① 數據分析的方法有哪些
數據分析是指通過統計分析方法對收集到的數據進行分析,將數據加以匯總、理解並消化,通過數據分析可以幫助人們作出判斷,根據分析結果採取恰當的對策,常用的數據分析方法如下:
將收集到的數據通過加工、整理和分析的過程,使其轉化為信息,通常來說,數據分析常用的方法有列表法和作圖法,所謂列表法,就是將數據按一定規律用列表方式表達出來,是記錄和處理數據最常用的一種方法;
表格設計應清楚表明對應關系,簡潔明了,有利於發現要相關量之間的關系,並且在標題欄中還要註明各個量的名稱、符號、數量級和單位等;
而作圖法則能夠醒目地表達各個物理量間的變化關系,從圖線上可以簡便求出實驗需要的某些結果,一些復雜的函數關系也可以通過一定的變化用圖形來表現。
想要了解更多關於數據分析的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。
② 數據分析的分析方法都有哪些
很多數據分析是在分析數據的時候都會使用一些數據分析的方法,但是很多人不知道數據分析的分析方法有什麼?對於數據分析師來說,懂得更多的數據分析方法是很有必要的,而且數據分析師工作工程中會根據變數的不同採用不同的數據分析方法,一般常用的數據分析方法包括聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析等,我們要學會使用這些數據分析之前一定要懂得這些方法的定義是什麼。
第一先說因子分析方法,所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。
第二說一下回歸分析方法。回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
接著說相關分析方法,相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。
然後說聚類分析方法。聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。
接著說方差分析方法。方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
最後說一下對應分析方法。對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
通過上述的內容,我們發現數據分析的方法是有很多的,除了文中提到的聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析等分析方法以外,還有很多的數分析方法,而上面提到的數據分析方法都是比較經典的,大家一定要多多了解一下此類相關信息的發生,希望這篇文章能夠給大家帶來幫助。
③ 數據分析方法論 如何做實驗研究
數據分析方法論:如何做實驗研究
數據分析的核心就是:通過比較法,理清因果關系。
常用的比較法就有觀察分析和實驗研究。觀察分析就是將原始數據進行加工,經過數據分解,評估,最終得出結論的過程,優點就是省事方便,缺點也比較明顯,主觀性比較強,面對較真的上司,可能並不能說服她。實驗研究則是對觀察分析的補充和改進,在充分分析數據的基礎上,進行實驗研究進而得出更為有力的結論。
實驗研究的核心同樣是比較,但是要講究方式。因為在一個問題的背後可能有一些不是數據能反應出來的因素,比如環境,人為等等不可控因素。因此要想找到可行高效的研究方法需要將這些雜質(數據分析中叫混雜因素)摒除掉,這樣得出的結論才更為准確,魯棒性更好。
為此,我們需要進行如下三部曲
分析數據,確定問題選定中間區域,兩極區域,將兩級區域作為控制組在中間區域按照方案區分實驗組總結報告,得出結論下面依次說明一下每一個步驟的要點所在。
分析數據,確定問題有時候上司說的話我們不能全信,但是要相信數據說的話。因此,對於老闆提出的問題,我們要根據數據進行分析和確認。如果經過分析確實如他所說,那我們後期的努力起碼方向不會錯,而且也能按照上司的預期給出答案;否則就是一個吃力不討好的活。
至於如何分析數據,確認問題,給出方案,這不是本文的重點,大家可以另行學習,這里不作贅述。
比如:這一步我們給出方案A和B。
選定中間區域,兩極區域,將兩極區域作為控制組所謂的控制組就是對該區域不做任何處理,將其作為標稱對象,以便後期進行橫向比較;
什麼叫中間區域,什麼叫兩極區域?
我理解兩極區域就是這個問題表現的最為嚴重和最不嚴重的兩個區域。其他都可以稱為中間區域。
為什麼要做出這樣的區分?
因為通常對於極端事物的出現必然有很明顯的原因,根本不用作為實驗對象,毫無意義。而且在極端區域,極端現象出現的原因很可能要遠大於導致問題出現的真正的原因,所以,不僅研究這種極端現象毫無意義可言,而且還可能導致你的不出真正的解決方案,那你就out了!
