Ⅰ 用excel進行多遠回歸分析的步驟
以Excel2010版為例,其餘版本都可以在相應界面找到
點擊「文件」,如下圖:
上述選擇的具體方法是:
在「Y值輸入區域」,點擊右側折疊按鈕,選取函數Y數據所在單元格區域J2:J21,選完後再單擊折疊按鈕返回;這過程也可以直接在「Y值輸入區域」文本框中輸入J2:J21;
在「X值輸入區域」,點擊右側折疊按鈕,選取自變數數據所在單元格區域A2:I21,選完後再單擊折疊按鈕返回;這過程也可以直接在「X值輸入區域」文本框中輸入A2:I21;
置信度可選默認的95%。
在「輸出區域」如選「新工作表」,就將統計分析結果輸出到在新表內。為了比較對照,我選本表內的空白區域,左上角起始單元格為K10.點擊確定後,輸出結果如下:
第一張表是「回歸統計表」(K12:L17):
其中:
Multiple R:(復相關系數R)R2的平方根,又稱相關系數,用來衡量自變數x與y之間的相關程度的大小。本例R=0.9134表明它們之間的關系為高度正相關。(Multiple:復合、多種)
R Square:復測定系數,上述復相關系數R的平方。用來說明自變數解釋因變數y變差的程度,以測定因變數y的擬合效果。此案例中的復測定系數為0.8343,表明用用自變數可解釋因變數變差的83.43%
Adjusted R Square:調整後的復測定系數R2,該值為0.6852,說明自變數能說明因變數y的68.52%,因變數y的31.48%要由其他因素來解釋。( Adjusted:調整後的)
標准誤差:用來衡量擬合程度的大小,也用於計算與回歸相關的其它統計量,此值越小,說明擬合程度越好。
觀察值:用於估計回歸方程的數據的觀察值個數。
第二張表是「方差分析表」:主要作用是通過F檢驗來判定回歸模型的回歸效果。
該案例中的Significance F(F顯著性統計量)的P值為0.00636,小於顯著性水平0.05,所以說該回歸方程回歸效果顯著,方程中至少有一個回歸系數顯著不為0.(Significance:顯著)
第三張表是「回歸參數表」:
K26:K35為常數項和b1~b9的排序默認標示.
L26:L35為常數項和b1~b9的值,據此可得出估算的回歸方程為:
該表中重要的是O列,該列的O26:O35中的 P-value為回歸系數t統計量的P值。
值得注意的是:其中b1、b7的t統計量的P值為0.0156和0.0175,遠小於顯著性水平0.05,因此該兩項的自變數與y相關。而其他各項的t統計量的P值遠大於b1、b7的t統計量的P值,但如此大的P值說明這些項的自變數與因變數不存在相關性,因此這些項的回歸系數不顯著。
1/6分步閱讀
1.線性回歸方法:通常因變數和一個(或者多個)自變數之間擬合出來是一條直線(回歸線),通常可以用一個普遍的公式來表示:Y(因變數)=a*X(自變數)+b+c,其中b表示截距,a表示直線的斜率,c是誤差項。如下圖所示。
2/6
2.邏輯回歸方法:通常是用來計算「一個事件成功或者失敗」的概率,此時的因變數一般是屬於二元型的(1 或0,真或假,有或無等)變數。以樣本極大似然估計值來選取參數,而不採用最小化平方和誤差來選擇參數,所以通常要用log等對數函數去擬合。如下圖。
3/6
3.多項式回歸方法:通常指自變數的指數存在超過1的項,這時候最佳擬合的結果不再是一條直線而是一條曲線。比如:拋物線擬合函數Y=a+b*X^2,如下圖所示。
4/6
4.嶺回歸方法:通常用於自變數數據具有高度相關性的擬合中,這種回歸方法可以在原來的偏差基礎上再增加一個偏差度來減小總體的標准偏差。如下圖是其收縮參數的最小誤差公式。
5/6
5.套索回歸方法:通常也是用來二次修正回歸系數的大小,能夠減小參量變化程度以提高線性回歸模型的精度。如下圖是其懲罰函數,注意這里的懲罰函數用的是絕對值,而不是絕對值的平方。
6/6
6.ElasticNet回歸方法:是Lasso和Ridge回歸方法的融合體,使用L1來訓練,使用L2優先作為正則化矩陣。當相關的特徵有很多個時,ElasticNet不同於Lasso,會選擇兩個。如下圖是其常用的理論公式。
Ⅲ 回歸分析的內容和步驟是什麼
回歸分析(regression
analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。
步驟
1.確定變數
明確預測的具體目標,也就確定了因變數。如預測具體目標是下一年度的銷售量,那麼銷售量Y就是因變數。通過市場調查和查閱資料,尋找與預測目標的相關影響因素,即自變數,並從中選出主要的影響因素。
2.建立預測模型
依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。
