『壹』 地球科學的研究對象
地球科學的研究對象包括:地球,地球的時、空、源。
① 地球的結構:層圈狀(slide)
②地球的構造:指地球各個部分之間關系及其它們的分布規律及演化。如大氣圈、水圈、岩石圈、地幔、地核,殼幔作用,山脈-盆地,大陸-海洋;
③ 地球物質:各種元素-礦物-岩石-礦床-地層,它們的分布及其遷移富集規律
④ 地質事件:地殼運動在地表反映.如地震、火山、海嘯、褶皺、斷裂等;
⑤ 預測和預防將來發生的地質事件
『貳』 地球科學的主要研究內容是什麼
地球是太陽系八大行星之一,從誕生之日起,已歷46億年。按離太陽由近及遠的次序是第三顆,位於水星和金星之後;在八大行星中大小排行是第五。在英語里,地球是唯一一個不是從希臘及羅馬神話中得到的名字。英語的地球Earth一詞來自於古英語及日耳曼語。這里當然有許多其他語言的命名。在羅馬神話中,地球女神叫Tellus——肥沃的土地(希臘語:Gaia,大地母親)。
由化學組成成分及地震震測特性來看,地球本體可以分成一些層圈,以下就標示出它們的名稱與范圍(深度,單位為公里):
0~40地殼40~2890地幔2890~5150外地核5150~6378內地核
固態的地殼厚度變化頗大,海洋地區的地殼較薄,平均約7公里厚;而大陸地殼就厚得多,平均約40公里厚; 地幔也是固態,不過在它上部有一層極小部分熔融的區域,稱為軟流圈 ,其上的地幔最頂部及整個地殼則稱為岩石圈 ;至於外地核是液態而內地核是固態。 這些不同的層圈都是以不連續面為界,最有名的就是在地殼與地函之間的莫氏不連續面 (Mohorovicic discontinuity)。
地幔佔有地球的主要質量,地核反而位居其次,至於我們生存的空間則只是整個地球極小的一部分而已 (質量,單位為10的24次方千克: 大氣層 = 0.0000051,海洋 = 0.0014 ,地殼 = 0.026,地幔 = 4.043,外地核= 1.835,內地核 = 0.09675,)
地核的主要成分是鐵 (或鐵鎳質),不過也可能有一些較輕的物質存在,地心的溫度約有7,500K,比太陽表面溫度還高;下部地幔的主要成分可能是矽、鎂、氧,再加上一些鐵、鈣及鋁;上部地幔主要成分則是橄欖石及輝石 (鐵鎂矽酸鹽岩石),也有鈣和鋁。 以上這些了解都是來自於地震震測資料,雖然上部地幔的物質有時會因著火山噴出熔岩而被帶到地表來,但是我們仍無法到達固體地球的主要部分,目前的海底鑽探行動連地殼都尚未挖穿。 地殼的成分則主要是石英 (二氧化硅)及硅酸鹽類如長石。 整體估算,地球化學組成的重量百分比為: 鐵34.6% ,氧29.5% ,硅15.2% ,鎂12.7% ,鎳2.4% ,硫1.9% ,0.05% 鈦 。
地球是平均密度最大的主要星體。
其它類地行星也都具有和地球類似的結構與組成,但其中也有一些差異: 月球核所佔比例最小; 水星核的比例最大;而火星及月球的函相對較厚;月球和水星沒有化學組成明顯不同的函與殼之分;地球可能是唯一可再分成內外核的。不過請留意,我們對行星內部的認識主要是來自於理論推導,就算是對地球的也是如此。
有別於其它類地行星 ,地球的最外層 (包含地殼及上部地幔的頂端)被切分為數塊,「飄浮」於其下的熾熱地幔之上,這就是著名的板塊構造運動學說 。 這個學說主要描述兩種運動:拉張與隱沒,前者發生在二個板塊互相遠離,其下的岩漿湧出而生成新地殼之處;後者則發生在二個板塊互相碰撞,其中一方潛入另一方之下,終至消滅於地函中之處。 此外,也有一些板塊邊界是橫向錯開式的相對運動或兩個大陸板塊硬碰硬地撞在一起。
地球的大部分表面很年輕 ,只有5億年左右,以天文的角度來看確實很短。但也有很少的地方露出了當年地球地殼形成時的基底——花崗岩,如中國遼寧省葫蘆島市綏中縣就有裸露,由於形成花崗岩時的冷卻時間長,所以花崗岩內的結晶體都非常發育,邊長在1-2厘米,故把其命名為綏中花崗岩。由於侵蝕作用及構造地質運動不斷地破壞又重建大部分的地表,因而地表早期的地質記錄不容易找到,例如撞擊坑 ,所以早期地球歷史大部分都已不見蹤跡。 地球約有45至46億年老,然而目前已知最老的岩石只有大約40億年前(地球有相當長的一段時期是一個由熔化的岩漿形成的火球),而且老於30億年的岩石非常罕見。 最老的生物化石不早於39億年前,有關生命起源的關鍵時期則亳無記錄。
地球表面積71%為水所覆蓋,地球是太陽系唯一在表面可以擁有液態水的行星 (土衛六的表面有液態乙烷或甲烷,而藏於木衛二的表面之下則可能有液態水,不過地球表面有液態水仍是獨一無二的)。 液態水是我們已知的生命型式所不可或缺的要素;而緣於水具有的大比熱性質,海洋的熱容積成為保持地球溫度恆定的一大功臣;液態水還是陸地上侵蝕與風化作用的主要營力,這是太陽系中唯一有此作用
的地方 (也許火星早期也曾有過這些作用,但現在已無)。
地球大氣組成中,77%是氮氣而21%是氧氣,再來就是微量的氬、二氧化碳及水氣。 地球初形成時的大氣很可能大部分都是二氧化碳,不過它們大多已被碳酸鹽類岩石給結合,其餘的則是溶入海洋及被綠色植物耗盡;如今板塊構造運動及生物作用是大氣中二氧化碳消長的持續主控者。 大氣中存在的水氣及微量二氧化碳所造成的溫室效應是維持地表溫度極重要的作用,溫室效應使地表溫度提高了大約35℃,否則地表的平均溫度將是酷寒的-21℃! 若沒有水氣及二氧化碳,海水會凍結,而我們已知的生命型式將無從開展。 此外,水氣更是地球水循環及天氣變化中不可或缺的要角。
自由氧的存在也是地球化學組成的一大特徵,因為氧是活性很強的氣體,照理說應該很容易就和大氣中其它元素相化合,地球上的氧氣完全是由生物作用產生及維持,若沒有生命就不會有自由氧。
地球擁有適度的磁場,推測磁場是起因於液態外地核中的電流。 由於太陽風與地球磁場及外層大氣的交互作用, 極光於焉產生;而上述因素的不均衡造成磁極會在地表移動,目前磁北極位於加拿大北境。由於太陽風與地球磁場及外層大氣的交互作用, 極光於焉產生;
地球磁場及其與太陽風的交互作用也造成了范艾倫輻射帶 (Van Allen radiation belts),它是環繞著地球的成對環狀帶,外型就像是甜甜圈,由氣體離子 (電漿) 組成,其外圈由海拔19,000公里延伸到41,000公里;內圈則介於海拔13,000至7,600公里之間。
『叄』 地球科學的研究方法
