① 面對當今機器人的發展,你對研究智能機器人有什麼看法
「人工智慧」(Artificial Intelligence)一詞最初是在1956年Dartmouth學會上提出的。人工智慧是指研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器。目前能夠用來研究人工智慧的主要物質手段以及能夠實現人工智慧技術的機器就是計算機,人工智慧的發展歷史是和計算機科學與技術的發展史聯系在一起的。
服務機器人
研製服務機器人用來為病人看病、護理病人和協助病殘人員康復能夠極大地改善傷殘疾病人員的狀態,以及改善癱瘓者和被截肢者得生活條件。服務機器人已經應用於下列幾個方面:
(1)診斷機器人,即配備有醫療診斷專家系統的機器人;
(2)護理機器人,是一些具有豐富護理經驗的機器人護士或護師;
(3)傷殘癱瘓康復機器人,包括假肢、矯形以及遙控等技術;
(4)家用機器人,機器人已經開始進入家庭和辦公室,用於替代人類從事清掃、洗刷、守衛、煮飯、照料小孩、接待、接電話、列印文件等。酒店售貨和餐廳服務機器人、炊事機器人和機器人保姆已經不再是一種幻想;
(5)娛樂機器人,包括文娛歌舞和體育機器人;(6)醫療手術機器人幾年來有所突破。
② 探究機器人用的科學方法有哪些
探究機器人用的科學方法主要有3種,科學實驗、系統科學、數學方法。 科學實驗 科學實驗、生產實踐和社會實踐並稱為人類的三大實踐活動。實踐不僅是理論的源泉,而且也是檢驗理論正確與否的惟一標准,科學實驗就是自然科學理論的源泉和檢驗標准。
機器人技術的進步將會對科學與技術的發展產生重要影響,只有開啟機器人教育,才能使我們不在機器人時代落伍。機器人的教育價值既可以作為家庭的益智玩具,也可以作為學校課外活動的載體,還可以作為基礎教育課程的載體。
機器人作為一個平台能使學生全面綜合地了解現代工業設計、機械、電子、感測器、計算機軟體硬體、人機交互、人工智慧等諸多領域的先進技術,並親身接觸和體驗現代高新技術,在學生獲得科技知識和實踐能力的同時激發他們的創新意識和創造發明的潛能。
③ 工業機器人的發展與應用
工業機器人是面向工業領域的多關節機械手或多自由度的機器人。工業機器人是自動執行工作的機器裝置,是靠自身動力和控制能力來實現各種功能的一種機器。它可以接受人類指揮,也可以按照預先編排的程序運行,現代的工業機器人還可以根據人工智慧技術制定的原則綱領行動。 發展史1920年捷克作家卡雷爾·查培克在其劇本《羅薩姆的萬能機器人》中最早使用機器人一詞,劇中機器人 最早的關節機器人「Robot」這個詞的本意是苦力,即劇作家筆下的一個具有人的外表,特徵和功能的機器,是一種人造的勞力。它是最早的工業機器人設想。20世紀40年代中後期,機器人的研究與發明得到了更多人的關心與關注。50年代以後,美國橡樹嶺國家實驗室開始研究能搬運核原料的遙控操縱機械手,如圖0.2所示,這是一種主從型控制系統,主機械手的運動。系統中加入力反饋,可使操作者獲知施加力的大小,主從機械手之間有防護牆隔開,操作者可通過觀察窗或閉路電視對從機械手操作機進行有效的監視,主從機械手系統的出現為機器人的產生為近代機器人的設計與製造作了鋪墊。1954年美國戴沃爾最早提出了工業機器人的概念,並申請了專利。該專利的要點是藉助伺服技術控制機器人的關節,利用人手對機器人進行動作示教,機器人能實現動作的記錄和再現。這就是所謂的示教再現機器人。現有的機器人差不多都採用這種控制方式。1959年UNIMATION公司的第一台工業機器人在美國誕生,開創了機器人發展的新紀元。UNIMATION的VAL(very advantage language)語言也成為機器人領域最早的編程語言在各大學及科研機構中傳播,也是各個機器人品牌的最基本範本。其機械結構也成為行業的模板。其後,UNIMATION公司被瑞士STAUBLI收購,並利用STAUBLI的技術優勢,進一步得以改良發展。日本第一台機器人由KAWASAKI從UNIMATION進口,並由kawasaki模仿改進在國內推廣。特點戴沃爾提出的工業機器人有以下特點:將數控機床的伺服軸與遙控操縱器的連桿 工業機器人機構聯接在一起,預先設定的機械手動作經編程輸入後,系統就可以離開人的輔助而獨立運行。這種機器人還可以接受示教而完成各種簡單的重復動作,示教過程中,機械手可依次通過工作任務的各個位置,這些位置序列全部記錄在存儲器內,任務的執行過程中,機器人的各個關節在伺服驅動下依次再現上述位置,故這種機器人的主要技術功能被稱為「可編程」和「示教再現」。1962年美國推出的一些工業機器人的控制方式與數控機床大致相似,但外形主要由類似人的手和臂組成。後來,出現了具有視覺感測器的、能識別與定位的工業機器人系統。[1]工業機器人最顯著的特點有以下幾個:(1)可編程。生產自動化的進一步發展是柔性啟動化。工業機器人可隨其工作環境變化的需要而再編程,因此它在小批量多品種具有均衡高效率的柔性製造過程中能發揮很好的功用,是柔性製造系統中的一個重要組成部分。