3.進行相關分析
回歸分析是對具有因果關系的影響因素(自變數)和預測對象(因變數)所進行的數理統計分析處理。只有當變數與因變數確實存在某種關系時,建立的回歸方程才有意義。因此,作為自變數的因素與作為因變數的預測對象是否有關,相關程度如何,以及判斷這種相關程度的把握性多大,就成為進行回歸分析必須要解決的問題。進行相關分析,一般要求出相關關系,以相關系數的大小來判斷自變數和因變數的相關的程度。
4.計算預測誤差
回歸預測模型是否可用於實際預測,取決於對回歸預測模型的檢驗和對預測誤差的計算。回歸方程只有通過各種檢驗,且預測誤差較小,才能將回歸方程作為預測模型進行預測。
5.確定預測值
利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。
Ⅳ 如何用EXCEL做回歸分析
在日常數據分析工作當中,回歸分析是應用十分廣泛的一種數據分析方法,按照涉及自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
回歸分析的實施步驟:
1)根據預測目標,確定自變數和因變數
2)建立回歸預測模型
3)進行相關分析
4)檢驗回歸預測模型,計算預測誤差
5)計算並確定預測值
我們接下來講解在Excel2007中如何進行回歸分析?
一、案例場景
為了研究某產品中兩種成分A與B之間的關系,現在想建立不同成分A情況下對應成分B的擬合曲線以供後期進行預測分析。測定了下列一組數據:
Ⅳ 回歸分析方法
§3.2 回歸分析方法
回歸分析方法,是研究要素之間具體的數量關系的一種強有力的工具,能夠建立反映地理要素之間具體的數量關系的數學模型,即回歸模型。
1. 一元線性回歸模型
1) 一元線性回歸模型的基本結構形式
假設有兩個地理要素(變數)x和y,x為自變數,y為因變數。則一元線性回歸模型的基本結構形式:
a和b為待定參數;α=1,2,…,n為各組觀測數據的下標; εa為隨機變數。如果記a^和b^ 分別為參數a與b的擬合值,則得到一元線性回歸模型
ÿ 是y 的估計值,亦稱回歸值。回歸直線——代表x與y之間相關關系的擬合直線
2) 參數a、b的最小二ÿ乘估計
參數a與b的擬合值:
,
建立一元線性回歸模型的過程,就是用變數 和 的實際觀測數據確定參數a和b的最小二乘估計值α^和β^ 的過程。
3) 一元線性回歸模型的顯著性檢驗
線性回歸方程的顯著性檢驗是藉助於F檢驗來完成的。
檢驗統計量F:
誤差平方和:
回歸平方和:
F≈F(1,n-2)。在顯著水平a下,若 ,則認為回歸方程效果在此水平下顯著;當 時,則認為方程效果不明顯。
[舉例說明]
例1:在表3.1.1中,將國內生產總值(x1)看作因變數y,將農業總產值(x2)看作自變數x,試建立它們之間的一元線性回歸模型並對其進行顯著性檢驗。
解:
(1) 回歸模型
將y和x的樣本數據代入參數a與b的擬合公式,計算得:
故,國內生產總值與農業總產值之間的回歸方程為
(2) 顯著性檢驗
在置信水平α=0.01下查F分布表得:F0.01(1,46)=7.22。由於F=4951.098 >> F0.01(1,46)=7.22,所以回歸方程(3.2.7)式在置信水平a=0.01下是顯著的。
2. 多元線性回歸模型
在多要素的地理系統中,多個(多於兩個)要素之間也存在著相關影響、相互關聯的情況。因此,多元地理回歸模型更帶有普遍性的意義。
1) 多元線性回歸模型的建立
(1) 多元線性回歸模型的結構形式
假設某一因變數y受k 個自變數 的影響,其n組觀測值為 。則多元線性回歸模型的結構形式:
為待定參數, 為隨機變數。如果 分別為 的擬合值,則回歸方程為
b0為常數, 稱為偏回歸系數。
偏回歸系數 ——當其它自變數都固定時,自變數 每變化一個單位而使因變數xi平均改變的數值。
(2) 求解偏回歸系數
,
2) 多元線性回歸模型的顯著性檢驗
用F檢驗法。
F統計量:
當統計量F計算出來之後,就可以查F分布表對模型進行顯著性檢驗。
[舉例說明]
例2:某地區各城市的公共交通營運總額(y)與城市人口總數(x1 )以及工農業總產值(x2)的年平均統計數據如表3.2.1(點擊展開顯示該表)所示。試建立y與x1及x2之間的線性回歸模型並對其進行顯著性檢驗。
表3.2.1 某地區城市公共交通營運額、人口數及工農業總產值的年平均數據
城市序號
公共交通營運額y/103人公里 人口數x1/103人 工農業總產值x2
/107元
1 6825.99 1298.00 437.26
2 512.00 119.80 1286.48
... ... ... ...