由於地球科學以龐大的地球作為研究對象,並具有很強的實踐性和應用性,所以它的研究方法與其他自然科學有較大的差異。它既要藉助於數學、物理、化學、生物學及天文學的一些研究方法,同時又有自己的特殊性。
地球科學的研究方法與其研究對象的特點有關,地球作為其研究對象主要有以下特點:
(1)空間的廣泛性與微觀性
地球是一個龐大的物體,其周長超過4×104 km,表面積超過5×108 km2。因此,無論是研究大氣圈、水圈、生物圈以及固體地球,其空間都是十分廣大的。這樣一個巨大的空間及物體本身由不同尺度或規模的空間和物質體所組成。因此,要研究龐大的地球,就必須研究不同尺度或規模的空間及其物質體,特別是要注重研究微觀的空間和物質特徵,如不同學科都要研究其相應對象的化學成分、化學元素的特性等。地質學要研究礦物晶體結構,水文學和海洋學要研究水質點的運動等,氣象學要研究氣體分子的活動等。而且,整個地球系統是一個開放的動力系統,其與宇宙環境(地-月系、太陽系及銀河系等)之間總是不斷地進行著物質、能量的交換;地球系統中各種自然現象、作用過程的發生、發展和演化與其所處的宇宙環境是分不開的。因此,現代地球科學已開始充分重視宇宙環境對地球系統的影響研究;也就是說研究的空間范圍還要超越地球系統,涉及更加宏觀的宇宙環境(圖0-1)。只有把不同尺度的研究結合起來,把宏觀和微觀結合起來,才能獲得正確的和規律性的認識。
(2)整體性(或系統性)與分異性(或差異性、多元性)
整個地球是一個有機的整體,是由不同層次的、具有緊密聯系的子系統組成的統一系統;不僅在空間上地球的內部圈層、外部圈層都表現為連續的整體性,而且地球的各內部圈層之間、內部與外部圈層之間、各外部圈層之間也都是相互作用、相互影響、相互滲透的,某一個圈層或某一個部分的運動與變化,都會不同程度地影響其他部分甚至其他圈層的變化,這也充分表現了它們的有機整體性。然而,地球也是一個非均質體,它的不同的組成部分(或子系統)無論在物質狀態還是運動和演變特點上都具有一定的差異,表現出分異性或多元性。例如,不同地區的地理環境、氣候環境具有明顯的差異,不同地區的水文條件也具有明顯差異。固體地球特別是地殼的不同地區或不同組成部分的差異性更為顯著,如大陸、海洋、山系、平原等。這種差異性不僅表現在空間和物質組成上,也表現在它們的運動、變化與形成、發展上。
(3)時間的漫長性與瞬間性
據科學測算,目前可追溯的地球年齡長達46億年。在這漫長的時間里,地球上曾發生過許多重要的自然事件,諸如海陸變遷、山脈形成、生物進化等。這些事件的發生過程多數是極其緩慢的,往往要經過數百萬年甚至數千萬年才能完成。短暫的人生很難目睹這些事件發生的全過程,而只能觀察到事件完成後留下來的結果以及正在發生的事件的某一階段的情況。但是,有些事件的發生可以在很短的時間內完成。例如,天氣現象往往表現為幾天、幾小時甚至更短的時間,地震、火山爆發等也都發生在極短的時間內。
(4)自然過程的復雜性與有序性
地球演化至今經歷了復雜的過程。其中既有物理變化,也有化學變化;既有地表常溫、常壓狀態下的作用過程,也有地下深處高溫、高壓狀態下的作用過程。此外,各種自然過程還會受地區性條件的影響而具有地區的差異性。所以,自然過程是極其復雜的,而且這種過程由於其漫長性和不可逆性,依靠人類的力量很難完全重塑和再現其過程,因而更增添了地球科學研究工作的艱巨性。但是,這些復雜的自然過程並不是雜亂無章的,它們都具有其發生、發展的條件和過程,都具有一定的規律可循,這也正是地球科學工作者的重要研究任務。
研究對象的特點決定了地球科學具有一些獨特的研究方法,並且隨著科學技術的發展和進步,地球科學的研究方法也會得到不斷的補充和推進。現擇要簡述研究方法如下:
(1)野外調查
空間的廣泛性決定了地球科學工作者首先必須到野外去觀察自然界,把自然界當做天然的實驗室進行研究,而不可能把龐大而復雜的大自然搬到室內來進行研究。野外調查是地球科學工作最基本和最重要的環節,它能獲取所研究對象的第一手資料。例如野外地質調查、水系與水文狀態調查、自然地理調查、土壤調查、資源與環境調查等。只有有針對性地到現場去認真、細致地收集原始資料,才能為正確地解決地球科學問題提供可能。
(2)儀器觀測
儀器觀測是地球科學用來獲取研究對象的定性和定量資料的重要手段,通過儀器觀測可以了解到研究對象的各種物理、化學性質,參量的靜態特徵和動態變化,為科學的分析、推理提供依據。儀器觀測為地球的研究步入科學的軌道提供了條件,例如,16~17世紀氣溫、氣壓、濕度等氣象儀器的發明與創造,使氣象學逐漸發展成為一門完善的學科。現代高精度的常規與高空氣象儀器觀測仍然是氣象學的重要研究基礎。同樣,儀器觀測在水文學、海洋學研究中也佔有特殊重要的位置。儀器觀測對於現代地球物理學、地質學的地球內部研究,對於土壤學的研究特別是對於環境地學中的各種監測與評價,都具有極其重要的作用。在現場進行的儀器觀測也屬於第一手資料,除了科學工作者根據不同的研究目的在現場進行各種觀測外,人們還常常設立各種定點觀測台站,如氣象站、水文站、地震台站、環境監測站等,並通過大量的台站建立觀測網,以便獲得系統的觀測資料。
(3)大地測量
這是地球科學中既古老而又發展迅速的一種重要研究方法,它對推動地球科學的發展起了重要作用。早在古埃及和古中國的時代,人們就藉助於步測及其他一些簡單的測量工具,進行土地規劃、地形與地理制圖、水利與工程建設等。到了近代,隨著測量儀器的進步,逐漸發展成為傳統的大地水準測量和大地三角測量。20世紀中葉發展起來的海洋測深技術(聲吶)對於海洋學的發展和地質學的革命曾起了決定性的作用。近些年發展起來的激光測距、全球定位系統(GPS)又給地球科學帶來了深刻影響。大地測量的方法對於地理學、地質學、海洋學、水文學及土壤學等的研究十分重要。
(4)航空、航天和遙感技術
現代航空、航天和遙感技術極大地推動了地球科學的發展,成為現代地球科學不可缺少或不可忽視的重要研究方法。由於地球的空間廣大,要在短時間內獲取大區域的資料,特別是大區域的動態變化情況,就必須充分利用航空、航天和遙感技術,如衛星雲圖、衛星遙感影像、航空照片等。航空、航天和遙感技術對現代氣象學的發展和進步起了決定性作用,成為其重要支柱。它們也是現代海洋學、地理學的主要研究手段,而且對於現代地質學、土壤學、水文學、環境地學等也發揮著重要作用。
(5)實驗室分析、測試與科學實驗