比如在一個富人區,無論你的產品價值感有多麼低,也不會出現什麼銷量下降的,因為錢對於他們來說根本不是問題。那你怎麼實驗都不會得出結論。或許你定價再高點,反而銷量會更好,因為逼格更高了!!!!所以我們不能動它,無論它是銷量高還是銷量低,我將其作為比較對象即可。
中間區域則是最不能忽略的,就如同產品裡面新手用戶,中間用戶和專家用戶的分類一樣,原因就不作表述了。
在中間區域按照解決方案區分實驗組在中間區域做實驗,一切就緒,但是一個區域毫無比較可言,高中做生物實驗也要講究控制變數法。那好吧,必須也要將實驗區域分為實驗組和控制組。
所謂實驗組就是將中間區域按照解決方案的數量隨機分開等份的組別,分別對兩個區域應用解決方案A和B。
由於他們同屬於一個大的區域,因此,混雜因素的影響是等同的,因此也就不必擔心其他不可控因素帶來對解決方案的負面影響。
總結報告,得出結論說一千道一萬,這是最重要的一步,也是檢驗成果,助你步步高升的一步。但是俗話說磨刀不誤砍材工,因此前面幾步的質量直接決定了解決方案的成效。解決方案要按照在試驗區域的結果進行制定,對於那些極端區域,好的可以繼續保持,壞的可以雙管齊下,因地制宜啦。
bla了這么多,其實想說的就是在數據分析做實驗階段,最重要的是一個控制變數法,這真的是一把萬能的鑰匙,但是開鎖的方式還是得自己選,你准備好了么?
以上是小編為大家分享的關於數據分析方法論 如何做實驗研究的相關內容,更多信息可以關注環球青藤分享更多干貨
④ 實驗方法和數據分析方法,看看其中數據情況,怎麼處理的
實驗數據處理的幾種方法
物理實驗中測量得到的許多數據需要處理後才能表示測量的最終結果。對實驗數據進行記錄、整理、計算、分析、擬合等,從中獲得實驗結果和尋找物理量變化規律或經驗公式的過程就是數據處理。它是實驗方法的一個重要組成部分,是實驗課的基本訓練內容。本章主要介紹列表法、作圖法、圖解法、逐差法和最小二乘法。
1.4.1 列表法
列表法就是將一組實驗數據和計算的中間數據依據一定的形式和順序列成表格。列表法可以簡單明確地表示出物理量之間的對應關系,便於分析和發現資料的規律性,也有助於檢查和發現實驗中的問題,這就是列表法的優點。設計記錄表格時要做到:
(1)表格設計要合理,以利於記錄、檢查、運算和分析。
(2)表格中涉及的各物理量,其符號、單位及量值的數量級均要表示清楚。但不要把單位寫在數字後。
(3)表中數據要正確反映測量結果的有效數字和不確定度。列入表中的除原始數據外,計算過程中的一些中間結果和最後結果也可以列入表中。
(4)表格要加上必要的說明。實驗室所給的數據或查得的單項數據應列在表格的上部,說明寫在表格的下部。
1.4.2 作圖法
作圖法是在坐標紙上用圖線表示物理量之間的關系,揭示物理量之間的聯系。作圖法既有簡明、形象、直觀、便於比較研究實驗結果等優點,它是一種最常用的數據處理方法。
作圖法的基本規則是:
(1)根據函數關系選擇適當的坐標紙(如直角坐標紙,單對數坐標紙,雙對數坐標紙,極坐標紙等)和比例,畫出坐標軸,標明物理量符號、單位和刻度值,並寫明測試條件。
(2)坐標的原點不一定是變數的零點,可根據測試范圍加以選擇。,坐標分格最好使最低數字的一個單位可靠數與坐標最小分度相當。縱橫坐標比例要恰當,以使圖線居中。
(3)描點和連線。根據測量數據,用直尺和筆尖使其函數對應的實驗點准確地落在相應的位置。一張圖紙上畫上幾條實驗曲線時,每條圖線應用不同的標記如「+」、「×」、「·」、「Δ」等符號標出,以免混淆。連線時,要顧及到數據點,使曲線呈光滑曲線(含直線),並使數據點均勻分布在曲線(直線)的兩側,且盡量貼近曲線。個別偏離過大的點要重新審核,屬過失誤差的應剔去。
⑤ 數據分析方法有哪些
一、描述性統計
描述性統計是一類統計方法的匯總,揭示了數據分布特性。它主要包括數據的頻數分析、數據的集中趨勢分析、數據離散程度分析、數據的分布以及一些基本的統計圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹法。
2、正態性檢驗:很多統計方法都要求數值服從或近似服從正態分布,所以在做數據分析之前需要進行正態性檢驗。常用方法:非參數檢驗的K-量檢驗、P-P圖、Q-Q圖、W檢驗、動差法。
二、回歸分析
回歸分析是應用極其廣泛的數據分析方法之一。它基於觀測數據建立變數間適當的依賴關系,以分析數據內在規律。
1. 一元線性分析
