幾大類:分裂法、層次法、基於密度的方法、基於網格的方法和基於模型的方法等。

⑶ 模糊聚類分析的常用分類方法

數據分類中,常用的分類方法有多元統計中的系統聚類法、模糊聚類分析等.在模糊聚類分析中,首先要計算模糊相似矩陣,而不同的模糊相似矩陣會產生不同的分類結果;即使採用相同的模糊相似矩陣,不同的閾值也會產生不同的分類結果.「如何確定這些分類的有效性」便成為模糊聚類的要點。
識別研究中的一個重要問題.文獻,把有效性不滿意的原因歸結於數據集幾何結構的不理想.但筆者認為,不同的幾何結構是對實際需要的反映,我們不能排除實際需要而追求所謂的「理想幾何結構」,不理想的分類不應歸因於數據集的幾何結構.針對同一模糊相似矩陣,文獻建立了確定模糊聚類有效性的方法.用固定的顯著性水平,在不同分類的F一統計量和F檢驗臨界值的差中選最大者,即為有效分類.但是,當顯著性水平變化時,此方法的結果也會變化.文獻引進了一種模糊劃分嫡來評價模糊聚類的有效性,並人為規定當兩類的嫡大於一數時,此兩類可合並,通過逐次合並,最終得到有效分類.此方法人為干預較多,當這個規定數不同時,也會得到不同的結果.另外這兩種方法也未比較不同模糊相似矩陣的分類結果. 系統聚類法是基於模糊等價關系的模糊聚類分析法。在經典的聚類分析方法中可用經典等價關系對樣本集X進行聚類。設R是 X上的經典等價關系。對X中的兩個元素x和y,若xRy或(x,y)∈R,則將x和y並為一類,否則x和y不屬於同一類。
相應地,可用X上的模糊等價關系對樣本集X進行模糊聚類。設慒是X上的模糊等價關系,是慒 的隸屬函數。對於任何α∈【0,1】,定義慒 的α截關系 Sα是X上的經典等價關系。根據Sα得到X 的一種聚類,稱為在α水平上的聚類。
應用這種方法,分類的結果與α的取值大小有關。α取值越大,分的類數越多。α小到某一值時,X中的所有樣本歸並為一類。這種方法的優點在於可按實際需要選取α的值,以便得到恰當的分類。
系統聚類法的步驟如下:
①用數字描述樣本的特徵。設被聚類的樣本集為 X={x1,…,xn}。每個樣本均有p種特徵,記作xi=(xi1,…,xip);i=1,2,…,n;xip表示描述樣本xi的第p個特徵的數。 ②規定樣本之間的相似系數rij(0≤rij≤1;i,j=1,…,n)。rij描述樣本xi與xj之間的差異或相似的程度。rij 越接近於1,表明樣本xi與xj之間的差異越小;rij 越接近於0,表明xi與xj之間的差異越大。rij可用主觀評定或集體評分的方法規定,也可用公式計算,如採用夾角餘弦法、最小最大法、算術平均最小法等。
因為rii=1(xi與自身沒有差異),rij=rji(xi與xj之間的差異等同於xj與xi之間的差異),所以由rij(i,j=1,…,n)可得X上的模糊相似關系。
一般,R不具備可傳遞性,因而R不一定是 X上的模糊等價關系。
③運用合成運算R=R⋅R(或R=R⋅R等)求出最接近相似關系R的模糊等價關系S=R(或R等)。若R已是模糊等價關系,則取S=R。
④選取適當水平α(0≤α≤1),得到X 的一種聚類。 逐步聚類法是一種基於模糊劃分的模糊聚類分析法。它是預先確定好待分類的樣本應分成幾類,然後按最優化原則進行再分類,經多次迭代直到分類比較合理為止。
在分類過程中可認為某個樣本以某一隸屬度隸屬於某一類,又以另一隸屬度隸屬於另一類。這樣,樣本就不是明確地屬於或不屬於某一類。若樣本集有 n個樣本要分成c類,則它的模糊劃分矩陣為此c×n模糊劃分矩陣有下列特性:①uij∈【0,1】;i=1,…,c;j=1,…,n。②即每一樣本屬於各類的隸屬度之和為1。③即每一類模糊子集都不是空集。

