❶ 做了兩組變數的相關性分析,不知道如何判斷結果
如果是在Excel中的話,直接用CORREL或Pearson函數判斷,參數中選擇兩個數據列,得到的結果應該是-1-1之間,小於0負相關,大於0正相關,越接近正負1相關性越強。
❷ 相關性分析方法與原則
(一)相關性分析方法
相關分析是對所抽查分等單元的三個等指數和對應該單元單位面積一年內的作物標准糧實際產量進行回歸分析。
海南耕地的標准耕作制度為一年兩熟制,所採用的分等單元標准糧實際產量公式為:標准糧=作物 1 單產 × 作物 1 產量比系數+作物 2 單產 × 作物 2 產量比系數。對於自然質量等指數、利用等指數、經濟等指數與實際標准糧產量的關系採用以省或縣(市)為單位從分布上進行整體線性回歸分析。
(二)相關性分析原則
(1)以標准耕作制度二級區或二級區內的典型單位,如省或縣(市)為單位,抽查分等單元。
(2)所抽查的分等單元應有代表性與差異性,能夠反映不同地形地貌、土壤、區位、灌排設施和經濟發展水平條件的差異。
(3)一般情況下,每個等別應至少抽查 10% 的分等單元,如果個別分等單元數量少且沒有代表性,可以低於該比例,甚至不抽查。
(4)作物實際單產應以前三年正常年景的平均產量為基礎。
(5)每個二級區或典型縣所選分等單元數量不能低於統計學相關分析中樣本數量的最低比例要求。
❸ 如何進行相關性分析 進行相關性分析的方法
1、線性相關系數也叫Pearson相關系數, 主要衡量兩個變數線性相關的程度。r=cov(X,Y)/(D(X)D(Y))相關系數是用協方差除以兩個隨機變數的標准差。相關系數的大小在-1和1之間變化。再也不會出現因為計量單位變化,而數值暴漲的情況了。線性相關系數必須建立在因變數與自變數是線性的關系基礎上,否則線性相關系數是無意義的。
2、連續與離散變數之間的相關性,連續變數離散化將連續變數離散化,然後,使用離散與離散變數相關性分析的方法來分析相關性。使用畫箱形圖的方法,看離散變數取不同值,連續變數的均值與方差及取值分布情況。
3、相關分析相當於先檢驗一下眾多的自變數和因變數之間是否存在相關性,當然通過相關分析求得相關系數沒有回歸分析的准確。如果相關分析時各自變數跟因變數之間沒有相關性 ,就沒有必要再做回歸分析;如果有一定的相關性了,然後再通過回歸分析進一步驗證他們之間的准確關系。同時 相關分析還有一個目的,可以查看一下 自變數之間的共線性程度如何,如果自變數間的相關性非常大,可能表示存在共線性。
❹ 5種相關分析方法
相關分析(Analysis of Correlation)是網站分析中經常使用的分析方法之一。通過對不同特徵或數據間的關系進行分析,發現業務運營中的關鍵影響及驅動因素。並對業務的發展進行預測。本篇文章將介紹5種常用的分析方法。在開始介紹相關分析之前,需要特別說明的是相關關系不等於因果關系。
相關分析的方法很多,初級的方法可以快速發現數據之間的關系,如正相關,負相關或不相關。中級的方法可以對數據間關系的強弱進行度量,如完全相關,不完全相關等。高級的方法可以將數據間的關系轉化為模型,並通過模型對未來的業務發展進行預測。下面我們以一組廣告的成本數據和曝光量數據對每一種相關分析方法進行介紹。
以下是每日廣告曝光量和費用成本的數據,每一行代表一天中的花費和獲得的廣告曝光數量。憑經驗判斷,這兩組數據間應該存在聯系,但僅通過這兩組數據我們無法證明這種關系真實存在,也無法對這種關系的強度進行度量。因此我們希望通過相關分析來找出這兩組數據之間的關系,並對這種關系進度度量。
1,圖表相關分析(折線圖及散點圖)
第一種相關分析方法是將數據進行可視化處理,簡單的說就是繪制圖表。單純從數據的角度很難發現其中的趨勢和聯系,而將數據點繪製成圖表後趨勢和聯系就會變的清晰起來。對於有明顯時間維度的數據,我們選擇使用折線圖。
為了更清晰的對比這兩組數據的變化和趨勢,我們使用雙坐標軸折線圖,其中主坐標軸用來繪制廣告曝光量數據,次坐標軸用來繪制費用成本的數據。通過折線圖可以發現,費用成本和廣告曝光量兩組數據的變化和趨勢大致相同,從整體的大趨勢來看,費用成本和廣告曝光量兩組數據都呈現增長趨勢。從規律性來看費用成本和廣告曝光量數據每次的最低點都出現在同一天。從細節來看,兩組數據的短期趨勢的變化也基本一致。
