① 土壤有機質含量的測定方法有哪些
測定土壤有機碳的方法有兩類,一類是將土樣中有機碳高溫氧化後測定釋放出的二氧化碳的量,此類方法所得的結果中也包括了土壤中以碳酸鹽形式存在的無機碳和以高度縮合的、幾乎為元素態的碳(碳、石墨、煤)。另一類是用氧化劑在一定溫度下氧化有機碳後測定消耗氧化劑的量,再換算為有機碳的量。
這類方法不包括高度縮合的碳和碳酸鹽形式的無機碳,快速簡便且不需要特殊的設備和操作技術,至今仍是通用的常規方法,其中最通用的是重鉻酸鉀氧化-外加熱法。
利用170〜180°C油浴使加有重鉻酸鉀氧化劑和硫酸的土壤溶液沸騰5min,土壤有機質中的碳被重鉻酸鉀氧化為二氧化碳,而重鉻酸鉀中六價鉻被還原成三價鉻。
剩餘的重鉻酸鉀用二價鐵的標准溶液滴定,根據有機碳被氧化前後重鉻酸鉀消耗硫酸亞鐵的量,計算出有機碳的含量,進而換算出土壤有機質含量。
(1)研究土壤實驗方法擴展閱讀:
土壤有機質的生態效應:
1、提供作物養分的作用
土壤有機質含有作物生長所需要的各種營養成分,隨著有機質的礦質化,不斷地釋放出來供作物和微生物利用,同時釋放出微生物生命活動所必需的能量。
在有機質分解和轉化過程中,還可產生各種低分子有機酸和腐殖酸,對土壤礦物質部分都有一定的溶解作用,促進風化,有利於養分的有效化。此外,土壤有機質還能和一些多價金屬離子絡合形成絡合物進入土壤溶液中,增加了養分的有效性。
2、保水、保肥和緩沖作用
土壤有機質疏鬆多孔,又是親水膠體,能吸持大量水分。據研究資料表明腐殖物質的吸水率為5000~6000g/kg,而黏粒的吸水率只有500~600g/kg,腐殖質的吸水率是黏粒的10倍,能大大地提高土壤的保水能力。
土壤有機膠體有巨大的表面能並帶有正、負電荷,且以帶負電荷為主,所以它吸附的主要是陽離子。其中作為養料離子的主要有K+、Ca2+、Mg2+等。
這些離子一旦被吸附後就可避免隨水流失,起到保肥作用,而且隨時能被根系附近的H+或其他陽離子交換出來,供作物吸收,仍不失其有效性。
3、促進團粒結構的形成,改善土壤物理性質
土壤有機質在土壤中主要是以膠膜的形式包被在礦物質土粒的表面上。一方面,腐殖物質膠體的黏結力比沙粒強。因此,有機肥料施入沙土後可增加沙土的黏性,有利於團粒結構的形成。
另一方面.由於土壤有機質松軟、絮狀多孔,而黏結力又不像黏土那麼強。所以黏粒被它包被後,就變得松軟,易使硬塊散碎成團粒。這說明有機質能使沙土變緊,使黏土變松,改善了土壤的通氣性、透水性和保水性。
4、腐殖酸的生理活性
據研究資料表明,腐殖酸分子中含有酚、羧基等各種功能團.因而它們對植物的生理過程產生多方面的影響。腐殖酸能改變植物體內糖代謝,促進還原糖的累積,提高細胞滲透壓,從而提高了植物的抗旱能力。
腐殖酸能提高酶系統的活性,加速種子發芽和養分的吸收,從而增加生長速度。腐殖酸能增加植物的呼吸作用。增強細胞膜的透性從而增加對養分的吸收能力。並加速細胞分裂增強根的發育。
5、減輕或消除土壤中農葯的殘毒和重金屬污染
土壤腐殖物質膠體具有絡合和吸附的作用,因而能減輕或消除農葯的殘毒和重金屬的污染。據研究資料報道,胡敏酸能吸收和溶解三氯雜苯除草劑和某些農葯。腐殖物質能與重金屬離子絡合,從而有助於消除土壤溶液中過量的重金屬離子對作物的毒害作用。
② 古土壤研究方法