這是地球科學中各門學科均普遍採用的研究方法,主要是從研究對象中取得所需的各種樣品或標本,然後在實驗室進行分析、測試,以便獲取物質成分、結構、物理與化學性質以及形成歷史等方面的定性和定量資料,並通過科學實驗分析推斷其形成、演變過程和發展趨勢等。隨著科學的發展,地球科學中的實驗科學已有相當的進步。但由於自然過程的影響因素復雜,加之時間的漫長性與空間的廣泛性以及現代實驗技術水平的限制,在地球科學中有時很難進行與自然界一致的真實實驗。因此,地球科學上常採取簡化影響因素,創造一些特定的物理、化學環境,模擬自然現象的成因、過程和發展規律,這種方法稱為模擬實驗。模擬實驗只能是近似的,實驗結果往往與自然過程有一定差距,但它在再造自然現象的過程、驗證和探索地球科學規律方面發揮著重要作用。
(6)歷史比較法
這是地質學最基本的方法論。時間的漫長性決定了地質學必須用歷史的、辯證的方法來進行研究。雖然人類不可能目睹地質事件發生的全過程,但是,可以通過各種地質事件遺留下來的地質現象與結果,利用現今地質作用的規律,反推古代地質事件發生的條件、過程及其特點,這就是所謂的「歷史比較法」(或稱「將今論古」「現實主義原則」)的原理。這一原理是由英國地質學家萊伊爾(C.Lyell,1791~1875年,現代地質學的創立者)在赫頓(J.Hutton,1726~1797年,蘇格蘭地質學家,被譽為現代地質學之父)的均變論學說的基礎上提出來的(圖0-2,圖0-3)。萊伊爾明確指出:「現在是了解過去的鑰匙。」例如,現代珊瑚只生活在溫暖、平靜、水質清潔的淺海環境中,如果在古代形成的岩石中發現有珊瑚化石,便可推斷這些岩石也是在古代溫暖、清潔的淺海環境中形成的(圖0-4);又如,現在的火山噴發能形成一種特殊的岩石——火山岩,如果在一個地區發現有古代火山岩存在,我們就可以推斷當時這一地區曾發生過火山噴發作用,等等。歷史比較法是一種研究地球發展歷史的分析推理方法,它的提出,對現代地質學的發展起到了重要的促進作用。
圖0-2 英國地質學家萊伊爾
(C.Lyell,1791~1875年)
圖0-3 蘇格蘭地質學家赫頓
(J.Hutton,1726~1797年)
圖0-4 生活在溫暖、清潔淺海中的珊瑚
a—現代珊瑚;b—2億多年前的珊瑚化石
這一原理的理論基礎是「均變論」。均變論認為,在漫長的地質歷史過程中,地球的演變總是以漸進的方式持續地進行,無論是過去還是現在,其方式和結果都是一致的。但是,現代地質學的研究證明,均變論的觀點是片面和機械的。地球演變的過程是不可逆的,現在並不是過去的簡單重復,而是既具有相似性,又具有前進性。例如,地質學的多方面研究揭示,在地球演變過程中,地表大氣圈、水圈、生物圈的組成、數量、溫壓以及地球或地殼內部的結構、構造等特徵都在發生不斷的變化,與現代的狀況存在不同程度的差異,這些必然會導致當時發生地質作用的方式與過程具有一系列與今天不同的特點。地球演變的過程也並不總是以漸進、均變的形式進行,而是在均變的過程中存在著一些短暫的、劇烈的激變過程。例如,在岩層中常常發現其物質組成及結構構造發生突然性的變化;在古生物演化中也常常發現大量的生物種屬在短期內突然絕滅的現象,如6500萬年前後恐龍全部迅速絕滅等。所以整個地球的發展過程應是一個漸變—激變—漸變的前進式往復發展過程,這也符合量變—質變—量變的哲學規律。
因此,在運用歷史比較法時,必須用歷史的、辯證的、發展的思想作指導,而不是簡單地、機械地「將今論古」,這樣才能得出正確的結論。地質學的「將今論古」分析方法,實際上對於地球科學中的地球物理學、地球化學、地理學、氣象學、水文學、海洋學、土壤學、環境地學等學科的研究均具有重要的借鑒意義。
(7)綜合分析
自然過程的復雜性和不可逆性決定了地球科學必須採用綜合分析的研究方法。在漫長的地球演化過程中,不同時期、不同方式(物理、化學、生物等)、不同環境(地表、地下、空中等)的自然作用給我們留下的是一幅錯綜復雜的結果圖案。要根據這一圖案恢復和解析自然界發展的過程,就必須利用多學科的原理和方法,結合復雜的影響因素,進行綜合分析。這一點與數學、物理、化學等學科利用單純的推導、實驗等方法進行研究是大不一樣的。例如,在地質學中,由於過程和影響因素很復雜,根據某些個別特徵,利用單學科的原理和方法,往往會得出片面甚至錯誤的結論,這就是在地質學研究中經常碰到的「多解性」或「不確定性」問題。所以,只有在綜合各方面研究的基礎上,才能得出統一的、最合乎實際情況的結論。
(8)計算機技術應用
有人說20世紀後半葉以來,人類社會已步入計算機的時代,計算機技術的應用已給各門自然科學帶來了深刻的影響和革命性的變化。對地球科學也是一樣,例如,在現代氣象學、地理學、地質學、地球物理學、海洋學、環境地學等領域中,計算機技術已發揮出巨大的作用,成為不可缺少的研究手段和方法。而且計算機技術正在向地球科學的各個領域滲透。計算機技術的應用,為解決地球科學的研究對象空間廣闊、觀測處理資料量大、模擬形成演變過程復雜等問題帶來了無限的前景。因此,要想提高地球科學的研究水平,必須充分地重視、加強和進一步開拓計算機技術在地學中的應用。
20世紀末期開始在全球范圍內廣泛興起的「數字地球」(Digital Earth)計劃或「數字地球學」研究正是現代計算機技術、信息科學與地球科學相結合的產物。「數字地球」主要是探討運用現代計算機技術、信息科學對整個地球系統進行全方位的定量化、數字化描述的方法,建立相關的「數字地球」資源平台,並服務於地球科學的研究、應用。因此,「數字地球」實質上是地球系統的一種數字化的表示形式,其基本的理論支撐主要包括相互聯系的兩個方面,即與地球科學有關的理論以及與數字化技術有關的理論。比「數字地球」稍早一些興起的「地理信息系統(GIS)」的成功開發與廣泛應用,可以說為推動「數字地球」的興起與發展奠定了良好的基礎;但「數字地球」將涵蓋地球科學的所有研究分支學科或領域(而不僅僅局限於地理學),其涉及的科學內容與數據量是「地理信息系統」所無法比擬的。1998年1月,美國前副總統戈爾在「開放地理信息系統協議(Open GIS Consortium)」年會上首次提出「數字地球」的概念,認為「數字地球」是指一個以地球坐標為依據的、具有多解析度的海量數據和多維顯示的虛擬系統。數字地球的概念一經提出便立刻引起了世界范圍的廣泛關注,並取得了快速發展。數字地球的研究和實現具有十分廣泛的應用前景,如資源與環境的監測與管理,氣候和各種自然災害的預測、預報與防治,土地利用與各種生產、生活的規劃及一些危機事件的處理等;它還為地球科學的教育和多學科的研究工作提供了極好的資源平台,特別是為地球系統科學的層圈相互作用研究、全球變化研究及人類可持續發展研究創造了有利條件。