經過以上這些對比,我們可以說廣告曝光量和費用成本之間有一些相關關系,但這種方法在整個分析過程和解釋上過於復雜,如果換成復雜一點的數據或者相關度較低的數據就會出現很多問題。
比折線圖更直觀的是散點圖。散點圖去除了時間維度的影響,只關注廣告曝光量和費用成本這里兩組數據間的關系。在繪制散點圖之前,我們將費用成本標識為X,也就是自變數,將廣告曝光量標識為y,也就是因變數。下面是一張根據每一天中廣告曝光量和費用成本數據繪制的散點圖,X軸是自變數費用成本數據,Y軸是因變數廣告曝光量數據。從數據點的分布情況可以發現,自變數x和因變數y有著相同的變化趨勢,當費用成本的增加後,廣告曝光量也隨之增加。
折線圖和散點圖都清晰的表示了廣告曝光量和費用成本兩組數據間的相關關系,優點是對相關關系的展現清晰,缺點是無法對相關關系進行准確的度量,缺乏說服力。並且當數據超過兩組時也無法完成各組數據間的相關分析。若要通過具體數字來度量兩組或兩組以上數據間的相關關系,需要使用第二種方法:協方差。
2,協方差及協方差矩陣
第二種相關分析方法是計算協方差。協方差用來衡量兩個變數的總體誤差,如果兩個變數的變化趨勢一致,協方差就是正值,說明兩個變數正相關。如果兩個變數的變化趨勢相反,協方差就是負值,說明兩個變數負相關。如果兩個變數相互獨立,那麼協方差就是0,說明兩個變數不相關。以下是協方差的計算公式:
下面是廣告曝光量和費用成本間協方差的計算過程和結果,經過計算,我們得到了一個很大的正值,因此可以說明兩組數據間是正相關的。廣告曝光量隨著費用成本的增長而增長。在實際工作中不需要按下面的方法來計算,可以通過Excel中COVAR()函數直接獲得兩組數據的協方差值。
協方差只能對兩組數據進行相關性分析,當有兩組以上數據時就需要使用協方差矩陣。下面是三組數據x,y,z,的協方差矩陣計算公式。
協方差通過數字衡量變數間的相關性,正值表示正相關,負值表示負相關。但無法對相關的密切程度進行度量。當我們面對多個變數時,無法通過協方差來說明那兩組數據的相關性最高。要衡量和對比相關性的密切程度,就需要使用下一個方法:相關系數。,
3,相關系數
第三個相關分析方法是相關系數。相關系數(Correlation coefficient)是反應變數之間關系密切程度的統計指標,相關系數的取值區間在1到-1之間。1表示兩個變數完全線性相關,-1表示兩個變數完全負相關,0表示兩個變數不相關。數據越趨近於0表示相關關系越弱。以下是相關系數的計算公式。
其中rxy表示樣本相關系數,Sxy表示樣本協方差,Sx表示X的樣本標准差,Sy表示y的樣本標准差。下面分別是Sxy協方差和Sx和Sy標准差的計算公式。由於是樣本協方差和樣本標准差,因此分母使用的是n-1。
Sxy樣本協方差計算公式:
Sx樣本標准差計算公式:
Sy樣本標准差計算公式:
下面是計算相關系數的過程,在表中我們分別計算了x,y變數的協方差以及各自的標准差,並求得相關系數值為0.93。0.93大於0說明兩個變數間正相關,同時0.93非常接近於1,說明兩個變數間高度相關。
在實際工作中,不需要上面這么復雜的計算過程,在Excel的數據分析模塊中選擇相關系數功能,設置好x,y變數後可以自動求得相關系數的值。在下面的結果中可以看到,廣告曝光量和費用成本的相關系數與我們手動求的結果一致。
相關系數的優點是可以通過數字對變數的關系進行度量,並且帶有方向性,1表示正相關,-1表示負相關,可以對變數關系的強弱進行度量,越靠近0相關性越弱。缺點是無法利用這種關系對數據進行預測,簡單的說就是沒有對變數間的關系進行提煉和固化,形成模型。要利用變數間的關系進行預測,需要使用到下一種相關分析方法,回歸分析。,
4,一元回歸及多元回歸
第四種相關分析方法是回歸分析。回歸分析(regression analysis)是確定兩組或兩組以上變數間關系的統計方法。回歸分析按照變數的數量分為一元回歸和多元回歸。兩個變數使用一元回歸,兩個以上變數使用多元回歸。進行回歸分析之前有兩個准備工作,第一確定變數的數量。第二確定自變數和因變數。我們的數據中只包含廣告曝光量和費用成本兩個變數,因此使用一元回歸。根據經驗廣告曝光量是隨著費用成本的變化而改變的,因此將費用成本設置為自變數x,廣告曝光量設置為因變數y。