⑷ 四種聚類方法之比較

四種聚類方法之比較
介紹了較為常見的k-means、層次聚類、SOM、FCM等四種聚類演算法,闡述了各自的原理和使用步驟,利用國際通用測試數據集IRIS對這些演算法進行了驗證和比較。結果顯示對該測試類型數據,FCM和k-means都具有較高的准確度,層次聚類准確度最差,而SOM則耗時最長。
關鍵詞:聚類演算法;k-means;層次聚類;SOM;FCM
聚類分析是一種重要的人類行為,早在孩提時代,一個人就通過不斷改進下意識中的聚類模式來學會如何區分貓狗、動物植物。目前在許多領域都得到了廣泛的研究和成功的應用,如用於模式識別、數據分析、圖像處理、市場研究、客戶分割、Web文檔分類等[1]。
聚類就是按照某個特定標准(如距離准則)把一個數據集分割成不同的類或簇,使得同一個簇內的數據對象的相似性盡可能大,同時不在同一個簇中的數據對象的差異性也盡可能地大。即聚類後同一類的數據盡可能聚集到一起,不同數據盡量分離。
聚類技術[2]正在蓬勃發展,對此有貢獻的研究領域包括數據挖掘、統計學、機器學習、空間資料庫技術、生物學以及市場營銷等。各種聚類方法也被不斷提出和改進,而不同的方法適合於不同類型的數據,因此對各種聚類方法、聚類效果的比較成為值得研究的課題。
1 聚類演算法的分類
目前,有大量的聚類演算法[3]。而對於具體應用,聚類演算法的選擇取決於數據的類型、聚類的目的。如果聚類分析被用作描述或探查的工具,可以對同樣的數據嘗試多種演算法,以發現數據可能揭示的結果。
主要的聚類演算法可以劃分為如下幾類:劃分方法、層次方法、基於密度的方法、基於網格的方法以及基於模型的方法[4-6]。
每一類中都存在著得到廣泛應用的演算法,例如:劃分方法中的k-means[7]聚類演算法、層次方法中的凝聚型層次聚類演算法[8]、基於模型方法中的神經網路[9]聚類演算法等。
目前,聚類問題的研究不僅僅局限於上述的硬聚類,即每一個數據只能被歸為一類,模糊聚類[10]也是聚類分析中研究較為廣泛的一個分支。模糊聚類通過隸屬函數來確定每個數據隸屬於各個簇的程度,而不是將一個數據對象硬性地歸類到某一簇中。目前已有很多關於模糊聚類的演算法被提出,如著名的FCM演算法等。
本文主要對k-means聚類演算法、凝聚型層次聚類演算法、神經網路聚類演算法之SOM,以及模糊聚類的FCM演算法通過通用測試數據集進行聚類效果的比較和分析。
2 四種常用聚類演算法研究
2.1 k-means聚類演算法
k-means是劃分方法中較經典的聚類演算法之一。由於該演算法的效率高,所以在對大規模數據進行聚類時被廣泛應用。目前,許多演算法均圍繞著該演算法進行擴展和改進。
k-means演算法以k為參數,把n個對象分成k個簇,使簇內具有較高的相似度,而簇間的相似度較低。k-means演算法的處理過程如下:首先,隨機地選擇k個對象,每個對象初始地代表了一個簇的平均值或中心;對剩餘的每個對象,根據其與各簇中心的距離,將它賦給最近的簇;然後重新計算每個簇的平均值。這個過程不斷重復,直到准則函數收斂。通常,採用平方誤差准則,其定義如下:

這里E是資料庫中所有對象的平方誤差的總和,p是空間中的點,mi是簇Ci的平均值[9]。該目標函數使生成的簇盡可能緊湊獨立,使用的距離度量是歐幾里得距離,當然也可以用其他距離度量。k-means聚類演算法的演算法流程如下:
輸入:包含n個對象的資料庫和簇的數目k;
輸出:k個簇,使平方誤差准則最小。
步驟:
(1) 任意選擇k個對象作為初始的簇中心;
(2) repeat;
(3) 根據簇中對象的平均值,將每個對象(重新)賦予最類似的簇;
(4) 更新簇的平均值,即計算每個簇中對象的平均值;
(5) until不再發生變化。
2.2 層次聚類演算法
根據層次分解的順序是自底向上的還是自上向下的,層次聚類演算法分為凝聚的層次聚類演算法和分裂的層次聚類演算法。
凝聚型層次聚類的策略是先將每個對象作為一個簇,然後合並這些原子簇為越來越大的簇,直到所有對象都在一個簇中,或者某個終結條件被滿足。絕大多數層次聚類屬於凝聚型層次聚類,它們只是在簇間相似度的定義上有所不同。四種廣泛採用的簇間距離度量方法如下:

這里給出採用最小距離的凝聚層次聚類演算法流程:
(1) 將每個對象看作一類,計算兩兩之間的最小距離;
(2) 將距離最小的兩個類合並成一個新類;
(3) 重新計算新類與所有類之間的距離;
(4) 重復(2)、(3),直到所有類最後合並成一類。
2.3 SOM聚類演算法
SOM神經網路[11]是由芬蘭神經網路專家Kohonen教授提出的,該演算法假設在輸入對象中存在一些拓撲結構或順序,可以實現從輸入空間(n維)到輸出平面(2維)的降維映射,其映射具有拓撲特徵保持性質,與實際的大腦處理有很強的理論聯系。
SOM網路包含輸入層和輸出層。輸入層對應一個高維的輸入向量,輸出層由一系列組織在2維網格上的有序節點構成,輸入節點與輸出節點通過權重向量連接。學習過程中,找到與之距離最短的輸出層單元,即獲勝單元,對其更新。同時,將鄰近區域的權值更新,使輸出節點保持輸入向量的拓撲特徵。
演算法流程:
(1) 網路初始化,對輸出層每個節點權重賦初值;
(2) 將輸入樣本中隨機選取輸入向量,找到與輸入向量距離最小的權重向量;
(3) 定義獲勝單元,在獲勝單元的鄰近區域調整權重使其向輸入向量靠攏;
(4) 提供新樣本、進行訓練;
(5) 收縮鄰域半徑、減小學習率、重復,直到小於允許值,輸出聚類結果。
2.4 FCM聚類演算法
1965年美國加州大學柏克萊分校的扎德教授第一次提出了『集合』的概念。經過十多年的發展,模糊集合理論漸漸被應用到各個實際應用方面。為克服非此即彼的分類缺點,出現了以模糊集合論為數學基礎的聚類分析。用模糊數學的方法進行聚類分析,就是模糊聚類分析[12]。
FCM演算法是一種以隸屬度來確定每個數據點屬於某個聚類程度的演算法。該聚類演算法是傳統硬聚類演算法的一種改進。

演算法流程:
(1) 標准化數據矩陣;
(2) 建立模糊相似矩陣,初始化隸屬矩陣;
(3) 演算法開始迭代,直到目標函數收斂到極小值;
(4) 根據迭代結果,由最後的隸屬矩陣確定數據所屬的類,顯示最後的聚類結果。
3 四種聚類演算法試驗
3.1 試驗數據
實驗中,選取專門用於測試分類、聚類演算法的國際通用的UCI資料庫中的IRIS[13]數據集,IRIS數據集包含150個樣本數據,分別取自三種不同的鶯尾屬植物setosa、versicolor和virginica的花朵樣本,每個數據含有4個屬性,即萼片長度、萼片寬度、花瓣長度,單位為cm。在數據集上執行不同的聚類演算法,可以得到不同精度的聚類結果。
3.2 試驗結果說明
文中基於前面所述各演算法原理及演算法流程,用matlab進行編程運算,得到表1所示聚類結果。