(2)擬人化。工業機器人在機械結構上有類似人的行走、腰轉、大臂、小臂、手腕、手爪等部分,在控制上有電腦。此外,智能化工業機器人還有許多類似人類的「生物感測器」,如皮膚型接觸感測器、力感測器、負載感測器、視覺感測器、聲覺感測器、語言功能等。感測器提高了工業機器人對周圍環境的自適應能力。(3)通用性。除了專門設計的專用的工業機器人外,一般工業機器人在執行不同的作業任務時具有較好的通用性。比如,更換工業機器人手部末端操作器(手爪、工具等)便可執行不同的作業任務。(4)工業機器技術涉及的學科相當廣泛,歸納起來是機械學和微電子學的結合-機電一體化技術。第三代智能機器人不僅具有獲取外部環境信息的各種感測器,而且還具有記憶能力、語言理解能力、圖像識別能力、推理判斷能力等人工智慧,這些都是微電子技術的應用,特別是計算機技術的應用密切相關。因此,機器人技術的發展必將帶動其他技術的發展,機器人技術的發展和應用水平也可以驗證一個國家科學技術和工業技術的發展水平。當今工業機器人技術正逐漸向著具有行走能力、具有多種感知能力、具有較強的對作業環境的自適應能力的方向發展。當前,對全球機器人技術的發展最有影響的國家是美國和日本。美國在工業機器人技術的綜合研究水平上仍處於領先地位,而日本生產的工業機器人在數量、種類方面則居世界首位。構造分類工業機器人由主體、驅動系統和控制系統三個基本部分組成。主體即機座和執行機構,包括臂部、腕部和手部,有的機器人還有行走機構。大多數工業機器人有3~6個運動自由度,其中腕部通常有1~3個運動自由度;驅動系統包括動力裝置和傳動機構,用以使執行機構產生相應的動作;控制系統是按照輸入的程序對驅動系統和執行機構發出指令信號,並進行控制。工業機器人按臂部的運動形式分為四種。直角坐標型的臂部可沿三個直角坐標移動;圓柱坐標型的臂部可作升降、回轉和伸縮動作;球坐標型的臂部能回轉、俯仰和伸縮;關節型的臂部有多個轉動關節。工業機器人按執行機構運動的控制機能,又可分點位型和連續軌跡型。點位型只控制執行 工業機器人機構由一點到另一點的准確定位,適用於機床上下料、點焊和一般搬運、裝卸等作業;連續軌跡型可控制執行機構按給定軌跡運動,適用於連續焊接和塗裝等作業。工業機器人按程序輸入方式區分有編程輸入型和示教輸入型兩類。編程輸入型是將計算機上已編好的作業程序文件,通過RS232串口或者乙太網等通信方式傳送到機器人控制櫃。示教輸入型的示教方法有兩種:一種是由操作者用手動控制器(示教操縱盒),將指令信號傳給驅動系統,使執行機構按要求的動作順序和運動軌跡操演一遍;另一種是由操作者直接領動執行機構,按要求的動作順序和運動軌跡操演一遍。在示教過程的同時,工作程序的信息即自動存入程序存儲器中在機器人自動工作時,控制系統從程序存儲器中檢出相應信息,將指令信號傳給驅動機構,使執行機構再現示教的各種動作。示教輸入程序的工業機器人稱為示教再現型工業機器人。具有觸覺、力覺或簡單的視覺的工業機器人,能在較為復雜的環境下工作;如具有識別功能或更進一步增加自適應、自學習功能,即成為智能型工業機器人。它能按照人給的「宏指令」自選或自編程序去適應環境,並自動完成更為復雜的工作。應用工業機器人在工業生產中能代替人做某些單調、頻繁和重復的長時間作業,或是危險、惡劣環境下的作業,例如在沖壓、壓力鑄造、熱處理、焊接、塗裝、塑料製品成形、機械加工和簡單裝配等工序上,以及在原子能工業等部門中,完成對人體有害物料的搬運或工藝操作。20世紀50年代末,美國在機械手和操作機的基礎上,採用伺服機構和自動控制等技術,研製出有通用性的獨立的工業用自動操作裝置,並將其稱為工業機器人;60年代初,美國研製成功兩種工業機器人,並很快地在工業生產中得到應用;1969年,美國通用汽車公司用21台工業機器人組成了焊接轎車車身的自動生產線。此後,各工業發達國家都很重視研製和應用工業機器人。由於工業機器人具有一定的通用性和適應性,能適應多品種中、小批量的生產,70年代起,常與數字控制機床結合在一起,成為柔性製造單元或柔性製造系統的組成部分。
④ 工業機器人涉及那些技術
四、工業機器人關鍵技術1.機器人基本系統構成工業機器人由3大部分6個子系統組成。3大部分是機械部分、感測部分和控制部分。6個子系統可分為機械結構系統、驅動系統、感知系統、機器人環境交互系統、人機交互系統和控制系統。