地球科學研究的工作方法通常具有下列程序:
(1)資料收集
根據所要研究的課題和所要解決的問題,盡可能詳盡、客觀和系統地收集各種有關的數據、樣品和其他資料。資料的來源包括對研究區詳細的野外調查、儀器觀測和收集、分析已有的各種資料和成果等。
(2)歸納、綜合和推論
對所收集的資料進行加工整理、歸納、綜合,並利用地球科學的研究方法和原理,作出符合客觀實際的推論。
(3)推論的驗證
通過生產實踐或科學實驗來證實或檢驗推論是否正確,並在實踐的過程中不斷地修正錯誤,提高認識,總結規律。
地球科學是一門實踐性很強的科學。人們通過不斷地科學實踐,逐漸形成了若干假說和學說。假說是根據某些客觀現象歸納得出的結論,它有待進一步驗證;而學說則是經過了一定的實踐檢驗、在一定的學術領域中形成的理論或主張。假說和學說對推動地球科學的發展起著重要的作用,它們為探索地球科學的客觀規律指出了方向,對實踐起著一定的指導作用,同時在實踐中不斷得到檢驗、補充和修正,使其日趨完善。當然,有些假說和學說也可能在實踐中被拋棄或否定。
『肆』 第四紀地質學和地貌學的研究對象、任務和內容
1. 研究對象
第四紀地質學的研究對象主要是第四紀的沉積物,這也是地球表層最為常見和分布廣泛的地質體之一。第四紀沉積物是記錄發生在第四紀時期各種地質事件的良好載體,是第四紀地質研究的天然 「實驗室」,含有豐富的地質信息。如果我們採用各種手段,如野外觀察、室內化學分析、化石分析、礦物分析等,是可以從第四紀沉積物中獲得我們所需的各種地質信息的。通過對這些信息處理、分析和研究,就能揭示地球表層在第四紀不同時期的原貌。但是在第四紀時期,地表環境復雜,氣候曾發生過劇烈變化,導致了在不同地區和不同時期有著不同的營力作用,因此在地球表層形成了各種成因類型的沉積物。這些沉積物在時間和空間上不僅發生岩性上的變化,而且在厚度、岩相上差異也很大。不僅如此,除極少的沉積物外,絕大多數的第四紀沉積物都是鬆散未固結的,而且有的尚處在形成之中。可見第四紀地質學的研究對象復雜而多變。
地貌學的研究對象是地表形態,即地形。地形就是地表的高低起伏、坡度、切割程度等方面的特徵。地球表面的地貌規模大小懸殊,大到整個球體地球,小到一條沖溝、一個倒石錐等; 形態各異,如突兀的角峰,深切的河谷,平坦的平原,奇特的雅丹,神奇的岩溶; 其成因復雜,有由河流、冰川、風等外部營力塑造的,也有由構造運動、火山活動等內部營力形成的; 地表形態始終處在不斷的發展變化之中,隨著地表營力的變化,其形態也發生變化,如山脈的高度變化,河谷深度和長度的變化,斜坡的坡度變化,平原的面積變化,等等。因此,地貌學的研究對象也是一個復雜而多變的地質體。
2. 研究任務和研究內容
在工業革命以後,人們不僅對自然資源的需求越來越多,而且還進行了大量的工程建設。在自然資源的尋找和利用以及工程建設過程中,常常會遇到很多的地貌和第四紀地質問題,如開采砂金礦需要研究沉積物的特徵,攔河築壩需要研究河谷形態特徵,工程建築需要研究地貌和第四紀沉積物特徵等。人們在解決這些實際問題的過程中,總結出了一些自然規律,如第四紀沉積物分布規律、地貌形成的規律等,並逐步上升到理論,利用這些理論更好地服務於人類。因此,第四紀地質學與地貌學的兩個主要任務是:
1)通過各種研究手段,提取各種信息,重建第四紀時期的地質演化歷史,探究演變規律,預測未來變化。在第四紀時期,環境、氣候、生物、地貌等都發生過重大的變化,這些變化構成了第四紀時期的地質演化歷史。我們不僅要知道在這個時期曾經發生過哪些地質事件,而且要探究它們發生的背景和動力機制,弄清這些地質事件的發生過程和規律,其目的就是為了對地表環境未來變化進行預測,為人類服務。
2)將理論研究應用於實踐,解決實際問題,減災防災,改善人們的生活環境。不管是過去,還是現今,地球表層的自然災害頻繁發生,如乾旱、土地沙化、泥石流、滑坡、地震、火山爆發等等,它們對人類生命及生存環境影響重大。通過對這些災害形成機理的詳細研究,可以弄清它們發生的地質背景和規律性,並對它們可能發生的空間、時間、強度進行預報,以減少人們的生命財產損失。人類工程的增多和對自然資源需求的增加,如攔河築壩、城市建設、地下工程、礦產和地下水開采等,都需要第四紀地質學和地貌學的知識。
根據第四紀地質學與地貌學的研究任務,這門學科不僅要解決一些地質學方面的理論問題,還要解決人類活動所需的實際問題。因此,第四紀地質學與地貌學的主要研究內容包括以下幾個方面:
1)第四紀沉積物的岩性、成因、分布及工作方法的研究。第四紀沉積物是賦存各種地質事件信息的重要載體,是天然的資料庫。我們不僅要研究第四紀沉積物本身的特徵,而且還要研究如何從沉積物中獲取這些地質信息的方法。通過對第四紀沉積物的研究可甄別出各種地質事件發生的原因、背景和過程。因此,第四紀沉積物的研究是第四紀地質研究的基礎。
2)第四紀氣候變遷和海平面波動的研究。第四紀時期的一個非常顯著的特徵是氣候在總體降溫的背景下發生劇烈的波動,由此引發冰期(冷期)與間冰期(暖期)、濕潤期與乾旱期、高海面與低海面之間的頻繁波動。第四紀地質學要研究氣候波動的空間尺度、時間尺度和變化幅度,及其產生的原因和變化趨勢。
3)第四紀生物界的構成和演化,以及人類及其文化演化的研究。第四紀是一個各種生物非常繁盛的時期,不僅種類繁多,而且還出現了人類。人類的出現是生物圈演化的重大事件,給整個生物圈帶來重大的影響。我們需要研究生物圈在第四紀的演化特徵、重大的生物演化事件、生物演化與環境的關系、人類及其文化演化的動力因素。
4)第四紀地層和年代學的研究。第四紀地層研究是第四紀地質學的一個重要內容,如果沉積物沒有時間框架,就失去了地質事件研究基礎,因此需要確定第四紀地層的年代,並對其進行劃分對比,建立起地層層序。為此需研究第四紀測年的方法和原理、各種測年方法的適用范圍和取樣要求。
5)地球表層地貌形態特徵、成因、分布、演化的研究。固體地球表面的地貌形態復雜,成因各異,而且還處在不斷的發展過程中。我們要研究這些地貌的形態特徵、規模、形成動力和物質基礎、影響因素、分布規律,以及演化過程等,同時還要研究地貌對人類工程以及對地質災害的影響。
6)第四紀構造運動的研究。研究第四紀斷層的活動性,地震和火山的活動規律,構造運動對地貌、氣候、環境的影響。