如表1所示,對於四種聚類演算法,按三方面進行比較:(1)聚錯樣本數:總的聚錯的樣本數,即各類中聚錯的樣本數的和;(2)運行時間:即聚類整個過程所耗費的時間,單位為s;(3)平均准確度:設原數據集有k個類,用ci表示第i類,ni為ci中樣本的個數,mi為聚類正確的個數,則mi/ni為第i類中的精度,則平均精度為:

3.3 試驗結果分析
四種聚類演算法中,在運行時間及准確度方面綜合考慮,k-means和FCM相對優於其他。但是,各個演算法還是存在固定缺點:k-means聚類演算法的初始點選擇不穩定,是隨機選取的,這就引起聚類結果的不穩定,本實驗中雖是經過多次實驗取的平均值,但是具體初始點的選擇方法還需進一步研究;層次聚類雖然不需要確定分類數,但是一旦一個分裂或者合並被執行,就不能修正,聚類質量受限制;FCM對初始聚類中心敏感,需要人為確定聚類數,容易陷入局部最優解;SOM與實際大腦處理有很強的理論聯系。但是處理時間較長,需要進一步研究使其適應大型資料庫。
聚類分析因其在許多領域的成功應用而展現出誘人的應用前景,除經典聚類演算法外,各種新的聚類方法正被不斷被提出。

⑸ 聚類演算法有哪些

聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。

(5)聚類分析有什麼分類方法擴展閱讀:

聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

⑹ 聚類分析法(CA)

3.2.3.1 技術原理

聚類分析又稱群分析(CA),它是研究(對樣品或指標)分類問題的一種多元統計方法。首先認為所研究的樣品或指標(變數)之間存在著程度不同的相似性(親疏關系),根據一批樣品的多個觀測指標具體找出一些能夠度量樣品或指標之間相似程度的統計量,以這些統計量為劃分類型的依據,把一些相似程度較大的樣品(或指標)聚合為一類,把另一些彼此之間相似程度較大的樣品(或指標)聚合為另一類,根據分類對象不同,可分為對樣品分類的Q型聚類分析和對指標分類的R型聚類分析兩種類型。聚類分析可用SPSS軟體直接實現,在水質時空變異、水化學類型分區中得到廣泛的應用。聚類分析的功能是建立一種分類方法,它將一批樣品或變數,按照它們在性質上的親疏、相似程度進行分類,聚類分析的內容十分豐富,按其聚類的方法可分為以下幾種:系統聚類法、調優法、最優分割法、模糊聚類法等。

聚類分析根據分類對象的不同又分為R型和Q型兩大類,R型是對變數(指標)進行分類,Q型是對樣品進行分類。為了對樣品(或變數)進行分類,就必須研究它們之間的關系,描述樣品間親疏相似程度的統計量很多,目前用得最多的是距離和相似系數。距離方法主要有:閔科夫斯基(Minkowski)距離、絕對值距離、歐氏距離等。

樣品間的親疏程度除了用距離描述外,也可用相似系數來表示,相似系數的構造主要有以下兩種方法:對於定量變數,我們通常採用的相似系數有xi和xj之間的夾角餘弦和相關系數。

3.2.3.2 方法流程

目前使用最多的聚類方法是系統聚類法,其基本思想是:先將n個樣品各自看成一類,共有n個類,然後計算類與類間的距離,選擇距離最小的兩類合並成一個新類,使總類數減少為n-1,接著再計算這n-1類兩兩間的距離,從中找出距離最近的兩類合並,總類數又減少一個,剩下n-2個類,照此下去,每合並一次,減少一類,直至所有樣品都合並成一類為止。在並類的過程當中,可以根據聚類的先後以及並類時兩類間的距離,畫出能直觀反映各樣品間相近和疏遠程度的聚類圖(也稱譜系圖),根據這張聚類圖有可能找到最合適的分類方案。系統聚類法的聚類原則決定於樣品間的距離(或相似系數)及類間距離的定義,類間距離的不同定義就產生了不同的系統聚類分析方法,類間距離的定義方法主要有最短距離法、最長距離法、中間距離法、重心法、類平均法。在合理地選定(或定義)樣品間的距離以後,再適當定義類間的距離,就確定了一種聚類規則,之後按照系統聚類法的一般步驟加以聚類(圖3.4)。