工業機器人系統構成1)工業機器人的機械結構系統由機座、手臂、末端操作器三大部分組成,每一個大件都有若干個自由度的機械繫統。若基座具備行走機構,則構成行走機器人;若基座不具備行走及彎腰機構,則構成單機器人臂。手臂一般由上臂、下臂和手腕組成。末端操作器是直接裝在手腕上的一個重要部件,它可以是二手指或多手指的手抓,也可以是噴漆槍、焊具等作業工具。2)驅動系統,要使機器人運作起來,需要在各個關節即每個運動自由度上安置傳動裝置,這就是驅動系統。驅動系統可以是液壓傳動、氣壓傳動、電動傳動、或者把它們結合起來應用綜合系統,可以是直接驅動或者通過同步帶、鏈條、輪系、諧波齒輪等機械傳動機構進行間接傳動。3)感知系統由內部感測器模塊和外部感測器模塊組成,用以獲得內部和外部環境狀態中有意義的信息。智能感測器的使用提高了機器人的機動性、適應性和智能化的水準。人類的感受系統對感知外部世界信息是極其靈巧的,然而,對於一些特殊的信息,感測器比人類的感受系統更有效。4)機器人環境交換系統是現代工業機器人與外部環境中的設備互換聯系和協調的系統。工業機器人與外部設備集成為一個功能單元,如加工單元、焊接單元、裝配單元等。當然,也可以是多台機器人、多台機床或設備、多個零件存儲裝置等集成為一個去執行復雜任務的功能單元。5)人機交換系統是操作人員與機器人控制並與機器人聯系的裝置,例如,計算機的標准終端,指令控制台,信息顯示板,危險信號報警器等。該系統歸納起來分為兩大類:指令給定裝置和信息顯示裝置。6)機器人控制系統是機器人的大腦,是決定機器人功能和性能的主要因素。控制系統的任務是根據機器人的作業指令程序以及感測器反饋回來的信號支配機器人的執行機構去完成規定的運動和功能。假如工業機器人不具備信息反饋特徵,則為開環控制系統;若具備信息反饋特徵,則為閉環控制系統。根據控制原理,控制系統可分為程序控制系統、適應性控制系統和人工智慧控制系統。根據控制運行的形式,控制系統可分為點位控制和軌跡控制。點位型只控制執行機構由一點到另一點的准確定位,適用於機床上下料、點焊和一般搬運、裝卸等作業;連續軌跡型可控制執行機構按給定軌跡運動,適用於連續焊接和塗裝等作業。控制系統的任務是根據機器人的作業指令程序以及感測器反饋回來的信號支配機器人的執行機構去完成規定的運動和功能。假如工業機器人不具備信息反饋特徵,則為開環控制系統;若具備信息反饋特徵,則為閉環控制系統。根據控制原理,控制系統可分為程序控制系統、適應性控制系統和人工智慧控制系統。根據控制運行的形式,控制系統可分為點位控制和軌跡控制。一套完整的工業機器人包括機器人本體、系統軟體、控制櫃、外圍機械設備、CCD視覺、夾具/抓手、外圍設備PLC控制櫃、示教器/示教盒。
工業機器人設備下面重點對機器人的驅動系統、感知系統作出介紹。2.機器人的驅動系統工業機器人的驅動系統,按動力源分為液壓,氣動和電動三大類。根據需要也可由這三種基本類型組合成復合式的驅動系統。這三類基本驅動系統的各有自己的特點。液壓驅動系統:由於液壓技術是一種比較成熟的技術。它具有動力大、力(或力矩)與慣量比大、快速響應高、易於實現直接驅動等特點。適於在承載能力大,慣量大以及在防焊環境中工作的這些機器人中應用。但液壓系統需進行能量轉換(電能轉換成液壓能),速度控制多數情況下採用節流調速,效率比電動驅動系統低。液壓系統的液體泄泥會對環境產生污染,工作雜訊也較高。因這些弱點,近年來,在負荷為100kg以下的機器人中往往被電動系統所取代。青島華東工程機械有限公司研製的全液壓重載機器人如圖所示。其大跨度的承載可達到2000kg,機器人的活動半徑可達到近6m,應用在鑄鍛行業。
全液壓重載機器人
氣壓驅動具有速度快、系統結構簡單、維修方便、價格低等優點。但是由於氣壓裝置的工作壓強低,不易精確定位,一般僅用於工業機器人末端執行器的驅動。氣動手抓、旋轉氣缸和氣動吸盤作為末端執行器可用於中、小負荷的工件抓取和裝配。氣動吸盤和氣動機器人手爪如圖所示。
氣動吸盤和氣動機器人手爪電機驅動是現代工業機器人的一種主流驅動方式,分為4大類電機:直流伺服電機、交流伺服電機、步進電機和直線電機。直流伺服電機和交流伺服電機採用閉環控制,一般用於高精度、高速度的機器人驅動;步進電機用於精度和速度要求不高的場合,採用開環控制;直線電機及其驅動控制系統在技術上已日趨成熟,已具有傳統傳動裝置無法比擬的優越性能,例如適應非常高速和非常低速應用、高加速度,高精度,無空回、磨損小、結構簡單、無需減速機和齒輪絲杠聯軸器等。鑒於並聯機器人中有大量的直線驅動需求,因此直線電機在並聯機器人領域已經得到了廣泛應用。3.機器人的感知系統機器人感知系統把機器人各種內部狀態信息和環境信息從信號轉變為機器人自身或者機器人之間能夠理解和應用的數據、信息,除了需要感知與自身工作狀態相關的機械量,如位移、速度、加速度、力和力矩外,視覺感知技術是工業機器人感知的一個重要方面。視覺伺服系統將視覺信息作為反饋信號,用於控制調整機器人的位置和姿態。這方面的應用主要體現在半導體和電子行業。機器視覺系統還在質量檢測、識別工件、食品分揀、包裝的各個方面得到了廣泛應用。通常,機器人視覺伺服控制是基於位置的視覺伺服或者基於圖像的視覺伺服,它們分別又稱為三維視覺伺服和二維視覺伺服,這兩種方法各有其優點和適用性,同時也存在一些缺陷,於是有人提出了2.5維視覺伺服方法。基於位置的視覺伺服系統,利用攝像機的參數來建立圖像信息與機器人末端執行器的位置/姿態信息之間的映射關系,實現機器人末端執行器位置的閉環控制。末端執行器位置與姿態誤差由實時拍攝圖像中提取的末端執行器位置信息與定位目標的幾何模型來估算,然後基於位置與姿態誤差,得到各關節的新位姿參數。