① 硬質合金微觀結構的測試方法有哪些
為表徵WC-Co硬質合金微觀結構的"隨機性",使用Matlab和VC++匯合編程對材料顯微組織的掃描電鏡(SEM)圖片進行了圖像處理,提取出微觀結構的輪廓,計算了微觀結構的拓撲參數並統計其分布規律。結果表明:開發的圖像處理軟體能夠准確地測量WC-Co硬質合金微觀結構的平均粒徑、形心位置、取向角、長徑、短徑和Co體積分數等參數;並使用概率密度分布函數實現了材料微觀結構的"隨機性"表徵。
② 分析材料分析測試
1、X-射線衍射分析 :物相成分、結晶度、晶粒度信息 2、電子顯微鏡 :材料微觀形貌觀察 3、熱分析 :分析材料隨溫度而發生的狀態變化 4、振動光譜:分子基團、結構的判定 5、X-射線光電子能譜 :一種表面分析技術,表面元素分析 6、色譜分析:分析混合物中所含成分的物理方法
對連續X射線譜的解釋:(1)根據經典物理學的理論,一個帶負電荷的電子作加速運動時,電子周圍的電磁場將發生急劇變化,此時必然要產生一個電磁波,或至少一個電磁脈沖。由於極大數量的電子射到陽極上的時間和條件不可能相同,因而得到的電磁波將具有連續的各種波長,形成連續X射線譜。(2)量子力學概念,當能量為eV的電子與靶的原子整體碰撞時, 電子失去自己的能量,其中一部分以光子的形式輻射出去,每碰撞一次,產生一個能量為hν的光子,即「韌致輻射」。大量的電子到達靶面的時間、條件均不同,而且還有多次碰撞,因而產生不同能量不同強度的光子序列,即形成連續譜。
金屬顯微組織利用光金相顯微鏡或電顯微鏡等觀察、鑒別析金屬材料微觀組織研究新材料、新工藝探討組織與性能間關系提供依據 金屬材料顯微組織(金相組織、硬化層深度、晶粒、碳化物均勻度、夾雜物)析
金相顯微組織測試項目:金相組織與晶粒 、碳化物均勻度 、夾雜物析 、滲層深度 參考標准: GB/T 13298-91 富士 康 華南 檢 測項測試錯
④ 材料測試分析技術有哪些
材料分析測試方法
材料分析的基本原理(或稱技術基礎)是指測量信號與材料成分、結構等的特徵關系。採用各種不同的測量信號(相應地具有與材料的不同特徵關系)形成了各種不同的材料分析方法。
1、X-射線衍射分析 :物相成分、結晶度、晶粒度信息
2、電子顯微鏡 :材料微觀形貌觀察
3、熱分析 :分析材料隨溫度而發生的狀態變化
4、振動光譜:分子基團、結構的判定
5、X-射線光電子能譜 :一種表面分析技術,表面元素分析
6、色譜分析:分析混合物中所含成分的物理方法
對連續X射線譜的解釋:
(1)根據經典物理學的理論,一個帶負電荷的電子作加速運動時,電子周圍的電磁場將發生急劇變化,此時必然要產生一個電磁波,或至少一個電磁脈沖。由於極大數量的電子射到陽極上的時間和條件不可能相同,因而得到的電磁波將具有連續的各種波長,形成連續X射線譜。
(2)量子力學概念,當能量為eV的電子與靶的原子整體碰撞時, 電子失去自己的能量,其中一部分以光子的形式輻射出去,每碰撞一次,產生一個能量為hν的光子,即「韌致輻射」。大量的電子到達靶面的時間、條件均不同,而且還有多次碰撞,因而產生不同能量不同強度的光子序列,即形成連續譜。
⑤ 材料測試分析技術有哪些
材料分析方法:
1、化學分析:化學分析又稱經典分析,包括滴定分析和重量分析兩部分,是根據樣品的量、反應產物的量或所消耗試劑的量及反應的化學計量關系,經計算得待測組分的含量。化學分析是鑒別材料中附加成分的種類、含量,是剖析材料組成、准確定量的必要手段。