古土壤的研究方法與沉積岩的研究方法比較類似,可以分為野外觀察描述和室內分析化驗及微觀結構觀察兩方面。
5.2.4.1野外觀察描述
在野外,古土壤有三個主要特徵有別於其他岩石,這三個方面的特徵是生物痕跡、土壤發生層和土壤結構(Retallack,1988,1990)。古土壤中發現的各種陸生生物痕跡中,化石植物根跡是辨別沉積岩石序列中化石土壤的最好標志。它們是沉積物中曾經有植物生長過的證據,不論還具有其他什麼特徵,它在一定程度上都是化石土壤。古土壤在形成和埋藏過程中,由於受氧化和壓實,在沉積岩中很難看到形態完整的根跡,一般情況下,可通過以下三方面的特徵來識別植物根跡,以區別於蟲孔和其他土壤特徵。
1)不規則管狀形態,向下逐漸變細;
2)向下分叉或從中間向外分叉;
3)由於側向根系周圍的沉積物受壓實而呈似風琴狀。
土壤層是沉積層序中識別古土壤的附加特徵。在多數情況下,土壤層在結構、顏色或礦物含量方面從被侵蝕的古陸地表面向母質層方向呈漸變變化。這種變化通常比紊流或河流點壩沉積形成的粒序層更復雜。在古土壤或土壤中,一般有幾個土壤層,其中的一些土壤層相對於上覆或下伏層,富含粘土、碳酸鹽或有機質。土壤層反映了成土母質在化學或結構上從上向下被改造程度逐漸減弱的成土過程。
土壤具有一些明顯區別於其他沉積物的復雜構造,這些構造在沉積和成岩過程中是不會形成的。受壓實作用的影響,在現今土壤剖面中觀察到的典型土壤自然結構體(ped structure),在大多數古土壤中卻無法保存。在土壤中,作為一般規律,土壤自然結構體的尺寸會隨深度增加而增大,比如從細粒狀變化為塊狀再到稜柱狀。這種垂向變化的殘余構造在一些古土壤中也能觀察到,尤其是在被埋藏之前就已經岩化了的土壤中,如鈣結層。偽背斜構造在許多古土壤中也可觀察到,這種構造由多組平行線(面)——通常為滑擦面、破裂面(後期一般被方解石充填)——以較寬的、略傾斜的向斜和陡峭的、呈尖頭形的背斜的形式構成。如果在古土壤中出現這種構造,則表明原始成土母質膨脹性粘土(如蒙脫石)含量較高,且多形成於排水不良的濕潤環境中。因此,在現代土壤中出現這種構造,一般將其歸為變性土。除此之外,還有柱狀和稜柱狀構造(垂向拉長構造)以及在鈣結層里出現的結晶構造(早期裂縫晶體充填)、蜂窩狀構造、豆粒、薄蓋層等。另外,在古土壤中還可以見到新月形粘土構造,這種構造是由一些頂面向上彎曲、底面也向上彎曲或為平的低振幅、長波長的構造所組成,厚度可達幾厘米,成分為粘土,與層面相平行。
5.2.4.2室內研究
室內研究主要包括礦物學、地球化學分析和土壤微形態特徵觀察三個方面。礦物學研究主要是粘土礦物含量及其組合特徵的分析(Wright,1992);地球化學分析內容比較豐富,包括常量元素、微量元素、稀土元素、穩定同位素等的測定,這些化學元素的組成及含量縱向變化蘊涵著大量的古氣候、古環境信息(趙景波,2001;高全洲等,2001)。在土壤演化過程中,當環境發生變化,土壤的一些特徵諸如化學成分和礦物含量等,也將隨之發生變化或早期形成的構造將被改造。然而,許多微形態學特徵卻保存較好,可以對早期土壤演化階段進行有效的識別(郭正堂等,1996;McCarthy和Martini等,1998)。
(1)礦物學和地球化學特徵