7)應用第四紀地質的研究。將第四紀地質學知識應用於解決人們生活和工作中的實際問題是第四紀地質學的重要目的之一,人類工程、人體健康、生態環境、自然災害、資源開發等或多或少都受到第四紀地質環境的影響,對這些方面的研究可以提高人類生存環境的質量和減少自然災害。
3. 與其他學科的關系
地球科學研究的對象是地球的各個圈層,即大氣圈、水圈、生物圈和固體地球。對每一個圈層的研究都涉及到一門或一門以上的學科,如氣象學和氣候學研究大氣圈,水文學和海洋學研究水圈,生物學和生態學研究生物圈,地質學和地球物理學則研究固體地球。第四紀地質學與地貌學均屬於地球科學范疇,它們以研究地球最近一個時代的演化歷史為主要目的,重建這個時期的地球表層及其環境演變序列,以及探究岩石圈與其他圈層間的相互作用。因此,第四紀地質學和地貌學與地球科學的多個學科都有密切的關系(圖 1-3),是一門多學科相互滲透和交叉的綜合學科。
圖 1-3 第四紀地質學及地貌學與其他學科的關系
地貌學在很大程度上是研究固體地球表面剝蝕(侵蝕)與堆積的關系,而目前的地表形態大都形成於第四紀。第四紀堆積物正是近期地貌演變的天然記錄,而一些堆積地貌形態的形成過程,也是第四紀沉積物的形成過程。因此,地貌學與第四紀地質學有著不可分割的聯系。
第四紀地質學與地貌學不僅研究的時空范圍一致,研究對象和內容相關,而且研究方法亦有許多相似的地方,如區域調查,沉積物岩性、岩相分析,動力分析,以及地球物理方法、同位素測年、遙感等新技術的應用等,都是兩者共同的研究方法。
『伍』 求一篇關於地球科學概論論文
第一節 地球科學的研究對象和研究內容
人類生活在地球上,衣食住行等一切活動都離不開地球。如人們要靠山 川大地獲取生活資料以維持生命,要從地球中開采礦物資源製造生產和生活 工具,要了解地球上的自然地理和氣候條件以便發展生產,要與地球上發生 的各種自然災害作斗爭。因而,人類在長期的實踐中逐步加深了對地球的認 識,並且逐漸形成了一門以地球為研究對象的科學——地球科學
(geoscience)。 地球科學簡稱地學,是數學、物理學、化學、天文學、地學、生物學六
大基礎自然科學之一。地球科學以地球為研究對象,包括環繞地球周圍的氣 體(大氣圈)、地球表面的水體(水圈)、地球表面形態和固體地球本身。 至於地球表面的生物體(生物圈),由於其研究內容廣、分支學科較多、且 研究方法具有特殊性,因而已獨立成一門專門的基礎自然科學——生物學。 但生物的起源與演化、生物體與生存的地球環境之間的關系也屬於地球科學 的研究范疇。
地球科學是一門理論性和應用性都很強的科學。它不僅承擔著揭示自然
界奧秘與規律的科學使命,同時也為生活在地球上的人類如何利用、適應和 改造自然提供科學的方法論。隨著生產和科學技術的發展,地球科學的研究 內容和領域也不斷地深入和擴展,逐漸形成了日臻完善的由多學科組成的綜 合性學科體系。地球科學目前主要包括地質學、地球物理學、地理學、氣象 學、水文學、海洋學、土壤學、環境地學等學科。其中,地質學(geology) 由於其研究領域廣博、分支學科較多,並且以研究地球的本質特徵為目的, 因而成為地球科學的主要組成部分,以至於人們有時把地質學和地球科學作 為同義語使用,其實兩者的含義是有差別的,它們具有包容關系。隨著科學 的發展,地球科學還會不斷地誕生新的學科和出現一些邊緣學科。
地理學(geography)主要研究地球表面的各種地形、地理環境及其結構、
分布和演變規律,並涉及到自然和社會兩個領域之間的相互關系。地理學一 般可分為自然地理學和人文地理學兩大組成部分。自然地理學是研究自然地 形、地理環境的結構及發生、發展規律的學科,主要包括普通自然地理學、 區域自然地理學、地誌學等。人文地理學是研究人和社會與自然地形、地理 之間的相互關系的學科,主要包括政治地理學、社會地理學、人口與聚落地 理學、經濟地理學、歷史地理學等。
氣象學(meteorology)以地球周圍的大氣圈為研究對象,主要研究大氣 的各種物理性質、物理現象及其變化規律。其研究內容也很廣泛,包括許多 分支學科和應用學科。主要的分支學科有大氣物理學、天氣學、氣候學、高 空氣象學、動力氣象學等,主要的應用學科有衛星氣象學、無線電氣象學、 航空氣象學、海洋氣象學、農業氣象學、林業氣象學等。其目的在於揭示大 氣中的各種物理現象和物理過程的發生、發展本質,從而掌握並應用它為人 類生活和國家經濟建設服務。
水文學(hydrology)和海洋學(oceanography)以地球表面分布的水體 為研究對象。水文學主要研究地球上江河、湖沼、冰川、地下水以及海洋等 各種水體的數量、質量、運動變化與分布規律,以及它們與地理環境、生態
系統和人類社會之間的相互影響與相互聯系。海洋學是以海洋作為一個獨立 體進行研究的,它實際上是從地球科學的其它幾個分支學科中獨立出來的, 這是由於海洋在現代地球科學、人類生存環境和未來社會發展中的地位越來 越重要的緣故。海洋學是研究海洋中發生的各種現象和規律及其相互關系的 各門學科的總稱,根據研究內容不同可分為海洋物理學、海洋水文學、海洋 化學、海洋生物學、海洋氣象學和海洋地質學等。
土壤學(soil science)以地球表面發育的土壤層為研究對象。主要研 究土壤的物質組成、結構、類型、分布和形成發展過程。根據具體研究內容 和應用領域的不同,土壤學也有一些分支學科,如土壤生物學、土壤地理學、 土壤氣候學、土壤物理學、土壤化學、土壤地質學等。
地球物理學(geophysics)是應用物理學的方法研究地球的一門學科, 是近代發展起來的地球科學與物理學相結合的一門重要邊緣學科。廣義的地 球物理學的研究對象包括固體地球及其表部的水體和周圍的大氣圈。但由於 水體和大氣圈的研究都已建立起相應的獨立學科,所以一般所稱的地球物理 學是狹義的,其主要研究對象是固體地球,因而也可稱之為固體地球物理學。 地球物理學重點研究固體地球的各種物理性質、物理現象及其發生與發展過 程、地球的內部構造與組成、地球的起源與演化等。其主要分支學科有地震 學、地磁學、重力學、地熱學、地電學、大地測量學、大地構造物理學和應 用地球物理學等。其中,應用地球物理學主要是研究地球物理勘探方法及其 在地球資源的勘探與開發、地球環境的監測與保護等方面的應用。
地質學(geology)研究的主體對象也是固體地球,當前主要是研究固體