2、差熱分析:熱分析是研究熱力學參數或物理參數與溫度變化關系分析的方法,可分性材料晶型轉變、熔融、吸附、脫水、分解等物理性質,在物理、化學、化工、冶金、地質、建材、燃料、輕紡、食品、生物等領域得到廣泛應用。通過熱分析技術的綜合應用可以判斷材料種類、材料組分含量、篩選目標材料、對材料加工條件、 使用條件做出准確的預判,是材料分析過程中非常重要的組成部分。
3、元素分析:元素分析是研究被測元素原子的中外層電子由基態向激發態躍遷時吸收或者放出的特徵譜線的一種分析手段,通過特徵譜線的分析可了解待測材料的元素組成、化學鍵、原子含量及相對濃度。元素分析針對材料中非常規組分進行前期元素分析,輔助和佐證色譜分析,是材料分析中必不可少的環節。
4、光譜分析:光譜分析是通過對材料的發射光譜、吸收光譜、熒光光譜等特徵光譜進行研究以分析物質結構特徵或含量的方法,光譜分析根據光的波長分為可見、紅外、紫外、X射線光譜分析。利用光譜分析可以精確、迅速、靈敏的鑒別材料、分析材料分子結構、確定化學組成和相對含量。是材料分析過程中對材料進行定性分析首要步驟。
5、色譜分析:是材料不同組分分子在固定相和流動相之間分配平衡的過程中,不同組分在固定相上相互分離,已達到對材料定性分析、定量的目的。根據分離機制,色譜分析可以分為吸附色譜、分配色譜、離子交換色譜、凝膠色譜、親和色譜等分析類別,通過各種色譜技術的綜合運用,可實現各種材料的組分分離、定量、定性分析。
6、聯用(介面)技術:通過不同模式和類型的熱分析技術與色譜、光譜、質譜聯用(介面)技術實現對多組分復雜樣品體系的分析,可完成組分多樣性、體系多樣性的材料精確、靈敏、快捷的組分、組成測試,是非常規材料剖析過程中不可或缺分析方法。
⑥ 觀察金屬材料微觀結構,形貌的常用方法有哪些
隨著科學技術的不斷發展,越來越多的領域,如材料科學、醫學、地質學和生物工程學等,需要精確了解各種材料的微觀形貌和微觀結構。這些材料可以包括為特定目的設計製造的金屬或陶瓷材料、天然提取物、化學反應生成物、或經過表面處理或者磨削得到的材料。這些材料機械性能和化學物理特性往往與其微觀形貌和結構密切相關。應用電鏡研究其表面結構、形狀、三維尺寸和分散狀態以及測量某些數據具有重要意義川。但是,對於這些材料的超細粒子,由於其具有較大的表面吉布斯自由能,粒子之間有較強自發集聚趨勢,很容易形成團聚,嚴重影響微粒子的觀察和測量。
因此,利用電鏡研究微粒的很重要一步在於制備出沒有顆粒堆積、又有一定密度,圖象清晰的樣品。本文就制備掃描電鏡粉末樣品的方法進行一些探討。微粒制備成掃描電鏡的樣品,一般需要經過分散、鋪放、鍍導電膜3個步驟。微粒的分散一般認為,實現顆粒分散的基礎是,增大顆粒表面電性,增強顆粒表面親水性以及在顆粒表面形成空間位阻效應。分散介質在分散體系中,分散介質的性質十分重要。顯然,分散介質必須不與微粒物質起化學反應;分散介質應是無色透明,並能較好地潤濕被測的微粒;分散介質揮發的蒸氣對儀器沒有腐蝕作用,對人體也不應有危害。
⑦ 材料表徵方法有哪些
材料的表徵方法有納米粒子的XRD表徵、納米粒子透射電子顯微鏡及光譜分析、納米粒子的掃描透射電子顯微術、納米團簇的掃描探針顯微術、納米材料光譜學和自組裝納米結構材料的核磁共振表徵。
常用材料表徵手段
1. 微觀形貌
形貌分析的主要內容是分析材料的幾何形貌,材料的顆粒度,及顆粒度的分布以及形貌微區的成分和物相結構等方面。