基於位置的視覺伺服要求末端執行器應始終可以在視覺場景中被觀測到,並計算出其三維位置姿態信息。消除圖像中的干擾和雜訊是保證位置與姿態誤差計算準確的關鍵。二維視覺伺服通過攝像機拍攝的圖像與給定的圖像(不是三維幾何信息)進行特徵比較,得出誤差信號。然後,通過關節控制器和視覺控制器和機器人當前的作業狀態進行修正,使機器人完成伺服控制。相比三維視覺伺服,二維視覺伺服對攝像機及機器人的標定誤差具有較強的魯棒性,但是在視覺伺服控制器的設計時,不可避免地會遇到圖像雅克比矩陣的奇異性以及局部極小等問題。針對三維和二維視覺伺服方法的局限性,F.Chaumette等人提出了2.5維視覺伺服方法。它將攝像機平動位移與旋轉的閉環控制解耦,基於圖像特徵點,重構物體三維空間中的方位及成像深度比率,平動部分用圖像平面上的特徵點坐標表示。這種方法能成功地把圖像信號和基於圖像提取的位姿信號進行有機結合,並綜合他們產生的誤差信號進行反饋,很大程度上解決了魯棒性、奇異性、局部極小等問題。但是,這種方法仍存在一些問題需要解決,如怎樣確保伺服過程中參考物體始終位於攝像機視野之內,以及分解單應性矩陣時存在解不唯一等問題。在建立視覺控制器模型時,需要找到一種合適的模型來描述機器人的末端執行器和攝像機的映射關系。圖像雅克比矩陣的方法是機器人視覺伺服研究領域中廣泛使用的一類方法。圖像的雅克比矩陣是時變的,所以,需要在線計算或估計。4.機器人關鍵基礎部件機器人共4大組成部分,本體成本佔22%,伺服系統佔24%,減速器佔36%,控制器佔12%。機器人關鍵基礎部件是指構成機器人傳動系統,控制系統和人機交互系統,對機器人性能起到關鍵影響作用,並具有通用性和模塊化的部件單元。機器人關鍵基礎部件主要分成以下三部分:高精度機器人減速機,高性能交直流伺服電機和驅動器,高性能機器人控制器等。1)減速機減速機是機器人的關鍵部件,目前主要使用兩種類型的減速機:諧波齒輪減速機和RV減速機。
諧波傳動方法由美國發明家C.WaltMusser於20世紀50年代中期發明。諧波齒輪減速機主要由波發生器、柔性齒輪和剛性齒輪3個基本構件組成,依靠波發生器使柔性齒輪產生可控彈性變形,並與剛性齒輪相嚙合來傳遞運動和動力,單級傳動速比可達70~1000,藉助柔輪變形可做到反轉無側隙嚙合。與一般減速機比較,輸出力矩相同時,諧波齒輪減速機的體積可減小2/3,重量可減輕1/2。柔輪承受較大的交變載荷,因而其材料的抗疲勞強度、加工和熱處理要求較高,製造工藝復雜,柔輪性能是高品質諧波齒輪減速機的關鍵。
諧波齒輪減速機傳動原理德國人LorenzBaraen於1926年提出擺線針輪行星齒輪傳動原理,日本帝人株式會社(TEIJINSEIKICo.,Ltd)於20世紀80年代率先開發了RV減速機。RV減速機由一個行星齒輪減速機的前級和一個擺線針輪減速機的後級組成。相比於諧波齒輪減速機,RV減速機具有更好的回轉精度和精度保持性。
減速機陳仕賢發明了活齒傳動技術。第四代活齒傳動——全滾動活齒傳動(oscillatory roller transmission,ORT)已成功地應用到多種工業產品中。在ORT基礎上提出的復式滾動活齒傳動(compound oscillatory roller transmission,CORT)不但具有RV傳動類似的優點,而且克服了RV傳動曲軸軸承受力大、壽命低的缺點,進一步提高了使用壽命和承載能力;CORT的結構使其在同樣的精度指標下回差更小,運動精度和剛度更高,緩解了RV傳動要求製造精度高的缺陷,可相對降低加工要求,減少製造成本。CORT是我國自主開發的,擁有自主知識產權。鞍山耐磨合金研究所和浙江恆豐泰減速機製造有限公司均開發成功了機器人用CORT減速機。
ORT減速機 CORT減速機目前在高精度機器人減速機方面,市場份額的75%均兩家日本減速機公司壟斷,分別為提供RV擺線針輪減速機的日本Nabtesco和提供高性能諧波減速機的日本Harmonic Drive。包括 ABB, FANUC, KUKA,MOTOMAN在內國際主流機器人廠商的減速機均由以上兩家公司提供,與國內機器人公司選擇的通用機型有所不同的是,國際主流機器人廠商均與上述兩家公司簽訂了戰略合作關系,提供的產品大部分為在通用機型基礎上根據各廠商的特殊要求進行改進後的專用型號。國內在高精度擺線針輪減速機方面研究起步較晚,僅在部分院校,研究所有過相關研究。目前尚無成熟產品應用於工業機器人。近年來國內部分廠商和院校開始致力高精度擺線針輪減速機的國產化和產業化研究,如浙江恆豐泰,重慶大學機械傳動國家重點實驗室,天津減速機廠,秦川機床廠,大連鐵道學院等。在諧波減速機方面,國內已有可替代產品,如北京中技克美,北京諧波傳動所,但是相應產品在輸入轉速,扭轉高度,傳動精度和效率方面與日本產品還存在不小的差距,在工業機器人上的成熟應用還剛剛起步。國內外工業機器人主流高精度諧波減速機性能比較如下表所示。