圖3.4 聚類分析技術流程圖

3.2.3.3 適用范圍

聚類分析能夠將變數及樣本按照相應的規則進行分類,在大樣本多參數數據降維方面具有相對的優勢,尤其是對於在時間、空間上具有復雜變化的數據,聚類分析能夠根據變數和樣本的相關性和相似性,將數據有效地劃分為不同的類別,並通過樹狀圖反映出樣品隨距離或變數間相似性變化的情況,為查清變數和樣品之間關系提供了依據,也為查明污染來源奠定了基礎。

⑺ 聚類演算法有哪些分類

聚類演算法的分類有:

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:

(1) 每一個分組至少包含一個數據紀錄;

(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。

例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。

代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。

通常有兩種嘗試方向:統計的方案和神經網路的方案。

(7)聚類分析有什麼分類方法擴展閱讀:

聚類演算法的要求:

1、可伸縮性

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

我們需要具有高度可伸縮性的聚類演算法。

2、不同屬性

許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。

3、任意形狀

許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。

4、領域最小化

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

5、處理「雜訊」

絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。

6、記錄順序

一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。

⑻ 16種常用的數據分析方法-聚類分析

聚類(Clustering)就是一種尋找數據之間內在結構的技術。聚類把全體數據實例組織成一些相似組,而這些相似組被稱作簇。處於相同簇中的數據實例彼此相同,處於不同簇中的實例彼此不同。











聚類分析定義









聚類分析是根據在數據中發現的描述對象及其關系的信息,將數據對象分組。目的是,組內的對象相互之間是相似的(相關的),而不同組中的對象是不同的(不相關的)。組內相似性越大,組間差距越大,說明聚類效果越好。


聚類效果的好壞依賴於兩個因素:1.衡量距離的方法(distance measurement) 2.聚類演算法(algorithm)

 
















聚類分析常見演算法









K-均值聚類也稱為快速聚類法,在最小化誤差函數的基礎上將數據劃分為預定的類數K。該演算法原理簡單並便於處理大量數據。


K-均值演算法對孤立點的敏感性,K-中心點演算法不採用簇中對象的平均值作為簇中心,而選用簇中離平均值最近的對象作為簇中心。


也稱為層次聚類,分類的單位由高到低呈樹形結構,且所處的位置越低,其所包含的對象就越少,但這些對象間的共同特徵越多。該聚類方法只適合在小數據量的時候使用,數據量大的時候速度會非常慢。

 
















案例









有20種12盎司啤酒成分和價格的數據,變數包括啤酒名稱、熱量、鈉含量、酒精含量、價格。


 

問題一:選擇那些變數進行聚類?——採用「R 型聚類」

 

現在我們有4個變數用來對啤酒分類,是否有必要將4個變數都納入作為分類變數呢?熱量、鈉含量、酒精含量這3個指標是要通過化驗員的辛苦努力來測定,而且還有花費不少成本。


所以,有必要對4個變數進行降維處理,這里採用spss R型聚類(變數聚類),對4個變數進行降維處理。輸出「相似性矩陣」有助於我們理解降維的過程。



4個分類變數各自不同,這一次我們先用相似性來測度,度量標准選用pearson系數,聚類方法選最遠元素,此時,涉及到相關,4個變數可不用標准化處理,將來的相似性矩陣里的數字為相關系數。若果有某兩個變數的相關系數接近1或-1,說明兩個變數可互相替代。



只輸出「樹狀圖」就可以了,從proximity matrix表中可以看出熱量和酒精含量兩個變數相關系數0.903,最大,二者選其一即可,沒有必要都作為聚類變數,導致成本增加。


至於熱量和酒精含量選擇哪一個作為典型指標來代替原來的兩個變數,可以根據專業知識或測定的難易程度決定。(與因子分析不同,是完全踢掉其中一個變數以達到降維的目的。)這里選用酒精含量,至此,確定出用於聚類的變數為:酒精含量,鈉含量,價格。

        


問題二:20 中啤酒能分為幾類?—— 採用「Q 型聚類」

 