14 192.00 12.47 1072.27
註:本表數據詳見書本P54。
解:
(1) 計算線性回歸模型
由表3.2.1中的數據,有
計算可得:
故y與x1 及y2之間的線性回歸方程
(2) 顯著性檢驗
故:
在置信水平a=0.01下查F分布表知:F0.01(2,11)=7.21。由於F=38.722> F0.01(2,11)=7.21,所以在置信水平a=0.01下,回歸方程式是顯著的。
3. 非線性回歸模型的建立方法
1) 非線性關系的線性化
(1) 非線性關系模型的線性化
對於要素之間的非線性關系通過變數替換就可以將原來的非線性關系轉化為新變數下的線性關系。
[幾種非線性關系模型的線性化]
① 於指數曲線 ,令 , ,將其轉化為直線形式:
,其中, ;
② 對於對數曲線 ,令 , ,將其轉化為直線形式:
;
③ 對於冪函數曲線 ,令 , ,將其轉化為直線形式:
,其中,
④ 對於雙曲線 ,令 ,將其轉化為直線形式:
;
⑤ 對於S型曲線 ,將其轉化為直線形式:
;
⑥ 對於冪函數乘積:
令 將其轉化為直線形式:
其中, ;
⑦ 對於對數函數和:
令 ,將其化為線性形式:
(2) 建立非線性回歸模型的一般方法
① 通過適當的變數替換將非線性關系線性化;
② 用線性回歸分析方法建立新變數下的線性回歸模型:
③ 通過新變數之間的線性相關關系反映原來變數之間的非線性相關關系。
3) 非線性回歸模型建立的實例
非線性回歸模型建立的實例
景觀是地理學的重要研究內容之一。有關研究表明(Li,2000;徐建華等,2001),任何一種景觀類型的斑塊,其面積(Area)與周長(Perimeter)之間的數量關系可以用雙對數曲線來描述,即
例3:表3.2.2給出了某地區林地景觀斑塊面積(Area)與周長(Perimeter)的數據。試建立林地景觀斑塊面積A與周長P之間的雙對數相關關系模型。
表3.2.2某地區各個林地景觀斑塊面積(m2)與周長(m)
序號 面積A 周長P 序號 面積A 周長P
1 10447.370 625.392 42 232844.300 4282.043
2 15974.730 612.286 43 4054.660 289.307
... ... ... ... ... ...