表1 主流高精度諧波減速機性能比較註:上表比較數據來自相近型號:HD :CSF-17-100中技克美:XB1-40-100傳動效率測試工況:輸入轉速1000r/min,溫度40°扭轉剛度測試條件:20%額定扭矩內國內外工業機器人主流高精度擺線針輪減速機性能比較如下表所示。
表2 主流高精度RV擺線針輪減速機性能比較註:上表比較數據來自相近型號:RV:100CCYCLO:F2CF-C35傳動效率測試工況:輸出轉速15r/min,額定扭矩2)伺服電機在伺服電機和驅動方面,目前歐系機器人的驅動部分主要由倫茨,Lust,博世力士樂等公司提供,這些歐系電機及驅動部件過載能力,動態響應好,驅動器開放性強,且具有匯流排介面,但是價格昂貴。而日系品牌工業機器人關鍵部件主要由安川,松下,三菱等公司提供,其價格相對降低,但是動態響應能力較差,開放性較差,且大部分只具備模擬量和脈沖控制方式。國內近年來也開展了大功率交流永磁同步電機及驅動部分基礎研究和產業化,如哈爾濱工業大學,北京和利時,廣州數控等單位,並且具備了一點的生產能力,但是其動態性能,開放性和可靠性還需要更多的實際機器人項目應用進行驗證。
3)控制器在機器人控制器方面,目前國外主流機器人廠商的控制器均為在通用的多軸運動控制器平台基礎上進行自主研發。目前通用的多軸控制器平台主要分為以嵌入式處理器(DSP,POWER PC)為核心的運動控制卡和以工控機加實時系統為核心的PLC系統,其代表分別是Delta Tau的PMAC卡和Beckhoff的TwinCAT系統。國內的在運動控制卡方面,固高公司已經開發出相應成熟產品,但是在機器人上的應用還相對較少。5.機器人操作系統通用的機器人操作系統(robot operating system,ROS)是為機器人而設計的標准化的構造平台,它使得每一位機器人設計師都可以使用同樣的操作系統來進行機器人軟體開發。ROS將推進機器人行業向硬體、軟體獨立的方向發展。硬體、軟體獨立的開發模式,曾極大促進了PC、筆記本電腦和智能手機技術的發展和快速進步。ROS的開發難度比計算機操作系統更大,計算機只需要處理一些定義非常明確的數學運算任務,而機器人需要面對更為復雜的實際運動操作。ROS提供標准操作系統服務,包括硬體抽象、底層設備控制、常用功能實現、進程間消息以及數據包管理。ROS分成兩層,低層是操作系統層,高層則是用戶群貢獻的機器人實現不同功能的各種軟體包。現有的機器人操作系統架構主要有基於linux的Ubuntu開源操作系統。另外,斯坦福大學、麻省理工學院、德國慕尼黑大學等機構已經開發出了各類ROS系統。微軟機器人開發團隊2007年也曾推出過一款「Windows機器人版」。6.機器人的運動規劃為了提高工作效率,且使機器人能用盡可能短的時間完成特定的任務,必須有合理的運動規劃。離線運動規劃分為路徑規劃和軌跡規劃。路徑規劃的目標是使路徑與障礙物的距離盡量遠同時路徑的長度盡量短;軌跡規劃的目的主要是機器人關節空間移動中使得機器人的運行時間盡可能短,或者能量盡可能小。軌跡規劃在路徑規劃的基礎上加入時間序列信息,對機器人執行任務時的速度與加速度進行規劃,以滿足光滑性和速度可控性等要求。示教再現是實現路徑規劃的方法之一,通過操作空間進行示教並記錄示教結果,在工作過程中加以復現,現場示教直接與機器人需要完成的動作對應,路徑直觀且明確。缺點是需要經驗豐富的操作工人,並消耗大量的時間,路徑不一定最優化。為解決上述問題,可以建立機器人虛擬模型,通過虛擬的可視化操作完成對作業任務的路徑規劃。路徑規劃可在關節空間中進行。Gasparetto以五次B樣條為關節軌跡的插值函數,並將加加速度的平方相對於運動時間的積分作為目標函數進行優化,以確保各個關節運動足夠光滑。劉松國通過採用五次B樣條對機器人的關節軌跡進行插補計算,機器人各個關節的速度、加速度端點值,可根據平滑性要求進行任意配置。另外,在關節空間的軌跡規劃可避免操作空間的奇異性問題。Huo等人設計了一種關節空間中避免奇異性的關節軌跡優化演算法,利用6自由度弧焊機器人在任務過程中某個關節功能上的冗餘,將機器人奇異性和關節限製作為約束條件,採用TWA方法進行優化計算。關節空間路徑規劃與操作空間路徑規劃對比,具有以下優點:①避免了機器人在操作空間中的奇異性問題;②由於機器人的運動是通過控制關節電機的運動,因此在關節空間中,避免了大量的正運動學和逆運動學計算;③關節空間中各個關節軌跡便於控制的優化。
五、工業機器人分類
工業機器人按不同的方法可分下述類型:
工業機器人分類1.從機械結構來看,分為串聯機器人和並聯機器人。1)串聯機器人的特點是一個軸的運動會改變另一個軸的坐標原點,在位置求解上,串聯機器人的正解容易,但反解十分困難;2)並聯機器人採用並聯機構,其一個軸的運動則不會改變另一個軸的坐標原點。並聯機器人具有剛度大、結構穩定、承載能力大、微動精度高、運動負荷小的優點。其正解困難反解卻非常容易。串聯機器人和並聯機器人如圖所示。