礦物學和地球化學特徵是極其有用的判別標准,尤其是辨別「風化」等級。控制這些等級的基本因素是物質的分解率,通常情況下,上部土壤層分解率較大,隨深度增加而減弱。在風化過程中,各種陽離子被釋放。它們在剖面上的分布可以用來評價風化特性及程度,常用元素有Fe、Al、P、Mn、Na、K、Ca和Si,它們通常以氧化物和氫氧化物的形式存在。可以繪制這些陽離子或氧化物與深度的關系圖,也可以用可動元素與不可動元素的比值。在淋洗作用較強的上部土壤剖面中可動元素與不可動元素的比值較低(Smith和Buol,1968)。
在時代較老的土壤中,由於缺乏明顯的生物特徵,這種化學風化差異性成為識別古土壤強有力的工具。這種現象在硅酸鹽母質和碳酸鹽母質中都可以見到。在這種情況下可以使用痕量元素(Mg、Sr、Na)和穩定同位素(δ8O和δ13C)來識別石灰岩序列的地表暴露面。Mg、Sr和Na是從不穩定的文石(富Sr)和高鎂方解石中析出的,或者高鎂方解石被低鎂方解石所交代也能析出這些元素。在這些變化中,海洋沉積物中的18O被大氣中較輕的160所取代,使得沉積物中的δ18O變輕。當大氣水濾過上覆土壤,來自CO2和土壤酸的同位素較輕的有機碳也被吸收到交代方解石。因此新形成的碳酸鹽具有較輕的δ13C,盡管這種趨勢僅限於土壤剖面比較靠上的部位。
在風化過程中,硅酸鹽被轉變成各種各樣的次級產物,尤其是粘土礦物(Nesbitt和Young,1989)。粘土礦物被廣泛用來鑒別古土壤,尤其是經過高溶濾作用的粘土如高嶺石。蒙脫石在古土壤解釋中是很有用的礦物,但存在由埋藏深度和熱作用導致伊利石化而具有成岩作用特徵的問題。英國威爾士和歐洲大陸的石炭系和侏羅系古土壤的兩項研究表明,伊-矇混層粘土也具有潛在的用途。這些伊-矇混層是由土壤的干-濕交替使得鉀固定下來的成壤作用形成的,而不是埋藏伊利石化形成的(Robinson和Wright,1987)。這種伊-矇混層粘土形成於發育較好的變性土中。
鐵和錳的化合物也可以用來識別特定的土壤形態。成壤作用形成的礦物富集主要發育在鐵質岩殼中。這些岩殼非常富集鐵和鋁的氧化物、氫氧化物(鐵礬土和鐵鋁礬土)以及硅土、鈣質碳酸鹽(鈣質結礫岩)或石膏。
(2)微形態學特徵
微形態學(土壤岩石學)方法是識別古土壤強有力的手段,也就是地質學家過去常用的岩石薄片觀察。該方法已經被成功地運用到鈣質環境和非鈣質環境古土壤的識別(W right和W ilson,1987)。
微形態學研究方法類似於沉積岩石學中的岩類學分析。通過觀察土壤的微形態特徵,可以建立類似於「成岩作用序列」的成壤作用序列(Kem p,1998)。如法國一些土壤的研究中利用顆粒包膜和孔隙充填特徵來研究土壤的形成,這些研究發現顆粒包膜和孔隙充填特徵存在三個生長階段:第一個生長階段是沿細粒粘土切線方向形態清楚的包殼,其次是「臟化」的粉質粘土,最後是分選較差、成分不純含有碳和有機質的粘土。這三個階段被認為是代表了無擾動林地環境中粘土的淀積作用(干凈粘土)、林地消失和水體的流經(「臟化」粘土)以及耕作和土壤熟化(分選差、孔隙充填)(Macphail,1986)。另外,古土壤的微形態學研究還被應用於古環境、古氣候變化分析(Scarciglia和Terribile等,2003;Yong Woo Lee和YongⅡLee等,2003)。
③ 土壤樣品的採取有哪些方法