以下是一元回歸方程,其中y表示廣告曝光量,x表示費用成本。b0為方程的截距,b1為斜率,同時也表示了兩個變數間的關系。我們的目標就是b0和b1的值,知道了這兩個值也就知道了變數間的關系。並且可以通過這個關系在已知成本費用的情況下預測廣告曝光量。
這是b1的計算公式,我們通過已知的費用成本x和廣告曝光量y來計算b1的值。
以下是通過最小二乘法計算b1值的具體計算過程和結果,經計算,b1的值為5.84。同時我們也獲得了自變數和因變數的均值。通過這三個值可以計算出b0的值。
以下是b0的計算公式,在已知b1和自變數與因變數均值的情況下,b0的值很容易計算。
將自變數和因變數的均值以及斜率b1代入到公式中,求出一元回歸方程截距b0的值為374。這里b1我們保留兩位小數,取值5.84。
在實際的工作中不需要進行如此繁瑣的計算,Excel可以幫我們自動完成並給出結果。在Excel中使用數據分析中的回歸功能,輸入自變數和因變數的范圍後可以自動獲得b0(Intercept)的值362.15和b1的值5.84。這里的b0和之前手動計算獲得的值有一些差異,因為前面用於計算的b1值只保留了兩位小數。
這里還要單獨說明下R Square的值0.87。這個值叫做判定系數,用來度量回歸方程的擬合優度。這個值越大,說明回歸方程越有意義,自變數對因變數的解釋度越高。
將截距b0和斜率b1代入到一元回歸方程中就獲得了自變數與因變數的關系。費用成本每增加1元,廣告曝光量會增加379.84次。通過這個關系我們可以根據成本預測廣告曝光量數據。也可以根據轉化所需的廣告曝光量來反推投入的費用成本。獲得這個方程還有一個更簡單的方法,就是在Excel中對自變數和因變數生成散點圖,然後選擇添加趨勢線,在添加趨勢線的菜單中選中顯示公式和顯示R平方值即可。
以上介紹的是兩個變數的一元回歸方法,如果有兩個以上的變數使用Excel中的回歸分析,選中相應的自變數和因變數范圍即可。下面是多元回歸方程。
5,信息熵及互信息
最後一種相關分析方法是信息熵與互信息。前面我們一直在圍繞消費成本和廣告曝光量兩組數據展開分析。實際工作中影響最終效果的因素可能有很多,並且不一定都是數值形式。比如我們站在更高的維度來看之前的數據。廣告曝光量只是一個過程指標,最終要分析和關注的是用戶是否購買的狀態。而影響這個結果的因素也不僅僅是消費成本或其他數值化指標。可能是一些特徵值。例如用戶所在的城市,用戶的性別,年齡區間分布,以及是否第一次到訪網站等等。這些都不能通過數字進行度量。
度量這些文本特徵值之間相關關系的方法就是互信息。通過這種方法我們可以發現哪一類特徵與最終的結果關系密切。下面是我們模擬的一些用戶特徵和數據。在這些數據中我們忽略之前的消費成本和廣告曝光量數據,只關注特徵與狀態的關系。
對於信息熵和互信息具體的計算過程請參考我前面的文章《 決策樹分類和預測演算法的原理及實現 》,這里直接給出每個特徵的互信息值以及排名結果。經過計算城市與購買狀態的相關性最高,所在城市為北京的用戶購買率較高。
到此為止5種相關分析方法都已介紹完,每種方法各有特點。其中圖表方法最為直觀,相關系數方法可以看到變數間兩兩的相關性,回歸方程可以對相關關系進行提煉,並生成模型用於預測,互信息可以對文本類特徵間的相關關系進行度量。
❺ 常用的判別分析方法有哪些
按照習慣大類分成化學分析法,電化學分析法和儀器分析法
1.化學分析裡麵包括滴定法(氧化還原滴定,酸鹼滴定,絡合滴定等),重量分析法等等
2.電化學分析裡麵包括循環伏安,極譜,電解等等方法
3.儀器分析就更多了,紫外可見分光光度法(UV-Vis),原子發射光譜法,色譜法(包括氣相色譜GC,高效液相色譜HPLC),毛細管電泳(CE),核磁共振(NMR),X粉末多晶衍射(XRD),質譜(MS)等等
❻ 簡述變數間的相關分析有哪些方法
《變數間的相關關系》的主要內容為採用定性和定量相結合的方法研究變數之間的相關關系,主要研究線性相關關系.主要概念有「相關關系」、「散點圖」、「回歸直線和回歸直線方程」、「相關系數」等。
變數之間除了函數關系外,還有相關關系。