41 1608.625 225.842 82 564370.800 12212.410
註:本表數據詳見書本57和58頁。
解:因為林地景觀斑塊面積(A)與周長(P)之間的數量關系是雙對數曲線形式,即
所以對表3.2.2中的原始數據進行對數變換,變換後得到的各新變數對應的觀測數據如表3.2.3所示。
Ⅵ 回歸分析的基本步驟是什麼
回歸分析:
1、確定變數:明確預測的具體目標,也就確定了因變數。如預測具體目標是下一年度的銷售量,那麼銷售量Y就是因變數。通過市場調查和查閱資料,尋找與預測目標的相關影響因素,即自變數,並從中選出主要的影響因素。
2、建立預測模型:依據自變數和因變數的歷史統計資料進行計算,在此基礎上建立回歸分析方程,即回歸分析預測模型。
3、進行相關分析:回歸分析是對具有因果關系的影響因素(自變數)和預測對象(因變數)所進行的數理統計分析處理。只有當自變數與因變數確實存在某種關系時,建立的回歸方程才有意義。
因此,作為自變數的因素與作為因變數的預測對象是否有關,相關程度如何,以及判斷這種相關程度的把握性多大,就成為進行回歸分析必須要解決的問題。進行相關分析,一般要求出相關關系,以相關系數的大小來判斷自變數和因變數的相關的程度。
4、計算預測誤差:回歸預測模型是否可用於實際預測,取決於對回歸預測模型的檢驗和對預測誤差的計算。回歸方程只有通過各種檢驗,且預測誤差較小,才能將回歸方程作為預測模型進行預測。
5、確定預測值:利用回歸預測模型計算預測值,並對預測值進行綜合分析,確定最後的預測值。
Logistic Regression邏輯回歸
邏輯回歸是用來計算「事件=Success」和「事件=Failure」的概率。當因變數的類型屬於二元(1 / 0,真/假,是/否)變數時,應該使用邏輯回歸。這里,Y的值為0或1,它可以用下方程表示。
odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence
ln(odds) = ln(p/(1-p))
logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk
在這里使用的是的二項分布(因變數),需要選擇一個對於這個分布最佳的連結函數。它就是Logit函數。在上述方程中,通過觀測樣本的極大似然估計值來選擇參數,而不是最小化平方和誤差(如在普通回歸使用的)。
以上內容參考:網路-回歸分析
Ⅶ 回歸分析的認識及簡單運用
回歸分析的認識及簡單運用
回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,分為回歸和多重回歸分析;按照自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。如果回歸分析中包括兩個或兩個以上的自變數,且因變數和自變數之間是線性關系,則稱為多重線性回歸分析。
定義
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律,並可用於預報、控制等問題。
方差齊性
線性關系
效應累加
變數無測量誤差
變數服從多元正態分布
觀察獨立
模型完整(沒有包含不該進入的變數、也沒有漏掉應該進入的變數)
誤差項獨立且服從(0,1)正態分布。
現實數據常常不能完全符合上述假定。因此,統計學家研究出許多的回歸模型來解決線性回歸模型假定過程的約束。
研究一個或多個隨機變數Y1 ,Y2 ,…,Yi與另一些變數X1、X2,…,Xk之間的關系的統計方法,又稱多重回歸分析。通常稱Y1,Y2,…,Yi為因變數,X1、X2,…,Xk為自變數。回歸分析是一類數學模型,特別當因變數和自變數為線性關系時,它是一種特殊的線性模型。最簡單的情形是一個自變數和一個因變數,且它們大體上有線性關系,這叫一元線性回歸,即模型為Y=a+bX+ε,這里X是自變數,Y是因變數,ε是隨機誤差,通常假定隨機誤差的均值為0,方差為σ^2(σ^2大於0)σ^2與X的值無關。若進一步假定隨機誤差遵從正態分布,就叫做正態線性模型。一般的情形,它有k個自變數和一個因變數,因變數的值可以分解為兩部分:一部分是由於自變數的影響,即表示為自變數的函數,其中函數形式已知,但含一些未知參數;另一部分是由於其他未被考慮的因素和隨機性的影響,即隨機誤差。當函數形式為未知參數的線性函數時,稱線性回歸分析模型;當函數形式為未知參數的非線性函數時,稱為非線性回歸分析模型。當自變數的個數大於1時稱為多元回歸,當因變數個數大於1時稱為多重回歸。