(1)采樣時間:一般認為,在果園果品採摘後至第一次施肥前採集土壤樣品,即采樣時間以秋季為佳。也有學者認為,在果樹開花前的1~2個月均可采樣。由於春季采樣留給化學分析的時間有限,因此,建議最好在秋季采樣。
(2)采樣方法:應根據研究目的和果樹樹齡的不同確定果園土壤的采樣方法。
對於定植前或剛栽植的幼樹,土壤化驗的主要目的是了解土壤肥力的基本性狀,為果園土壤長期管理提供依據。由於這時土壤受果樹生長和不均勻施肥的影響相對較小,因此,土壤肥力相對一致。這時採集土壤樣品時,可以參照農田土壤采樣方法進行。在田間按分對角線、棋盤式或蛇形等方法採集多點混合樣。每個采樣點的取土深度及采樣量應均勻一致,土樣上層與下層的比例要相同,取樣工具應垂直於地面入土,深度相同。若選用小鐵鏟取土,應先挖成一與鏟一樣寬、與耕作層或取樣要求深度相同深的土坑,將土坑一面鏟成垂直面,然後從垂直一面鏟取1~2厘米厚的土樣。
將各點採集的土樣充分混合。混合後的土壤樣品往往太多,尚需採用「四分法」去掉多餘的土樣。具體方法為將混合的土壤攤成圓形,中間劃十字分成四份,然後對角線去掉兩份,若樣品還多,將樣品再混合均勻,再反復進行四分法,直至樣品最終重量要求0.5~1千克左右為止。每個混合樣的樣點數量,應根據地形地貌、肥力均衡性和采樣地塊的大小而定。地形地貌較復雜要多采些,肥力差異較大的地塊相應要比肥力均勻的田塊要多一些,田塊大的要比田塊小的多。一般地塊面積小於10畝,取5~10個點;10~40畝,取10~15個點;大於40畝取15個點以上。
對於成齡果樹,土壤化驗的主要目的是評價土壤養分供應狀況,以指導果園施肥。因此,采樣位置應考慮根系的分布范圍和果樹施肥的不均勻性。采樣應遵循隨機、多點、覆蓋整個果園的原則。對土壤類型相對一致的果園,可採用X或S形方法,在測定果園選擇不少於5~6個果樹,在每個果樹樹冠投影邊緣線30厘米左右的范圍(因這一區域是吸收根分布相對集中的區域),分東、西、南、北四個方向采4個樣;為真實地反映果園土壤的養分供應現狀,建議采樣點應避過當年和先一年的施肥溝。同一果園的不同樣點充分混合,組成混合樣,混合方法同上。采樣可用土鑽或鐵杴,深度一般為0~20厘米或0~30厘米。同一果園,若土壤類型和果樹樹齡等差異較大,建議應分區采樣。采樣時應將果園土壤表層未分解的有機物、雜草等清除後,再開始采樣。
考慮到果園多採用局部施肥方法,且一些果園行間可能套種農作物,施肥量會不同於果樹,有學者建議,分區域分別採集混合土壤樣品。
生產中常常發現,一些果樹生長異常,若懷疑是土壤因素引起,可採集土壤樣品。這時採集土壤時,應准確區別健壯樹和異常樹,分別選5~6株,採集根際及其下層土壤樣品;各樣點土壤不要混合,送專業實驗室分別進行測定。
近年來,一些學者提出以2摩爾/升KCl提取的無機氮(包括銨態氮和硝態氮)作為果園土壤氮素營養診斷指標。這時采樣的深度一般在0~60厘米或0~100厘米的范圍內,按每20厘米一層採集土壤樣品。
採集的樣品放入統一的樣品袋,用鉛筆寫好標簽,內外各一張。標簽內容包括編號、采樣地點、采樣深度、地塊位置、農戶、采樣時間、采樣人等。
在采樣的同時,應進行果園生產及土壤施肥等相關內容的調查,以為正確地作出施肥決策提供參考。主要調查內容包括果園土壤類型、果園面積、建園時間、栽植密度、主栽品種、果樹長勢、果樹產量,近年來的施肥狀況(包括施肥種類、數量、時期等),是否有缺素等。