地球的表層——地殼或岩石圈。地殼或岩石圈的厚度一般為幾十到二百公里 左右,與地球的半徑(6371km)相比只是一個很薄的表殼。這一薄殼之所以 成為地質學當前研究的主要對象,一方面是出於實際需要,因為這一層與人 類的生活、生產及生存都直接相關;另一方面是受現時人類能力的限制。人 們可以直接觀測和研究地球表層,但現階段人類尚無能力對地下深處進行直 接研究。鑽井取樣是目前人們獲取地球較深部物質進行直接研究的唯一途 徑,但由於受當前技術水平的限制,鑽井所能達到的深度是有限的。目前世 界上最深的鑽井(12.5km)位於俄羅斯西北部的科拉半島,這一深度尚不足 該區大陸地殼厚度的二分之一。可以相信,隨著科學技術的發展,地質學研 究的對象將不斷向地球的深部(如地幔、地核)擴展。
地質學的研究內容主要包括固體地球(重點是地殼或岩石圈)的物質組
成、內部構造和形成演化歷史。按其研究內容和任務的不同,地質學的主要 分支學科可簡舉如下:
(1)研究地球的物質組成方面的學科,如結晶學、礦物學、岩石學等;
(2)研究地球的內部構造方面的學科,如構造地質學、構造物理學、區 域構造學、地球動力學等;
(3)研究地球的形成演化方面的學科,如古生物學、地層學、地史學、 古地理學、地貌及第四紀地質學等;
(4)研究地質學的應用方面的學科,可分為兩個方面:其一是研究地下 資源方面的分科,如礦床學、石油地質學、煤田地質學、水文地質學等;其 二是研究地質與人類生活環境及災害防護方面的分科,如工程地質學、環境 地質學、地震地質學等。
此外,人們為了更好地研究上述地質學的各個方面,不斷地吸收和借鑒
其它一些學科的先進理論、方法和技術,用以促進和深化地質學的各項研究, 於是逐漸形成了一系列的邊緣學科,如數學地質、地球化學、同位素地質學、 天文地質學、海洋地質學、遙感地質學及實驗地質學等,這些邊緣學科在現 代地質學各領域的研究中發揮著極其重要的作用。
近幾十年來,由於世界各國工業、農業、軍事、航天、交通等產業的飛 速發展,其結果給地球的自然環境帶來了巨大的影響。這種影響有些是直接 的(如污染問題)、有些是間接的(如氣候變化),它已經嚴重地影響到地 球的自然生態和人類的生存與發展,因而受到科學工作者和全人類的廣泛關 注。這一問題與地球科學和環境科學關系密切,於是在地球科學中逐漸形成 了一門與環境科學相結合的邊緣學科,即環境地學。環境地學主要研究地球 自然環境的組成、結構、形成、演變以及環境的破壞、污染、防止、保護、 改良與評價等。根據地球科學中各學科所研究的側重點不同,又可分為環境 地質學、環境地理學、環境氣象學、環境水文學、環境海洋學、環境土壤學 等。
朋友! 這些比較詳細缺點就是多點 呵呵不知道你用不用
『陸』 地球科學的研究對象和研究內容
人類生活在地球上,衣食住行等一切活動都離不開地球。如人們要靠山川大地獲取生活資料以維持生命,要從地球中開采礦物資源製造生產和生活工具,要了解地球上的自然地理和氣候條件以便發展生產,要與地球上發生的各種自然災害作斗爭。因而,人類在長期的實踐中逐步加深了對地球的認識,並且逐漸形成了一門以地球為研究對象的科學——地球科學(geoscience)。
地球科學簡稱地學,是數學、物理學、化學、天文學、地學、生物學六大基礎自然科學之一。地球科學以地球為研究對象(圖0-1),包括環繞地球周圍的氣體(大氣圈)、地球表面的水體(水圈)、地球表面形態和固體地球本身。至於地球表面的生物體(生物圈),由於其研究內容廣、分支學科較多、研究方法具有特殊性,因而已獨立成一門專門的基礎自然科學——生物學。但生物的起源與演化、生物體與生存的地球環境之間的關系也屬於地球科學的研究范疇。
圖0-1 地球系統(包括各圈層子系統)及其宇宙環境
作為地球科學研究對象的地球,實際上由多個性質不同的圈層組成;從地心到大氣層的最外側,可分為地核(包括內核、過渡層和外核)、地幔(包括下地幔和上地幔)、地殼(或岩石圈)、水圈、生物圈(包括人類圈)和大氣圈等,它們共同組成一個相互依存、相互作用的統一系統,稱為地球系統;地球系統的各個圈層屬於其子系統,子系統還可進一步分為不同的級次。整個地球系統處於不斷地運動、變化過程之中。地球空間以外的地月系、太陽系、銀河系等構成了地球系統的宇宙環境。現代地球科學為了更深入地認識地球系統的運動、變化特徵與規律,已將其研究對象擴展到了地球系統的宇宙環境(圖0-1)。
地球科學是一門理論性和應用性都很強的科學。它不僅承擔著揭示自然界奧秘與規律的科學使命,同時也為生活在地球上的人類如何利用、適應和改造自然提供科學的方法論。隨著生產和科學技術的發展,地球科學的研究內容和領域也在不斷地深入和擴展,逐漸形成了日臻完善的由多學科組成的綜合性學科體系。地球科學目前主要包括地質學、地球物理學、地球化學、地理學、氣象學(或稱大氣科學)、水文學、海洋學、土壤學、環境地學、地球系統科學等學科。其中,地質學由於其研究領域廣博、分支學科較多,並且以研究地球的本質特徵為目的,因而成為地球科學的主要組成部分,以至於人們有時把地質學和地球科學作為同義語使用,其實兩者的含義是有差別的,它們具有包容關系。隨著科學的發展,地球科學還會不斷地誕生新的學科和出現一些邊緣學科。
地理學(geography)主要研究地球表面的各種地形、地理環境及其結構、分布和演變規律,並涉及自然和社會兩個領域之間的相互關系。地理學一般可分為自然地理學和人文地理學兩大組成部分。自然地理學是研究自然地形、地理環境的結構及發生、發展規律的學科,主要包括普通自然地理學、區域自然地理學、地誌學等。人文地理學是研究人和社會與自然地形、地理之間的相互關系的學科,主要包括政治地理學、社會地理學、人口與聚落地理學、經濟地理學、歷史地理學等。
氣象學(meteorology)以地球周圍的大氣圈為研究對象,主要研究大氣的物質組成、各種物理性質、物理現象及其變化規律。其研究內容很廣泛,包括許多分支學科和應用學科;其目的在於揭示大氣中的各種物理現象和物理過程的發生、發展本質,從而掌握並應用它為人類生活和國家經濟建設服務。氣象學的主要分支學科有大氣物理學、天氣學、氣候學、高空氣象學、動力氣象學等;主要的應用學科有衛星氣象學、無線電氣象學、航空氣象學、海洋氣象學、農業氣象學、林業氣象學等。