串聯機器人 並聯機器人2.工業機器人按操作機坐標形式分以下幾類:(坐標形式是指操作機的手臂在運動時所取的參考坐標系的形式。)1)直角坐標型工業機器人其運動部分由三個相互垂直的直線移動(即PPP)組成,其工作空間圖形為長方形。它在各個軸向的移動距離,可在各個坐標軸上直接讀出,直觀性強,易於位置和姿態的編程計算,定位精度高,控制無耦合,結構簡單,但機體所佔空間體積大,動作范圍小,靈活性差,難與其他工業機器人協調工作。2)圓柱坐標型工業機器人其運動形式是通過一個轉動和兩個移動組成的運動系統來實現的,其工作空間圖形為圓柱,與直角坐標型工業機器人相比,在相同的工作空間條件下,機體所佔體積小,而運動范圍大,其位置精度僅次於直角坐標型機器人,難與其他工業機器人協調工作。3)球坐標型工業機器人球坐標型工業機器人又稱極坐標型工業機器人,其手臂的運動由兩個轉動和一個直線移動(即RRP,一個回轉,一個俯仰和一個伸縮運動)所組成,其工作空間為一球體,它可以作上下俯仰動作並能抓取地面上或教低位置的協調工件,其位置精度高,位置誤差與臂長成正比。4)多關節型工業機器人又稱回轉坐標型工業機器人,這種工業機器人的手臂與人一體上肢類似,其前三個關節是回轉副(即RRR),該工業機器人一般由立柱和大小臂組成,立柱與大臂見形成肩關節,大臂和小臂間形成肘關節,可使大臂做回轉運動和俯仰擺動,小臂做仰俯擺動。其結構最緊湊,靈活性大,佔地面積最小,能與其他工業機器人協調工作,但位置精度教低,有平衡問題,控制耦合,這種工業機器人應用越來越廣泛。5)平面關節型工業機器人它採用一個移動關節和兩個回轉關節(即PRR),移動關節實現上下運動,而兩個回轉關節則控制前後、左右運動。這種形式的工業機器人又稱(SCARA(Seletive Compliance Assembly Robot Arm)裝配機器人。在水平方向則具有柔順性,而在垂直方向則有教大的剛性。它結構簡單,動作靈活,多用於裝配作業中,特別適合小規格零件的插接裝配,如在電子工業的插接、裝配中應用廣泛。3.工業機器人按程序輸入方式區分有編程輸入型和示教輸入型兩類:1)編程輸入型是將計算機上已編好的作業程序文件,通過RS232串口或者乙太網等通信方式傳送到機器人控制櫃。2)示教輸入型的示教方法有兩種:示教盒示教和操作者直接領動執行機構示教。示教盒示教由操作者用手動控制器(示教盒),將指令信號傳給驅動系統,使執行機構按要求的動作順序和運動軌跡操演一遍。採用示教盒進行示教的工業機器人使用比較普遍,一般的工業機器人均配置示教盒示教功能,但是對於工作軌跡復雜的情況,示教盒示教並不能達到理想的效果,例如用於復雜曲面的噴漆工作的噴漆機器人。
機器人示教盒由操作者直接領動執行機構進行示教,則是按要求的動作順序和運動軌跡操演一遍。在示教過程的同時,工作程序的信息即自動存入程序存儲器中在機器人自動工作時,控制系統從程序存儲器中檢出相應信息,將指令信號傳給驅動機構,使執行機構再現示教的各種動作。
六、工業機器人性能評判指標表示機器人特性的基本參數和性能指標主要有工作空間、自由度、有效負載、運動精度、運動特性、動態特性等。
⑤ 鋁鑄件機器人的焊接方法
鋁鑄件焊接機器人,首先電源肯定是要穩定性好,其次從焊接性上來說鑄件相對鍛件或者擠壓成型件要差一些,故而焊接工藝及電源參數調節就顯得更加重要。
穩定的電源可以選擇雙脈沖的氣體保護焊接電源,直流反接,比如採用威歐丁MIG500的雙脈沖氣體保護焊機,留有外接機器人介面。
焊接工藝參數按照鑄造的工藝,做雙脈沖工藝評定,找出合理的雙脈沖頻率及輸入只,剩下的就是專業的機器參數調試問題相對簡單一些。
⑥ 工業機器人是什麼一般運用在什麼地方
工業機器人是面向工業領域的多關節機械手或多自由度的機器人。工業機器人是自動執行工作的機器裝置,是靠自身動力和控制能力來實現各種功能的一種機器。它可以接受人類指揮,也可以按照預先編排的程序運行,現代的工業機器人還可以根據人工智慧技術制定的原則綱領行動。工業機器人在工業生產中能代替人做某些單調、頻繁和重復的長時間作業,或是危險、惡劣環境下的作業,例如在沖壓、壓力鑄造、熱處理、焊接、塗裝、塑料製品成形、機械加工和簡單裝配等工序上,以及在原子能工業等部門中,完成對人體有害物料的搬運或工藝操作。 20世紀50年代末,美國在機械手和操作機的基礎上,採用伺服機構和自動控制等技術,研製出有通用性的獨立的工業用自動操作裝置,並將其稱為工業機器人;60年代初,美國研製成功兩種工業機器人,並很快地在工業生產中得到應用;1969年,美國通用汽車公司用21台工業機器人組成了焊接轎車車身的自動生產線。此後,各工業發達國家都很重視研製和應用工業機器人。 由於工業機器人具有一定的通用性和適應性,能適應多品種中、小批量的生產,70年代起,常與數字控制機床結合在一起,成為柔性製造單元或柔性製造系統的組成部分。
⑦ 工業機械手在鑄造的應用
壓鑄機器人,目前主要分為二類,一類是以ABB,KUKA,FANUC,MOTOMAN為主的國際通用型機器人,編程後應用在壓鑄行業的機器人。
另外一類是FREEMAN壓鑄專家型機器人,富瑞曼機器人有限公司,他們是全球惟一一家,立足於壓鑄行業的機器人,他們的壓鑄機器人,是針對壓鑄機進行了優化。針對每個壓鑄機品牌,不同廠家進行了優化設計。