只有一個自變數X與因變數Y有關,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
2. 多元線性回歸分析
使用條件:分析多個自變數X與因變數Y的關系,X與Y都必須是連續型變數,因變數Y或其殘差必須服從正態分布。
3.Logistic回歸分析
線性回歸模型要求因變數是連續的正態分布變數,且自變數和因變數呈線性關系,而Logistic回歸模型對因變數的分布沒有要求,一般用於因變數是離散時的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權回歸等。
三、方差分析
使用條件:各樣本須是相互獨立的隨機樣本;各樣本來自正態分布總體;各總體方差相等。
1. 單因素方差分析:一項試驗只有一個影響因素,或者存在多個影響因素時,只分析一個因素與響應變數的關系。
2. 多因素有交互方差分析:一頊實驗有多個影響因素,分析多個影響因素與響應變數的關系,同時考慮多個影響因素之間的關系
3. 多因素無交互方差分析:分析多個影響因素與響應變數的關系,但是影響因素之間沒有影響關系或忽略影響關系
4. 協方差分祈:傳統的方差分析存在明顯的弊端,無法控制分析中存在的某些隨機因素,降低了分析結果的准確度。協方差分析主要是在排除了協變數的影響後再對修正後的主效應進行方差分析,是將線性回歸與方差分析結合起來的一種分析方法。
四、假設檢驗
1. 參數檢驗
參數檢驗是在已知總體分布的條件下(一股要求總體服從正態分布)對一些主要的參數(如均值、百分數、方差、相關系數等)進行的檢驗 。
2. 非參數檢驗
非參數檢驗則不考慮總體分布是否已知,常常也不是針對總體參數,而是針對總體的某些一般性假設(如總體分布的位罝是否相同,總體分布是否正態)進行檢驗。
適用情況:順序類型的數據資料,這類數據的分布形態一般是未知的。
1)雖然是連續數據,但總體分布形態未知或者非正態;
2)總體分布雖然正態,數據也是連續類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗、秩和檢驗、二項檢驗、遊程檢驗、K-量檢驗等。
⑥ 實驗數據分析方法有哪些
1、細分剖析
細分剖析是數據剖析的根底,單一維度下的目標數據信息價值很低。細分辦法能夠分為兩類,一類是逐步剖析,比方:來北京市的訪客可分為向陽,海淀等區;另一類是維度穿插,如:來自付費SEM的新訪客。
細分用於處理一切問題。比方漏斗轉化,實際上便是把轉化進程依照過程進行細分,流量途徑的剖析和評價也需要很多的用到細分辦法。
2、比照剖析
比照剖析主要是指將兩個彼此聯系的目標數據進行比較,從數量上展示和闡明研討目標的規劃巨細,水平高低,速度快慢等相對數值,通過相同維度下的目標比照,能夠發現,找出事務在不同階段的問題。常見的比照辦法包括:時間比照,空間比照,標准比照。
3、漏斗剖析
轉化漏斗剖析是事務剖析的基本模型,最常見的是把最終的轉化設置為某種意圖的實現,最典型的便是完成買賣。但也能夠是其他任何意圖的實現,比方一次運用app的時間超越10分鍾。
⑦ 調研報告數據分析方法有哪些
1、簡單趨勢
通過實時訪問趨勢了解供應商及時交貨情況。如產品類型,供應商區域(交通因子),采購額,采購額對供應商佔比。
2、多維分解
根據分析需要,從多維度對指標進行分解。例如產品采購金額、供應商規模(需量化)、產品復雜程度等等維度。
3、轉化漏斗
按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有不同供應商及時交貨率趨勢等。
4、用戶分群
在精細化分析中,常常需要對有某個特定行為的供應商群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。
5、細查路徑
數據分析可以觀察供應商的行為軌跡,探索供應商與本公司的交互過程;進而從中發現問題、激發靈感亦或驗證假設。
6、留存分析
留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新新供應商”在一段時間內“重復行為”的比例。通過分析不同供應商群組的留存差異、使用過不同功能供應商的留存差異來找到供應鏈的優化點。
⑧ 數據分析方法與模型都有哪些
現在的大數據的流行程度不用說大家都知道,大數據離不開數據分析,而數據分析的方法和數據分析模型多種多樣,按照數據分析將這些數據分析方法與模型分為對比分析、分類分析、相關分析和綜合分析四種方式,這四種方式的不同點前三類以定性的數據分析方法與模型為主,綜合類數據分析方法與模型是注重定性與定量相結合。