例:
(1)商品銷售收入與廣告支出經費之間的關系
(2)糧食產量與施肥量之間的關系
(3)人體內脂肪含量與年齡之間的關系 不同點:函數關系是一種確定的關系;而 相關關系是一種非確定關系。
分類
按相關的形式分為線性相關和非線性相關
1、一種現象的一個數值和另一現象相應的數值在指教坐標系中確定為一個點,稱為線性相關。
2、按影響因素的多少分為單相關和復相關
3、如果研究的是一個結果標志同某一因素標志相關,就稱單相關。
4、如果分析若干因素標志對結果標志的影響,稱為復相關或多元相關。
以上內容參考:網路-相關分析
❼ 用於分析相關性的數學方法有哪些
做散點圖,擬合線圖,回歸分析,然後對散布的點做線性擬合,如果是非線性相關,可以做二階,三階甚至多階擬合。線性相關的情況下,可以計算相關系數,通過相關系數來判定。
❽ 如何做相關性分析
相關分析的方法很多,初級的方法可以快速發現數據之間的關系,如正相關,負相關或不相關。中級的方法可以對數據間關系的強弱進行度量,如完全相關,不完全相關等。高級的方法可以將數據間的關系轉化為模型,並通過模型對未來的業務發展進行預測。下面我們以一組廣告的成本數據和曝光量數據對每一種相關分析方法進行介紹。
圖表相關分析,還有協方差和協方差矩陣。
❾ 相關性分析的概念及方法
相關分析就是根據一個因素(變數)與另一個因素(變數)的相關系數是否大於臨界值,判斷兩個因素是否相關。在相關的因素之間,根據相關系數大小判斷兩個因素關系的密切程度,相關系數越大,說明兩者關系越密切(何曉群,2002)。這種方法從總體上對問題可以有一個大致認識,但卻很難在錯綜復雜的關系中把握現象的本質,找出哪些是主要因素,哪些是次要因素,有時甚至得出錯誤結論。為此,提出使用數學上的偏相關分析與逐步回歸相結合的辦法來解決這類問題。
偏相關性分析基本原理是,若眾多因素都對某一因素都存在影響,當分析某一因素的影響大小時,把其他因素都限制在某一水平范圍內,單獨分析該因素對某一因素所帶來的影響,從而消除其他因素帶來的干擾。比如分析壓實作用(或埋深)對孔隙度和滲透率的影響時,便把岩石成分、粒度、膠結類型等都限制在一定范圍來單獨討論壓實作用,而數學上的偏相關分析恰恰就是解決這類問題的方法,偏相關系數的大小就代表了這種影響程度。結合多因素邊引入、邊剔除的逐步回歸分析方法,也可消除多個因素(自變數)間的相互干擾和多個因素對因變數的重復影響,保留其中的有用信息,挑選出對因變數影響較顯著的因素,剔除了一些次要因素,被挑選出的主要因素的標准回歸系數和偏回歸平方和的大小反映了各參數對因變數(充滿度)的影響大小。因此根據各因素(自變數)與因變數間的偏相關系數大小,結合標准回歸系數和偏回歸平方和,便可以將各因素對因變數的影響大小進行定量排序。其基本步驟如下:
第一步,找出所有可能對因變數產生影響的因素(或參數),同時對一些非數值型參數進行量化處理;
第二步,計算因變數與各參數間的簡單相關系數,根據這些簡單相關系數的大小,初步分析它們與因變數間的簡單相關關系;
第三步,計算因變數與各參數間的偏相關系數、標准回歸系數和偏回歸平方和;
第四步,根據偏相關系數的大小,再結合標准回歸系數和偏回歸平方和,綜合分析因變數與各參數間的關系密切程度,其值越大,關系越密切,影響越大,反之亦然。
正相關:自變數增長,因變數也跟著增長。
負相關:自變數增長,因變數反而減少。
在回歸與相關分析中,因變數值隨自變數值的增大(減小)而減小(增大),在這種情況下,因變數和自變數的相關系數為負值,即負相關。
正相關是指自變數增長,因變數也跟著增長。兩個變數變動方向相同,一個變數由大到小或由小到大變化時,另一個變數亦由大到小或由小到大變化。
(10)相關分析的判別方法擴展閱讀:
在正相關的情況下,一個變數隨著另一個變數的變化而發生相同方向的變化(兩個變數同時變大或變小)。其中,引起變化的量叫做自變數(即自己發生變化的量),另一個變數叫做因變數(即跟著自變數變化的量)。
統計學中常用相關系數r來表示兩變數之間的相關關系。r的值介於-1與1之間,r為正時是正相關,反映當x增加(減少)時,y隨之相應增加(減少);呈正相關的兩個變數之間的相關系數一定為正值,這個正值越大說明正相關的程度越高。