回歸分析的主要內容為:
①從一組數據出發,確定某些變數之間的定量關系式,即建立數學模型並估計其中的未知參數。估計參數的常用方法是最小二乘法。
②對這些關系式的可信程度進行檢驗。
③在許多自變數共同影響著一個因變數的關系中,判斷哪個(或哪些)自變數的影響是顯著的,哪些自變數的影響是不顯著的,將影響顯著的自變數入模型中,而剔除影響不顯著的變數,通常用逐步回歸、向前回歸和向後回歸等方法。
④利用所求的關系式對某一生產過程進行預測或控制。回歸分析的應用是非常廣泛的,統計軟體包使各種回歸方法計算十分方便。
在回歸分析中,把變數分為兩類。一類是因變數,它們通常是實際問題中所關心的一類指標,通常用Y表示;而影響因變數取值的的另一類變數稱為自變數,用X來表示。
回歸分析研究的主要問題是:
(1)確定Y與X間的定量關系表達式,這種表達式稱為回歸方程;
(2)對求得的回歸方程的可信度進行檢驗;
(3)判斷自變數X對因變數Y有無影響;
(4)利用所求得的回歸方程進行預測和控制。
回歸分析可以說是統計學中內容最豐富、應用最廣泛的分支。這一點幾乎不帶誇張。包括最簡單的t檢驗、方差分析也都可以歸到線性回歸的類別。而卡方檢驗也完全可以用logistic回歸代替。
眾多回歸的名稱張口即來的就有一大片,線性回歸、logistic回歸、cox回歸、poission回歸、probit回歸等等等等,可以一直說的你頭暈。為了讓大家對眾多回歸有一個清醒的認識,這里簡單地做一下總結:
1、線性回歸,這是我們學習統計學時最早接觸的回歸,就算其它的你都不明白,最起碼你一定要知道,線性回歸的因變數是連續變數,自變數可以是連續變數,也可以是分類變數。如果只有一個自變數,且只有兩類,那這個回歸就等同於t檢驗。如果只有一個自變數,且有三類或更多類,那這個回歸就等同於方差分析。如果有2個自變數,一個是連續變數,一個是分類變數,那這個回歸就等同於協方差分析。所以線性回歸一定要認准一點,因變數一定要是連續變數。
2、logistic回歸,與線性回歸並成為兩大回歸,應用范圍一點不亞於線性回歸,甚至有青出於藍之勢。因為logistic回歸太好用了,而且太有實際意義了。解釋起來直接就可以說,如果具有某個危險因素,發病風險增加2.3倍,聽起來多麼地讓人通俗易懂。線性回歸相比之下其實際意義就弱了。logistic回歸與線性回歸恰好相反,因變數一定要是分類變數,不可能是連續變數。分類變數既可以是二分類,也可以是多分類,多分類中既可以是有序,也可以是無序。二分類logistic回歸有時候根據研究目的又分為條件logistic回歸和非條件logistic回歸。條件logistic回歸用於配對資料的分析,非條件logistic回歸用於非配對資料的分析,也就是直接隨機抽樣的資料。無序多分類logistic回歸有時候也成為多項logit模型,有序logistic回歸有時也稱為累積比數logit模型。
3、cox回歸,cox回歸的因變數就有些特殊,因為他的因變數必須同時有2個,一個代表狀態,必須是分類變數,一個代表時間,應該是連續變數。只有同時具有這兩個變數,才能用cox回歸分析。cox回歸主要用於生存資料的分析,生存資料至少有兩個結局變數,一是死亡狀態,是活著還是死亡?二是死亡時間,如果死亡,什麼時間死亡?如果活著,從開始觀察到結束時有多久了?所以有了這兩個變數,就可以考慮用cox回歸分析。
4、poisson回歸,poisson回歸相比就不如前三個用的廣泛了。但實際上,如果你能用logistic回歸,通常也可以用poission回歸,poisson回歸的因變數是個數,也就是觀察一段時間後,發病了多少人?或者死亡了多少人?等等。其實跟logistic回歸差不多,因為logistic回歸的結局是是否發病,是否死亡,也需要用到發病例數、死亡例數。大家仔細想想,其實跟發病多少人,死亡多少人一個道理。只是poission回歸名氣不如logistic回歸大,所以用的人也不如logistic回歸多。但不要因此就覺得poisson回歸沒有用。