水文學(hydrology)和海洋學(oceanography)以地球表面分布的水體為研究對象。水文學主要研究地球上江河、湖沼、冰川、地下水以及海洋等各種水體的數量、質量、運動變化與分布規律,以及它們與地理環境、生態系統和人類社會之間的相互影響與相互聯系。海洋學是以海洋作為一個獨立體進行研究的,它實際上是從地球科學的其他幾個分支學科中獨立出來的,這是由於海洋在現代地球科學、人類生存環境和未來社會發展中的地位越來越重要的緣故。海洋學是研究海洋中發生的各種現象和規律及其相互關系的各門學科的總稱,根據研究內容不同可分為物理海洋學、海洋水文學、海洋化學、海洋生物學、海洋氣象學和海洋地質學等。
土壤學(soil science)以地球表面發育的土壤層為研究對象。主要研究土壤的物質組成、結構、類型、分布和形成發展過程。根據具體研究內容和應用領域的不同,土壤學也有一些分支學科,如土壤生物學、土壤地理學、土壤氣候學、土壤物理學、土壤化學、土壤地質學等。
地球物理學(geophysics)是應用物理學的方法研究地球的一門學科,是近代發展起來的地球科學與物理學相結合的一門重要邊緣學科。廣義的地球物理學的研究對象包括固體地球及其表部的水體和周圍的大氣圈。但由於水體和大氣圈的研究都已建立起相應的獨立學科,所以一般所稱的地球物理學是狹義的,其主要研究對象是固體地球,因而也可稱之為固體地球物理學。地球物理學重點研究固體地球的各種物理性質、物理現象及其發生與發展過程、地球的內部構造與組成、地球的起源與演化等。其主要分支學科有地震學、地磁學、重力學、地熱學、地電學、大地測量學、大地構造物理學和應用地球物理學等。其中,應用地球物理學主要是研究地球物理勘探方法及其在地球資源的勘探與開發、地球環境的監測與保護等方面的應用。
地球化學(geochemistry)是應用化學的方法研究地球的一門學科,也是近代發展起來的地球科學與化學相結合的一門邊緣學科。地球化學主要是研究地球及其子系統(含部分宇宙體)的化學組成、化學作用和化學演化的科學。其主要分支學科有元素地球化學、同位素地球化學、岩石地球化學、礦床地球化學、區域地球化學、海洋地球化學、生物地球化學、環境地球化學、宇宙化學、地球化學熱力學等。
地質學(geology)研究的主體對象也是固體地球,當前主要是研究固體地球的表層——地殼或岩石圈。地殼或岩石圈的厚度一般為幾十千米到300 km左右,與地球的半徑(平均約6371 km)相比只是一個很薄的表殼。這一薄殼之所以成為地質學當前研究的主要對象,一方面是出於實際需要,因為這一層與人類的生活、生產及生存直接相關;另一方面是受現時人類能力的限制。人們可以直接觀測和研究地球表層,但現階段人類尚無能力對地下深處進行直接研究。鑽井取樣是目前人們獲取地球較深部物質進行直接研究的唯一途徑,但由於受當前技術水平的限制,鑽井所能達到的深度是有限的。目前世界上最深的鑽井(12.5 km)位於俄羅斯西北部的科拉半島,這一深度尚不足該區大陸地殼厚度的1/2。可以相信,隨著科學技術的發展,地質學研究的對象將不斷向地球的深部(如地幔、地核)擴展。
地質學的研究內容主要包括固體地球(重點是地殼或岩石圈)的物質組成、內部構造和形成演化歷史。按其研究內容和任務的不同,地質學的主要分支學科可簡單列舉如下:
1)研究地球的物質組成方面的學科,如結晶學、礦物學、岩石學等;
2)研究地球的內部構造方面的學科,如構造地質學、構造物理學、區域構造學、地球動力學等;
3)研究地球的形成演化方面的學科,如古生物學、地層學、地史學、古地理學、地貌學及第四紀地質學等;
4)研究地質學的應用方面的學科,可分為兩個方面:其一是研究地下資源方面的分科,如礦床學、石油地質學、煤田地質學、水文地質學等;其二是研究地質與人類生活環境及災害防護方面的分科,如工程地質學、環境地質學、地震地質學等。
此外,人們為了更好地研究上述地質學的各個方面,不斷地吸收和借鑒其他一些學科的先進理論、方法和技術,用以促進和深化地質學的各項研究,於是逐漸形成了一系列的邊緣學科,如數學地質、同位素地質學、天文地質學、遙感地質學及實驗地質學等,這些邊緣學科在現代地質學各領域的研究中發揮著極其重要的作用。
環境地學(environmental geoscience)是地球科學和環境科學相結合形成的一門邊緣性學科。主要緣於20世紀中葉以來,由於世界各國工業、農業、軍事、航天、交通等產業的飛速發展,給地球的自然環境帶來了巨大的影響,這種影響有些是直接的(如污染問題)、有些是間接的(如氣候變化),已經嚴重地影響到地球的自然生態和人類的生存與發展,因而受到全人類的廣泛關注。環境地學主要研究地球自然環境的組成、結構、形成、演變以及環境的破壞、污染、防止、保護、改良與評價等。根據地球科學中各學科所研究的側重點不同,又可分為環境地質學、環境地理學、環境氣象學、環境水文學、環境海洋學、環境土壤學等。
地球系統科學(earth system science)主要是地球科學在20世紀後期以來逐漸興起和發展的一門綜合性邊緣分支學科。地球系統科學把地球看成一個由相互作用的地核、地幔、地殼(或岩石圈)、土壤圈、水圈、大氣圈和生物圈(包括人類社會)等所組成的統一系統;重點研究地球各組成部分(即子系統)之間的相互作用、宇宙環境對地球系統的作用與地球系統的動力學過程,地球系統不同時空尺度的演化與全球變化等;其目的是了解整個地球系統的過去、現在及未來的行為,服務於人類社會的可持續發展(圖0-1)。
地球系統科學強調用系統論的觀點來考慮問題,用系統的方法來描述問題、解析問題,最後作出科學的預測。一些學者進一步將地球系統科學的這種系統方法論詮釋為整體觀(各子系統的統一性與相關性)、全球觀(全球尺度)、動態演化觀、復雜性觀、相互作用觀(子系統之間的相互作用)、行星地球-宇宙觀(宇宙環境的影響)、學科交叉與綜合觀等。雖然地球系統科學的某些領域的研究已取得了許多重要進展(如地球系統的動力學、全球變化科學、數字地球學等),但我們必須認識到其目前尚處於創立與發展過程中,有關地球系統科學研究的方法論、研究領域與研究內容、分支學科等都尚未形成完整的體系,仍處在探索與發展之中。
『柒』 地球化學的基本思想及主要研究內容
自然科學的學科發展都會受到所處時代科學和技術總體水平的制約及社會需求的推動,因而在其發展的不同階段,每門學科的主導思想、主要任務、研究內容和范圍,甚至定義不是一成不變的。可以根據不同發展階段地球化學家給出的地球化學定義,或關於地球化學主題和任務的表述,來把握地球化學的基本學術思想、研究內容、范圍和任務及其發展趨勢。