一台Freeman 機器人,可以給二台壓鑄機同時給湯,噴霧,取件,三機一體。一機多能。二台壓鑄機,只要一台保溫爐。減少一台熔化爐。光最小的保溫爐一年的電費,30KW*1元電費*365天=就要10萬元,而他們的FREEMAN機器人價格只有國外品牌的1/2甚至1/3。基本上一年就可以收回投資成本每個公司的采購的壓鑄機,各個品牌,型號的都有,具體的你可以,發郵件咨詢[email protected],他們可以針對你所在的公司,做一個量身針做的解決方案。可以明顯地降低你現有的運行成本,和生產成本。
回答人的補充 2012-4-13 12:57:37
富瑞曼機器人(上海)有限公司,他們不光有推自己FREEMAN壓鑄專家型 機器人,同時還是ABB,KUKA,FANUC,MOTOMAN為主的國際通用型機器人的中國壓鑄行業惟一代理。做了很多壓鑄行業機器人的成功案例。FREEMAN 壓鑄專家型的機器人,還有FREEMAN給湯機,噴霧機,取件機,他們公司是中國惟一一家,三年質保的公司。同時在2012年為了降低客戶一性購買硬體的成本,推出2012年底交貨的FREEMAN給湯機,噴霧機,取件機的客戶,五年後,原價置換FREEMAN機器人具體地,還是發郵件,針對你公司的現狀做一套方案。
⑧ 工業機器人設計步驟
這個開發流程單拉哪個環節出來都夠寫一個長文,這里只能簡單說一下我自己的認識。按照時間順序,一個批量機器人產品的開發由以下幾個流程組成:
1. 需求分析和產品定義。
產品管理人員在這個階段搜集市場信息,走訪客戶,了解競爭對手,最終總結出一種產品需求,以及需求所針對的典型行業和典型工藝。根據市場提出市場預期,一年能賣多少台,目標價格區間,目標行業應用的現狀和發展趨勢等。根據需求,提出一份產品性能指標,定量的具體的對預期產品進行產品功能層面的描述,例如使用環境,工作范圍,最高速度,額定負載,實現某典型工藝軌跡的時間,IP等級,電源類型,重量限制,使用壽命,需要遵循哪些認證和標准等等。
這里需要的技能是對行業,對市場,對成本,對公司戰略,對其他開發環節和生產製造過程的綜合認識以及商業敏感。這是在長期工作中慢慢建立起來的。
2. 前期研究和可行性分析
針對前一步提出的產品性能指標,機械,模擬,驅動,電氣,軟體領域的工程師開始從各自的技術角度對指標進行評估。主要從技術可行性和成本兩個方向切入,期間還需要采購和生產人員的協助。目標是確定在技術和成本間是否存在一個可盈利的平衡點。在這個階段另一個重要內容是對競爭對手相似產品進行詳盡的分析和測試,盡可能把對手的經驗轉化為自己產品的優勢。
本階段結束後會得到一個概念方案,並且對開發周期和成本有了估計。這些內容會以可行性分析報告,項目計劃,成本分析,風險評估等形式成為輸出文檔供管理層決策是否正式開始開發項目。
在這個階段各個領域都會有資深的工程師參加。各個領域涉及的知識和技術會在後面其他開發階段介紹。
3. 計算與模擬
前面的概念方案雖然缺乏大部分細節,但依靠大致的尺寸,負載,速度,典型工藝軌跡等信息已經可以對產品進行粗略的建模和模擬計算。依照概念方案中的幾何尺寸信息可以建立機器人的運動學模型。在這樣的基礎上,外部負載是已經定義,自然質量負載和摩擦力根據經驗估計,這樣可以進一步獲得動力學模型。以目標速度和軌跡作為輸入進行動力學模擬就獲得了兩項重要的數據:a. 各驅動軸扭矩;b. 各關節受力情況;
其中前者作為驅動系統開發和選型的依據,而後者是機械結構設計的依據。
模擬計算工作是機器人開發過程中系統層和元件層的介面,面向產品功能的性能指標在這里被轉化為面向技術實現的各元件性能參數。
在這個階段格外需要經典力學,多體動力學模擬,對機械繫統,電氣系統以及控制理論的綜合知識要有深刻的理解。需要熟練使用模擬計算工具,Matlab/Simulink, Modelica, Adams, 或各種機器人領域內的軟體。當然工具的使用並不是最重要的,對知識的理解永遠是第一位。
4. 驅動系統選型開發
驅動系統包括從電源,伺服驅動器,電機,到減速機的一系列元件,更多被叫做powertrain。因為不同元件涉及的領域差別較大,通常由電力電子(power electronic),伺服電機,減速機三個領域的工程師合作完成。
根據經模擬計算得出的轉速扭矩需求,在上述三個領域內的產品內選擇已有的標准型號,在標准型號的基礎上進行優化,或開發新型號。這里設計的三個元件驅動器,伺服電機,減速機是工業機器人最核心的三個零部件,承載了物理層的大部分關鍵技術,也是元件成本的大頭。三個元件都是工業系統中的常用元件,但對性能要求與其他應用(除了精密加工和航空航天)比要高一些。因為安裝空間有限且封閉,在緊湊型和熱量管理上的要求尤其高。
在這個階段,工程師需要對相關領域的知識有深入理解,例如電力電子,電機驅動與控制 (基於空間向量),電機(主要是無刷永磁電機)設計,電機相關的電磁學,各種減速機設計和應用,軸承與潤滑等。如果不涉及元件開發只是選型則需要對各種元件的性能參數有深入的理解,且有大量應用經驗。