一、分類分析數據分析法
在數據分析中,如果將數據進行分類就能夠更好的分析。分類分析是將一些未知類別的部分放進我們已經分好類別中的其中某一類;或者將對一些數據進行分析,把這些數據歸納到接近這一程度的類別,並按接近這一程度對觀測對象給出合理的分類。這樣才能夠更好的進行分析數據。
二、對比分析數據分析方法
很多數據分析也是經常使用對比分析數據分析方法。對比分析法通常是把兩個相互有聯系的數據進行比較,從數量上展示和說明研究對象在某一標準的數量進行比較,從中發現其他的差異,以及各種關系是否協調。
三、相關分析數據分析法相關分析數據分析法也是一種比較常見數據分析方法,相關分析是指研究變數之間相互關系的一類分析方法。按是否區別自變數和因變數為標准一般分為兩類:一類是明確自變數和因變數的關系;另一類是不區分因果關系,只研究變數之間是否相關,相關方向和密切程度的分析方法。
而敏感性分析是指從定量分析的角度研究有關因素發生某種變化時對某一個或一組關鍵指標影響程度的一種不確定分析技術。
回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。
時間序列是將一個指標在不相同的時間點上的取值,按照時間的先後順序排列而成的一列數。時間序列實驗研究對象的歷史行為的客觀記錄,因而它包含了研究對象的結構特徵以及規律。
四、綜合分析數據分析法
層次分析法,是一種實用的多目標或多方案的決策方法。由於他在處理復雜的決策問題上的實用性和有效性,而層次分析數據分析法在世界范圍得到廣泛的應用。它的應用已遍及經濟計劃和管理,能源政策和分配,行為科學、軍事指揮、運輸、農業、教育、醫療和環境等多領域。
而綜合分析與層次分析是不同的,綜合分析是指運用各種統計、財務等綜合指標來反饋和研究社會經濟現象總體的一般特徵和數量關系的研究方法。
上述提到的數據分析方法與數據分析模型在企業經營、管理、投資決策最為常用,在企業決策中起著至關重要的作用。一般來說,對比分析、分類分析、相關分析和綜合分析這四種方法都是數據分析師比較常用的,希望這篇文章能夠幫助大家更好的理解大數據。
⑨ 如何進行有效的數據分析
首先,我們要明確數據分析的概念和含義,清楚地理解什麼是數據分析;
什麼是數據分析呢,淺層面講就是通過數據,查找其中蘊含的能夠反映現實狀況的規律。
專業一點講:數據分析就是適當的統計分析方法對收集來的大量數據進行分析,將他們加以匯總、理解和消化,以求最大化的開發數據的功能,發揮數據的作用。
那麼,我們做數據 分析的目的是什麼呢?
事實上,數據分析就是為了提取有用的信息和形成結論而對數據加以詳細的研究和概括總結的過程。
數據分析可以分為:描述性數據分析、探索性數據分析、驗證性數據分析
工作中我們運用數據分析的作用有哪些?
1、現狀分析:就是企業運營狀況的分析,主要是各項指標的監控以及日報、周報、月報等
2、原因分析:需求分析,多數是針對運營中出現的問題進行剖析,找出出現問題的因素以便於解決問題
3、預測分析:針對以後的運營情況做出分析報告,對公司以後的發展趨勢做出有效的預測,對公司的發展目標和策略制定做出有力的支撐。
最重要的一點:
我們如何做數據分析呢,換一句話說就是如何進行數據分析,是怎樣的流程?
然後,我們來看數據分析的六部曲
1、明確分析目的和思路:
這一定很重要,你想通過數據分析得到什麼,你想通過數據分析告訴別人什麼,這是你做數據分析的首要問題,分析不能是漫無目的的,一定要明確思路,有目的性、有計劃性的去做數據分析。找好角度、指標、以及分析邏輯尤為重要。
2、數據收集,這里不做過多的說明,一般情況下,數據來源都會可靠有效。我們要做的只是把我們需求的數據get即可。
3、數據處理:
主要包括數據清洗、數據轉化、數據提取、數據計算等方法,數據分析的前提是要保證數據質量,如果數據質量無法保證,分析出來的結果也沒法得到有效的利用,甚至會對決策者造成誤導的行為。
4、數據分析:
首先要明確數據處理和數據分析的區別:數據處理只是數據分析的基礎,我們做數據處理就是為了保證數據形式合適,保證數據的一致性和有效性。
5、數據展現:
數據展現就是把數據分析的結果,用可視化的圖標形式展現出來,用一種簡單易懂的方式表達出你分析的觀點
6、撰寫報告:
數據分析報告其實就是對整個數據分析過程的一個總結與呈現,通過報告把數據分析的起因、過程、結果及建議完整的呈現出來,供決策者參考。