地球化學奠基人之一,蘇聯維爾納斯基 (В.И.Вернадский)於 1922年給出的地球化學定義為:「地球化學科學地研究地殼中的化學元素,即地殼的原子,在可能范圍內也研究整個地球的原子。地球化學研究原子的歷史,它們在空間和時間上的分配和運動,以及它們在地球上的成因」。同期該學派另一代表人物費爾斯曼 (Α.Е.Ферсман)提出了類似的定義:「地球化學研究地殼中化學元素——原子的歷史及其在自然界各種不同的熱力學和物理化學條件下的行為」。
地球化學的另一重要奠基人 (北歐學派)戈爾德施密特 (V.M.Goldschmidt)於1933年給出的地球化學定義為:「地球化學的主要目的,一方面是要定量地確定地球及其各部分的成分,另一方面是要發現控制各種元素分配的規律」。在他逝世後 1954年出版的《地球化學》中,對地球化學學科做了如下闡述:「地球化學的主要目標是,一方面定量地確定地球及其各部分的成分,另一方面發現控制各種元素分配的規律。要解決這些問題,地球化學家就需要綜合搜集地球物質,諸如岩石、水和大氣等的分析測試數據,還需要進行隕石分析,以及應用其他宇宙體成分方面的天體物理學數據和有關地球內部物質性質方面的地球物理學數據。許多有價值的信息還來自一些礦物的合成實驗,以及對合成礦物形成方式和穩定條件的研究」。
隨著20 世紀 50~60年代地球化學的迅猛發展,1973年美國國家科學院委託地球科學部地球化學委員會組成小組,專門研究當時地球化學的發展狀況,並指出地球化學未來的發展方向,發表了《地球化學發展方向》(Orientations in Geochemistry)一書。該書對當時地球化學主要領域的重要進展做了總結,並根據當時地球化學發展的特徵給出了地球化學定義:「地球化學是關於地球和太陽系的化學成分及化學演化的一門科學,它包括了所有對它做出貢獻的科學的化學方面 (編者注:這里所指的對地球化學做出貢獻的科學包括化學、生物學、物理學、天文學、醫學、大氣科學、環境科學等,因這些科學的數據和成果為地球化學所引用和借鑒)」。同時該書還補充指出:「地球化學包括太陽系由之形成的宇宙塵化學,增生著的地球、月球和行星的化學,地殼、地幔和地核的化學,岩石循環的化學 (包括侵蝕、搬運、沉積和隆起),海洋和大氣圈的化學演化,岩石中有機物質的化學。於是,一切包容於地球和行星演化范疇中的化學就是地球化學」。
1982年由我國著名地球化學家塗光熾院士等編著的《地球化學》,將地球化學的定義概括為:「地球化學是研究地球 (也包括部分天體)的化學組成、化學作用及化學演化的學科」。
由上述地球化學定義和內涵的發展可以看出,在不到百年的短短發展過程中,有關地球化學的基本思想、主要研究對象、內容、任務和范圍均發生了重大變化,表現為:地球化學研究對象已由強調地球的元素 (原子)的地球化學行為擴展到強調地球及其子系統的化學;地球化學學術思想已由地球中元素原子分配、遷移的歷史觀提升到地球系統及其子系統化學演化的歷史觀;地球化學的主要研究內容和任務已由確定地球的化學成分或元素豐度及闡明元素分配規律轉變為強調研究地球的化學組成、化學作用及化學演化;地球化學的研究范圍則由早期僅限於地殼已發展到現今研究地球的各個層圈及眾多的天體。
因此,如何能從認識上理清和把握地球化學思想和內涵演變的脈絡,協調處理地球化學早期階段和現階段思想、對象、內容和任務的相互關系,是推動我國現代地球化學研究發展的關鍵。要全面地解決上面提出的問題,必須聯系基礎自然科學整體和地球科學發展歷史和現狀,結合當前社會經濟發展的需求,從現代地球化學發展的理論和方法技術中尋求答案。
『捌』 地球科學的核心思維方法是什麼,闡述其主要內容
地質學是關於地球的物質組成、內部構造、外部特徵、各層圈之間的相互作用和演變歷史的知識體系,是研究地球及其演變的一門自然科學。
作為一門復雜的學科,隨著學科的發展,用於研究的科學思維方法和研究方法逐步完善。其中科學思維主要包括邏輯思維、形象思維、直覺思維等三種基本的思維方式。邏輯思維又可進一步分為分析綜合、歸納演繹、類比等,
另外,報告還論述了歷史比較法在地學研究中的應用。科學思維是人類認識自然界的重要途徑,科研人員只有具備了科學思維,才能在科學研究中有所發現,有所突破,推動科技的進步。對於科學思維的定義,不同的研究者具有不同的闡述。
劉冠軍等(2000)認為科學思維是建立在科學理論知識基礎之上的思維,是科學勞動者或科學認識主體思維的科學化或最優化。胡衛平等(2003)認為所謂科學思維,就是具有意識的人腦對自然界中事物(包括對象、過程、現象、事實等)的本質屬性、內在規律及自然界中事物間的聯系和相互關系的間接的、概括的和能動的反映。Dubnra等(2005)認為科學思維表現為對科學內容進行推理時使用到的心理過程(如實驗設計),或者常常在科學領域使用到的特殊類型的推理(如推斷在冥王星之外還有一個行星)。
它包括了很多一般目的的認知操作,人類將這些操作應用在諸如歸納、演繹、類比、問題解決以及因果推理中。袁薇薇(2007)進行了進一步總結,認為科學思維包括了科學領域中,在產生假設、實驗設計、證據評估、推斷思辨、得出科學結論等過程中的一切思維技能,它既包含了很多一般目的的策略與運算元,同時也是一種非演算法性的、復雜的、需要努力的高級思維,其核心是在對一個多變數系統進行推斷時所表現出的科學推理能力。
『玖』 地球科學是什麼
在蒼茫的宇宙之中,迄今只發現地球上有人類繁衍生息,這不能不說是地球的獨特與幸運。地球科學是行星科學的分支,它是以人類之家——地球系統(包括大氣圈、水圈、岩石圈、生物圈和日地空間)演變的過程與變化及其相互作用為研究對象的科學體系。從不同角度對地球內外不同圈層和范圍進行研究而形成的各個學科,則是地球科學體系的分支和組成部分。由於地球科學系統本身的復雜性,深入研究其某一部分的學科便不斷形成、發展,有的則逐漸分化形成相對獨立的學科。與此同時,基於地球各部分(大氣、水、岩石和生物)之間存在的客觀聯系,特別是不同學科或方法的互相借鑒、交叉與滲透,遂漸形成一些新的交叉或邊緣學科。這樣一來,由地球科學便延伸出了眾多的分支及相關學科,組成了一個復雜的科學體系。目前多數學者認為,地球科學主要包括地理學、地質學、大氣科學、海洋科學、水文科學、固體地球物理學,而環境科學和測繪學也與地球科學有著極為密切的關系。這些學科的最終目的就是解決這樣一個問題:地球是如何演化的?這些過程又對生命產生怎樣的影響?