5. 機械設計
常規的運動系統機械設計。設計輸入有以下幾方面,一是經過模擬計算的機械部分子系統性能指標(長度,空間運動范圍,重量),二是各節點受力分析,三是驅動系統的安裝要求,四是功能性能指標中對安裝方式和應用環境的要求。綜合這些輸入,機械工程師需要選擇適當的材料,設計合理的結構實現以上要求。
其中力學分析結果作為有限元分析的輸入,由機械工程師對設計進行有限元計算,驗證結構的強度。
知識結構上:機械設計,材料,有限元,熟悉相關標准,了解各種加工工藝(鑄造,壓鑄,塑料成型,鈑金,焊接),熟練使用CAD軟體(ProE, UG, Catia, Inventor),有限元計算,還有更重要的,經驗,經驗,經驗。
6. 控制櫃設計
典型的工業驅動控制系統電氣櫃設計。櫃體為驅動系統中的電源和啟動器,控制系統中的工控計算機(大多廠商選擇工控計算機而不是PLC加運動控制器方案),以及通信匯流排系統提供安裝,操作,維護的環境。布局,熱量管理,以及相關設計標准(IEC, UL, GB, CE)的執行是關鍵。
知識體系:低壓電氣系統設計,伺服驅動系統應用,電氣櫃風道和散熱設計,本質安全,現場匯流排的連接,各種設計標准。熟練使用CAD軟體(Eplan, Autodesk)
⑨ 自工業機器人誕生以來,什麼行業是其應用的主要領域
自工業機器人誕生以來,以下十大行業是其應用的主要領域:
1.汽車製造業2.電子電氣行業3.橡膠及塑料工業4.鑄造行業5.食品行業6.化工行業7.玻璃行業8.家用電器行業9.冶金行業10.煙草行業
但是,先進的生產設備必須配備與之相應的管理方法和後勤保障系統,才能真正發揮設備的高效益,如卷煙原、輔料的配送,就需要先進的自動化物流系統來完成,傳統的人工管理,人工搬運極易出錯,又不準時,已不能適應生產發展的需要。精準的工業機器人被應用於這個領域。
工業機器人的應用領域有很多,採用工業機器人不僅可以提高產品質量,更可以節省人工,提高生產效率,而且在有些人不能使用人工的作業環境下工業機器人就能幫作業。
我們說說工業機器人主要的應用領域:
1.機械加工應用
機械加工行業機器人應用量並不高,只佔了2%,原因大概也是因為市面上有許多自動化設備可以勝任機械加工的任務。機械加工機器人主要從事應用的領域包括零件鑄造、激光切割以及水射流切割。
2.機器人噴塗應用
這里的機器人噴塗主要指的是塗裝、點膠、噴漆等工作,只有4%的工業機器人從事噴塗的應用。
3.機器人裝配應用
裝配機器人主要從事零部件的安裝、拆卸以及修復等工作,由於近年來機器人感測器技術的飛速發展,導致機器人應用越來越多樣化,直接導致機器人裝配應用比例的下滑。
4.機器人焊接應用
機器人焊接應用主要包括在汽車行業中使用的點焊和弧焊,雖然點焊機器人比弧焊機器人更受歡迎,但是弧焊機器人近年來發展勢頭十分迅猛。許多加工車間都逐步引入焊接機器人,用來實現自動化焊接作業。
5.機器人搬運應用
目前搬運仍然是機器人的第一大應用領域,約占機器人應用整體的4成左右。許多自動化生產線需要使用機器人進行上下料、搬運以及碼垛等操作。近年來,隨著協作機器人的興起,搬運機器人的市場份額一直呈增長態勢。
⑩ 機器人技術有哪些主要的研究方向
機器人現在比較有前途的方向不外乎:工業機器人、無人飛行器(uav)、無人駕駛汽車(ugv)、醫療機器人。工業機器人現在需求量越來越大,是個不錯的行業,但目前主要做研究的都是公司了,大學里幾乎不做了(但大學會用工業機器人做點別的研究,比如抓握研究,就是面對不規則物體時,如何判定形體,如何用機械手准確、穩定地抓握)。uav主要是政府在投錢,軍隊用。ugv是政府和一些有前瞻性的公司,就目前的技術情況,恐怕十年內無法大規模商業化。醫療機器人是針對目前一些手術上的問題在做,目前有一定進展(達芬奇系統),商業前景很好,但是短期內恐怕推廣不開。其他方向,比如家政機器人,有willow
garage在探路,但是前景很不樂觀。日本做類人步行機器人做的很歡,但是應用前景極其狹窄(目前來看僅可用於人難以深入的災難環境操作原本為人設計的設施)。boston
dynamics的四足步行機器人做得不錯,但是應用范圍過於狹窄,只有軍隊可能有興趣采購。sarcos雷神的外骨骼做得不錯,有一定商業化前景,但是自重太大,對能源要求很高,成本也很高,。
做機器人,主要有三個層面。
最底層做機械設計,主要是電機、感測器、人工肌肉、結構設計等等。
中層做控制設計,主要是感測器濾波和控制演算法。
上層做感知,主要是根據感測器數據進行更高階的信息融合,作更復雜的分析,比如說機器視覺、slam之類。
人工智慧在機器人領域目前沒看出來有什麼大用處。甚至連機器學習都用的非常少。三個層面都不錯。不過目前發展最快的是後兩個層面。中層現在在工業界發展比較快。上層主要還是在學術界,目前還沒有多少可供商業化的東西。下層現在很緩慢,主要是沒有找到非常好的材料。