形貌分析方法主要有:掃描電子顯微鏡 SEM、透射電子顯微鏡 TEM、原子力顯微鏡等等。
如下圖所示
3. 成分分析
體相元素成分分析是指體相元素組成及其雜質成分的分析,其方法包括原子吸收、原子發射ICP、質譜以及X射線熒光與X射線衍射分析方法;其中前三種分析方法需要對樣品進行溶解後再進行測定,因此屬於破壞性樣品分析方法;而X射線熒光與衍射分析方法可以直接對固體樣品進行測定因此又稱為非破壞性元素分析方法。
⑧ 材料分析測試方法的內容簡介
X射線衍射分析內容包括X射線物理學基礎、X射線衍射原理、多晶材料X射線衍射分析方法和部分X射線衍射的實際應用。透射電子顯微分析內容包括電子光學基礎和電鏡結構、電子衍射和電子顯微圖像襯度原理。掃描電子顯微鏡分析和電子探針微區分析內容包括儀器的工作原理和分析方法。光譜分析內容包括光譜學基礎、原子光譜和分子光譜的簡介。掃描探針顯微鏡內容包括掃描隧道顯微鏡和原子力顯微鏡的工作原理、工作模式及應用,介紹了X射線光電子能譜的原理與應用。
本書可以作為材料科學與工程學科的本科生教材,也可以作為研究生和從事材料科學研究與分析測試的工程技術人員的參考書。
⑨ 分析和表在材料微觀結構的基本設備有哪些
掃描電子顯微鏡(SEM)是1965年發明的較現代的細胞生物學研究工具,主要是利用二次電子信號成像來觀察樣品的表面形態,即用極狹窄的電子束去掃描樣品,通過電子束與樣品的相互作用產生各種效應,其中主要是樣品的二次電子發射。二次電子能夠產生樣品表面放大的形貌像,這個像是在樣品被掃描時按時序建立起來的,即使用逐點成像的方法獲得放大像。 掃描電子顯微鏡在新型陶瓷材料顯微分析中的應用 1顯微結構的分析 在陶瓷的制備過程中,原始材料及其製品的顯微形貌、孔隙大小、晶界和團聚程度等將決定其最後的性能。掃描電子顯微鏡可以清楚地反映和記錄這些微觀特徵,是觀察分析樣品微觀結構方便、易行的有效方法,樣品無需制備,只需直接放入樣品室內即可放大觀察;同時掃描電子顯微鏡可以實現試樣從低倍到高倍的定位分析,在樣品室中的試樣不僅可以沿三維空間移動,還能夠根據觀察需要進行空間轉動,以利於使用者對感興趣的部位進行連續、系統的觀察分析。掃描電子顯微鏡拍出的圖像真實、清晰,並富有立體感,在新型陶瓷材料的三維顯微組織形態的觀察研究方面獲得了廣泛地應用。 由於掃描電子顯微鏡可用多種物理信號對樣品進行綜合分析,並具有可以直接觀察較大試樣、放大倍數范圍寬和景深大等特點,當陶瓷材料處於不同的外部條件和化學環境時,掃描電子顯微鏡在其微觀結構分析研究方面同樣顯示出極大的優勢。主要表現為: ⑴力學載入下的微觀動態 (裂紋擴展)研究 ;⑵加熱條件下的晶體合成、氣化、聚合反應等研究 ;⑶晶體生長機理、生長台階、缺陷與位錯的研究; ⑷成分的非均勻性、殼芯結構、包裹結構的研究; ⑸晶粒相成分在化學環境下差異性的研究等。 2納米尺寸的研究 納米材料是納米科學技術最基本的組成部分,可以用物理、化學及生物學的方法制備出只有幾個納米的「顆粒 」。納米材料的應用非常廣泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蝕等優點,納米陶瓷在一定的程度上也可增加韌性、改善脆性等,新型陶瓷納米材料如納米稱、納米天平等亦是重要的應用領域。納米材料的一切獨特性主要源於它的納米尺寸,因此必須首先確切地知道其尺寸,否則對納米材料的研究及應用便失去了基礎。