5、probit回歸,在醫學里真的是不大用,最關鍵的問題就是probit這個詞太難理解了,通常翻譯為概率單位。probit函數其實跟logistic函數十分接近,二者分析結果也十分接近。可惜的是,probit回歸的實際含義真的不如logistic回歸容易理解,由此導致了它的默默無名,但據說在社會學領域用的似乎更多一些。
6、負二項回歸。所謂負二項指的是一種分布,其實跟poission回歸、logistic回歸有點類似,poission回歸用於服從poission分布的資料,logistic回歸用於服從二項分布的資料,負二項回歸用於服從負二項分布的資料。說起這些分布,大家就不願意聽了,多麼抽象的名詞,我也很頭疼。如果簡單點理解,二項分布你可以認為就是二分類數據,poission分布你可以認為是計數資料,也就是個數,而不是像身高等可能有小數點,個數是不可能有小數點的。負二項分布呢,也是個數,只不過比poission分布更苛刻,如果你的結局是個數,而且結局可能具有聚集性,那可能就是負二項分布。簡單舉例,如果調查流感的影響因素,結局當然是流感的例數,如果調查的人有的在同一個家庭里,由於流感具有傳染性,那麼同一個家裡如果一個人得流感,那其他人可能也被傳染,因此也得了流感,那這就是具有聚集性,這樣的數據盡管結果是個數,但由於具有聚集性,因此用poission回歸不一定合適,就可以考慮用負二項回歸。既然提到這個例子,用於logistic回歸的數據通常也能用poission回歸,就像上面案例,我們可以把結局作為二分類,每個人都有兩個狀態,得流感或者不得流感,這是個二分類結局,那就可以用logistic回歸。但是這里的數據存在聚集性怎麼辦呢,幸虧logistic回歸之外又有了更多的擴展,你可以用多水平logistic回歸模型,也可以考慮廣義估計方程。這兩種方法都可以處理具有層次性或重復測量資料的二分類因變數。
7、weibull回歸,有時中文音譯為威布爾回歸。weibull回歸估計你可能就沒大聽說過了,其實這個名字只不過是個噱頭,嚇唬人而已。上一篇說過了,生存資料的分析常用的是cox回歸,這種回歸幾乎統治了整個生存分析。但其實夾縫中還有幾個方法在頑強生存著,而且其實很有生命力,只是國內大多不願用而已。weibull回歸就是其中之一。cox回歸為什麼受歡迎呢,因為它簡單,用的時候不用考慮條件(除了等比例條件之外),大多數生存數據都可以用。而weibull回歸則有條件限制,用的時候數據必須符合weibull分布。怎麼,又是分布?!估計大家頭又大了,是不是想直接不往下看了,還是用cox回歸吧。不過我還是建議看下去。為什麼呢?相信大家都知道參數檢驗和非參數檢驗,而且可能更喜歡用參數檢驗,如t檢驗,而不喜歡用非參數檢驗,如秩和檢驗。那這里的weibull回歸和cox回歸基本上可以說是分別對應參數檢驗和非參數檢驗。參數檢驗和非參數檢驗的優缺點我也在前面文章里通俗介紹了,如果數據符合weibull分布,那麼直接套用weibull回歸當然是最理想的選擇,他可以給出你最合理的估計。如果數據不符合weibull分布,那如果還用weibull回歸,那就套用錯誤,肯定結果也不會真實到哪兒去。所以說,如果你能判斷出你的數據是否符合weibull分布,那當然最好的使用參數回歸,也就是weibull回歸。但是如果你實在沒什麼信心去判斷數據分布,那也可以老老實實地用cox回歸。cox回歸可以看作是非參數的,無論數據什麼分布都能用,但正因為它什麼數據都能用,所以不可避免地有個缺點,每個數據用的都不是恰到好處。weibull回歸就像是量體裁衣,把體形看做數據,衣服看做模型,weibull回歸就是根據你的體形做衣服,做出來的肯定對你正合身,對別人就不一定合身了。cox回歸呢,就像是到商場去買衣服,衣服對很多人都合適,但是對每個人都不是正合適,只能說是大致合適。至於到底是選擇麻煩的方式量體裁衣,還是圖簡單到商場直接去買現成的,那就根據你的喜好了,也根據你對自己體形的了解程度,如果非常熟悉,當然就量體裁衣了。如果不大了解,那就直接去商場買大眾化衣服吧。