現在開始對20中啤酒進行聚類。開始不確定應該分為幾類,暫時用一個3-5類范圍來試探。Q型聚類要求量綱相同,所以我們需要對數據標准化,這一回用歐式距離平方進行測度。



主要通過樹狀圖和冰柱圖來理解類別。最終是分為4類還是3類,這是個復雜的過程,需要專業知識和最初的目的來識別。


這里試著確定分為4類。選擇「保存」,則在數據區域內會自動生成聚類結果。




問題三:用於聚類的變數對聚類過程、結果又貢獻么,有用么?——採用「單因素方差分析」

 

聚類分析除了對類別的確定需討論外,還有一個比較關鍵的問題就是分類變數到底對聚類有沒有作用有沒有貢獻,如果有個別變數對分類沒有作用的話,應該剔除。


這個過程一般用單因素方差分析來判斷。注意此時,因子變數選擇聚為4類的結果,而將三個聚類變數作為因變數處理。方差分析結果顯示,三個聚類變數sig值均極顯著,我們用於分類的3個變數對分類有作用,可以使用,作為聚類變數是比較合理的。




 

問題四:聚類結果的解釋?——採用」均值比較描述統計「


聚類分析最後一步,也是最為困難的就是對分出的各類進行定義解釋,描述各類的特徵,即各類別特徵描述。這需要專業知識作為基礎並結合分析目的才能得出。


我們可以採用spss的means均值比較過程,或者excel的透視表功能對各類的各個指標進行描述。其中,report報表用於描述聚類結果。對各類指標的比較來初步定義類別,主要根據專業知識來判定。這里到此為止。



以上過程涉及到spss層次聚類中的Q型聚類和R型聚類,單因素方差分析,means過程等,是一個很不錯的多種分析方法聯合使用的案例。

 
















聚類分析的應用









聚類分析是細分市場的有效工具,被用來發現不同的客戶群,並且它通過對不同的客戶群的特徵的刻畫,被用於研究消費者行為,尋找新的潛在市場。

 



聚類分析被用來對動植物和基因進行分類,以獲取對種群固有結構的認識。

 



聚類分析可以通過平均消費來鑒定汽車保險單持有者的分組,同時可以根據住宅類型、價值、地理位置來鑒定城市的房產分組。

 



聚類分析被用來在網上進行文檔歸類。

 



聚類分析通過分組聚類出具有相似瀏覽行為的客戶,並分析客戶的共同特徵,從而幫助電子商務企業了解自己的客戶,向客戶提供更合適的服務。

 


⑼ 什麼是聚類分析聚類演算法有哪幾種

聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於

分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行

定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識

難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又

將多元分析的技術引入到數值分類學形成了聚類分析。

聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論

聚類法、聚類預報法等。

聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical

methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based

methods): 基於模型的方法(model-based methods)。

閱讀全文

與聚類分析有什麼分類方法相關的資料

熱點內容
智遠一戶通使用方法 瀏覽:822
駕駛避免剮蹭的方法有哪些 瀏覽:734
胸上縫的訓練方法 瀏覽:106
太原公交乘車碼使用方法 瀏覽:944
三星手機撥號快捷鍵怎麼設置在哪裡設置方法 瀏覽:528
如何辨別鑽石好壞的方法 瀏覽:431
hdlc檢測方法 瀏覽:670
水培石斛蘭的種植方法 瀏覽:426
乾式變壓器項目研究試驗方法 瀏覽:386
青春期偏頭疼的原因和解決方法 瀏覽:66
瓷磚成型缺陷解決方法 瀏覽:392
一歲半亞麻籽油的食用方法 瀏覽:28
蟲害處理方法哪裡找 瀏覽:416
決戰平安京有哪些方法登錄 瀏覽:578
小腿劃傷怎麼處理方法 瀏覽:478
如何測量磷酸鹽的方法 瀏覽:976
平穩序列檢測方法 瀏覽:919
不打針治療咳嗽的方法 瀏覽:280
毛利潤30利潤計算方法 瀏覽:4
後束三角肌的鍛煉方法 瀏覽:56