縱觀當今國內外的研究狀況和最新成果,該領域的檢測手段和表徵方法可以使用透射電子顯微鏡、掃描隧道顯微鏡、原子力顯微鏡等技術,但高解析度的掃描電子顯微鏡在納米級別材料的形貌觀察和尺寸檢測方面因具有簡便、可操作性強的優勢被大量採用。另外如果將掃描電子顯微鏡與掃描隧道顯微鏡結合起來,還可使普通的掃描電子顯微鏡升級改造為超高解析度的掃描電子顯微鏡。圖 2所示是納米鈦酸鋇陶瓷的掃描電鏡照片,晶粒尺寸平均為 20nm。 3鐵電疇的觀測 壓電陶瓷由於具有較大的力電功能轉換率及良好的性能可調控性等特點在多層陶瓷驅動器、微位移器、換能器以及機敏材料與器件等領域獲得了廣泛的應用。隨著現代技術的發展,鐵電和壓電陶瓷材料與器件正向小型化、集成化、多功能化、智能化、高性能和復合結構發展,並在新型陶瓷材料的開發和研究中發揮重要作用。鐵電疇 (簡稱電疇)是其物理基礎,電疇的結構及疇變規律直接決定了鐵電體物理性質和應用方向。電子顯微術是觀測電疇的主要方法,其優點在於解析度高,可直接觀察電疇和疇壁的顯微結構及相變的動態原位觀察 (電疇壁的遷移)。 掃描電子顯微鏡觀測電疇是通過對樣品表面預先進行化學腐蝕來實現的,由於不同極性的疇被腐蝕的程度不一樣,利用腐蝕劑可在鐵電體表面形成凹凸不平的區域從而可在顯微鏡中進行觀察。因此,可以將樣品表面預先進行化學腐蝕後,利用掃描電子顯微鏡圖像中的黑白襯度來判斷不同取向的電疇結構。對不同的鐵電晶體選擇合適的腐蝕劑種類、濃度、腐蝕時間和溫度都能顯示良好的疇圖樣。圖 3是掃描電子顯微鏡觀察到的 PLZT材料的 90°電疇。掃描電子顯微鏡 與其他設備的組合以實現多種分析功能。 在實際分析工作中,往往在獲得形貌放大像後,希望能在同一台儀器上進行原位化學成分或晶體結構分析,提供包括形貌、成分、晶體結構或位向在內的豐富資料,以便能夠更全面、客觀地進行判斷分析。為了適應不同分析目的的要求,在掃描電子顯微鏡上相繼安裝了許多附件,實現了一機多用,成為一種快速、直觀、綜合性分析儀器。把掃描電子顯微鏡應用范圍擴大到各種顯微或微區分析方面,充分顯示了掃描電鏡的多種性能及廣泛的應用前景。 目前掃描電子顯微鏡的最主要組合分析功能有:X射線顯微分析系統(即能譜儀,EDS),主要用於元素的定性和定量分析,並可分析樣品微區的化學成分等信息;電子背散射系統 (即結晶學分析系統),主要用於晶體和礦物的研究。隨著現代技術的發展,其他一些掃描電子顯微鏡組合分析功能也相繼出現,例如顯微熱台和冷台系統,主要用於觀察和分析材料在加熱和冷凍過程中微觀結構上的變化;拉伸台系統,主要用於觀察和分析材料在受力過程中所發生的微觀結構變化。掃描電子顯微鏡與其他設備組合而具有的新型分析功能為新材料、新工藝的探索和研究起到重要作用。
⑩ 材料現代分析測試方法有哪些,詳細介紹
1,X射線衍射分析技術
2,電子顯微鏡分析技術
3,熱分析技術
4,紅外光譜分析
詳情可以看由天津大學,杜希文教授,編寫了《材料分析方法》教材,該教材一經出版其編寫思路受到同行的關注,2006年入選國家「十一五」規劃教材,2007年被評為國家高等教育精品教材。與此同時,項目組對課程的實驗環節進行了精心設計,完成了驗證型實驗向設計型實驗的轉變,受到校內外專家的好評,2008年「材料現代研究方法」被評為天津市精品課程,課程負責人杜希文教授和主講教師趙乃勤教師獲得天津大學教學名師稱號,主講教師侯峰獲天津市青年教師授課競賽一等獎。2009年,以本課程為主要內容的教改項目「材料類復合型人才實踐教學體系的綜合改革與實踐」「 獲得天津市教學成果一等獎。