8、主成分回歸。主成分回歸是一種合成的方法,相當於主成分分析與線性回歸的合成。主要用於解決自變數之間存在高度相關的情況。這在現實中不算少見。比如你要分析的自變數中同時有血壓值和血糖值,這兩個指標可能有一定的相關性,如果同時放入模型,會影響模型的穩定,有時也會造成嚴重後果,比如結果跟實際嚴重不符。當然解決方法很多,最簡單的就是剔除掉其中一個,但如果你實在捨不得,畢竟這是辛辛苦苦調查上來的,刪了太可惜了。如果捨不得,那就可以考慮用主成分回歸,相當於把這兩個變數所包含的信息用一個變數來表示,這個變數我們稱它叫主成分,所以就叫主成分回歸。當然,用一個變數代替兩個變數,肯定不可能完全包含他們的信息,能包含80%或90%就不錯了。但有時候我們必須做出抉擇,你是要100%的信息,但是變數非常多的模型?還是要90%的信息,但是只有1個或2個變數的模型?打個比方,你要診斷感冒,是不是必須把所有跟感冒有關的症狀以及檢查結果都做完?還是簡單根據幾個症狀就大致判斷呢?我想根據幾個症狀大致能能確定90%是感冒了。不用非得100%的信息不是嗎?模型也是一樣,模型是用於實際的,不是空中樓閣。既然要用於實際,那就要做到簡單。對於一種疾病,如果30個指標能夠100%確診,而3個指標可以診斷80%,我想大家會選擇3個指標的模型。這就是主成分回歸存在的基礎,用幾個簡單的變數把多個指標的信息綜合一下,這樣幾個簡單的主成分可能就包含了原來很多自變數的大部分信息。這就是主成分回歸的原理。
9、嶺回歸。嶺回歸的名稱由來我也沒有查過,可能是因為它的圖形有點像嶺。不要糾結於名稱。嶺回歸也是用於處理自變數之間高度相關的情形。只是跟主成分回歸的具體估計方法不同。線性回歸的計算用的是最小二乘估計法,當自變數之間高度相關時,最小二乘回歸估計的參數估計值會不穩定,這時如果在公式里加點東西,讓它變得穩定,那就解決了這一問題了。嶺回歸就是這個思想,把最小二乘估計里加個k,改變它的估計值,使估計結果變穩定。至於k應該多大呢?可以根據嶺跡圖來判斷,估計這就是嶺回歸名稱的由來。你可以選非常多的k值,可以做出一個嶺跡圖,看看這個圖在取哪個值的時候變穩定了,那就確定k值了,然後整個參數估計不穩定的問題就解決了。
10、偏最小二乘回歸。偏最小二乘回歸也可以用於解決自變數之間高度相關的問題。但比主成分回歸和嶺回歸更好的一個優點是,偏最小二乘回歸可以用於例數很少的情形,甚至例數比自變數個數還少的情形。聽起來有點不可思議,不是說例數最好是自變數個數的10倍以上嗎?怎麼可能例數比自變數還少,這還怎麼計算?可惜的是,偏最小二乘回歸真的就有這么令人發指的優點。所以,如果你的自變數之間高度相關、例數又特別少、而自變數又很多(這么多無奈的毛病),那就現在不用發愁了,用偏最小二乘回歸就可以了。它的原理其實跟主成分回歸有點像,也是提取自變數的部分信息,損失一定的精度,但保證模型更符合實際。因此這種方法不是直接用因變數和自變數分析,而是用反映因變數和自變數部分信息的新的綜合變數來分析,所以它不需要例數一定比自變數多。偏最小二乘回歸還有一個很大的優點,那就是可以用於多個因變數的情形,普通的線性回歸都是只有一個因變數,而偏最小二乘回歸可用於多個因變數和多個自變數之間的分析。因為它的原理就是同時提取多個因變數和多個自變數的信息重新組成新的變數重新分析,所以多個因變數對它來說無所謂。
看了以上的講解,希望能對大家理解回歸分析的運用有些幫助。
以上是小編為大家分享的關於回歸分析的認識及簡單運用的相關內容,更多信息可以關注環球青藤分享更多干貨
Ⅷ 如何使用excel做一元線性回歸分析
使用excel做一元線性回歸分析的方法如下:
建立散點圖:選擇需要分析的數據,選擇【插入】菜單,選中【散點圖】,畫出如下的散點圖
Ⅸ 回歸分析法
回歸分析法,是在研究礦坑涌水量與其影響因素存在一定相關關系後,提出的一種數理統計方法。礦坑涌水量是在各種自然和人為因素綜合作用下有規律地變化著。影響礦坑涌水量變化的因素極其復雜繁多,甚至有些因素我們目前還沒有發現,有些因素雖被發現但也無力調控和測定。因此,大量事實告訴我們,礦坑涌水量(稱為因變數)與某些影響因素(稱為自變數)的關系也存在數學中稱之為相關的關系。回歸分析法就是利用數學統計的方法,找出礦坑涌水量與影響因素之間的相關關系的數學表達式——回歸方程,用求得的回歸方程來預測礦坑涌水量。
回歸分析法與水文地質比擬法的原理基本相同,都是尋求礦坑涌水量與其主要影響因素之間的關系表達式,並以這種尋找到的數學關系式來預測新的礦坑涌水量。所不同的是數學表達式的來源不同。水文地質比擬法,多數是根據經驗提出,用起來方便靈活,缺點是缺乏嚴密性;回歸分析法,是以已經有的實測數據為基礎,通過數理統計的方法建立回歸方程,其優點是可靠性較水文地質比擬法大一些,但計算較復雜。
應該注意的是,回歸方程是一種非確定性的變數關系,嚴格地講,它不允許外推。但具體工作中往往又需要外推,因此,回歸方程外推的范圍不宜過大。當回歸方程為直線時,外推深度一般不應超過試驗降深的1.5~1.75倍;當回歸方程為曲線相關時,雖可適當增大外推范圍,但一般也不宜超過2倍。同時,必須根據礦床具體的水文地質條件,檢驗外推結果是否合理。
幾種常用的回歸方程如下:
(一)二元直線相關
當礦坑涌水量與主要影響因素之間為直線相關關系時,其數學表達式為
Q=a+bs (4-5)
式中:Q為試驗時的涌水量;S為當抽水量為Q時相對應的水位降深;a為常數;b為回歸系數,它表示當S每增加1m時涌水量平均增加的水量數值。
a,b可根據試驗數據利用最小二乘法求得
雙層水位礦床地下水深層局部疏干方法的理論與實踐
式中:
根據求得的a,b系數值,便可寫出回歸方程。
(二)三元直線相關
如果礦坑涌水量與兩個影響因素存在直線相關時,其數學表達式便為三元直線相關(比如降深S和時間t):
Q=b0+b1S+b2t (4-8)
式中:b0為常數;b1,b2分別為水量Q對自變數S和t的回歸系數;S,t為當礦坑涌水量為Q時的兩個因素自變數;b0,b1,b2可用最小二乘法確定;
雙層水位礦床地下水深層局部疏干方法的理論與實踐
根據求得的b0,b1,b2可以寫出三元直線方程。
(三)涌水量-降深曲線法(Q-S曲線法)
涌水量-降深曲線法也稱涌水量曲線法,其實質就是利用抽(放)水的試驗資料,建立涌水量(Q)和降深(S)之間的關系曲線方程,根據試驗階段和未來開采階段水文地質條件的相似性,合理地把Q-S曲線外推,來預測礦坑涌水量。
大量試驗資料證明,涌水量曲線一般有4種類型(圖4-1)。
圖4-1 涌水量-降深曲線圖
(1)直線型
Q=bs
式中:
這種類型的曲線方程,一般表現為地下水流呈層流狀態,抽水時水位降深與含水層厚度相比很小。
(2)拋物線型
S=aQ+bQ2 (4-11)
雙層水位礦床地下水深層局部疏干方法的理論與實踐
(3)冪函數曲線型
雙層水位礦床地下水深層局部疏干方法的理論與實踐
(4)對數曲線型
Q=a+blgS (4-17)
式中:
雙層水位礦床地下水深層局部疏干方法的理論與實踐
上述各式中a,b均為待定系數,求出a,b後便可寫出涌水量曲線方程。
一般情況下,圖4-1中的2號曲線代表的是拋物線型曲線,它表示強富水性含水層在抽水強烈時,地下水抽水井附近出現三維流的情況下的曲線形態;第3,4兩種類型曲線一般表示含水層規模較小,補給條件比較差情況下出現的曲線類型。
涌水量曲線方程的形態不但與含水層的規模、性質以及補給徑流條件有關,而且與抽水強度的大小和抽水時間長短也有關系。因此,採用Q-S曲線方程法預測礦坑涌水量時,一般要求抽(放)水試驗的規模盡量大一些,常採取大口徑、大降深群孔抽(放)水試驗,以求盡量符合未來的開采狀態,充分揭露和顯示其盡量多的水文地質條件,盡量波及礦床的各種邊界,從而求取最大可能符合實際條件的礦坑涌水量。
Ⅹ 什麼是回歸分析法
回歸分析(英語:Regression Analysis)是一種統計學上分析數據的方法,目的在於了解兩個或多個變數間是否相關、相關方向與強度,並建立數學模型以便觀察特定變數來預測研究者感興趣的變數。
回歸分析中,當研究的因果關系只涉及因變數和一個自變數時,叫做一元回歸分析;當研究的因果關系涉及因變數和兩個或兩個以上自變數時,叫做多元回歸分析。此外,回歸分析中,又依據描述自變數與因變數之間因果關系的函數表達式是線性的還是非線性的,分為線性回歸分析和非線性回歸分析。回歸分析法預測是利用回歸分析方法,根據一個或一組自變數的變動情況預測與其有相關關系的某隨機變數的未來值。進行回歸分析需要建立描述變數間相關關系的回歸方程。根據自變數的個數,可以是一元回歸,也可以是多元回歸。根據所研究問題的性質,可以是線性回歸,也可以是非線性回歸。非線性回歸方程一般可以通過數學方法為線性回歸方程進行處理。