④ 科學種植要先檢測土壤中的養分含量,有哪些方法
眾所周知,盲人種植有一個大問題,如盲施肥會導致農作物中缺乏營養,土壤層營養。這種不平衡的成分不僅對食物作物的生長和發育不利,而且還會導致土壤層和土壤中的問題。過量的營養素是易於對作物產生生理障礙,導致生產和質量顯著下降,土壤層營養的不平衡將導致壞徽章。因此,為了解決農業的這種特定問題,對土壤層營養素的科學研究方法非常重要。
⑤ 觀察土壤有哪幾種方法
觀察土壤的關鍵在於取樣,然後即可用放大鏡觀察,這里給出幾種方法:
(1)對角線采樣法:適宜於污水灌溉地塊,在對角線各等分中央點采樣;
(2)梅花形采樣法:適宜於面積不大、地形平坦、土壤均勻的地塊;
(3)棋盤式采樣法:適宜於中等面積、地勢平坦、地形基本完整、土壤不太均勻的地塊;
(4)蛇形采樣法:適應於面積較小地形不太平坦、土壤不夠均勻須取采樣點較多的地塊.深度視采樣目的而定,一般采耕層0-20cm.取混合樣1-2kg.如數量太多可用四分法將多餘土壤棄去;
(5)用作化學分析(除重金屬分析)的土壤樣品可用土鑽采樣;
⑥ 怎樣制備田間試驗土壤樣品
答:對於多年生長在同一地點的多年生木本花卉或連作草本花卉,每年都要從土壤中吸收大量營養物質,同時也排出一些廢物,不斷改變土壤環境。由於我國土壤類型眾多,各地園區土壤肥力差異較大,因此,在不同園區或花卉不同生長發育期間採集田間土壤樣品,通過取樣分析化驗土壤各種有效養分含量,才能判斷各種土壤類型、不同花卉生產園區土壤中各種養分的供應狀況,為花卉配方施肥提供可靠數據。花園田間土壤樣品的採集方法如下:
(1)采樣時間花園田間土樣的採集是在花卉生長期間,根據測定項目要求而採集的土壤樣品,每次采樣必須在追肥之前或花卉生長的關鍵時期進行。因為土壤中速效養分的含量,隨著季節的改變而有很大的變化。以土壤速效磷和速效鉀為例,最大差異可達1~2倍,土壤溫度和水分是主要影響因素。同一時間內採集的土樣分析結果才能相互比較。(2)采樣深度多年生木本或一二年生草本花卉根系分布的深度和廣度,根系密集層的位置,年周期中根系生長的動態變化以及隨著株齡的增長,根系生長發育的進程,根系吸收和運輸,貯藏水分和養分的能力等均與土壤環境、施肥技術等密切相關。對於不同株齡的花卉不同生育期采樣的原則是採集根系密集層的土壤,如幼齡多年生木本花卉可淺些,一般0~30厘米為宜;老齡多年生木本花卉可深些。根據土層厚度、株齡、垂直根系分布特性,一般0~30厘米、30~60厘米為宜;新建花園可淺些,老花園可深些;對於一二年生草本花卉生育前期可淺些,生育中後期可深些。(3)采樣點位置花卉根系在土壤中的分布情況受種類、品種、株齡、土壤條件、地下水位、地勢、栽培管理技術等因素的影響很大。特別是多年生木本花卉根系在土壤中分布的不均勻性,因而對土壤采樣提出更高要求。尤其是對於月季、牡丹、桂花、山茶花等名貴花卉,在每一個花園選取不少於10個點,對每一個點取樣。例如在多年生木本花卉滴水線(樹冠投影線)周圍30~40厘米的范圍是根系密集分布區,也是花卉吸收養分的主要區域,因此土壤採集需要在該區域進行。在所選的每株花卉的周圍,在其滴水線內外各30~40厘米圓周范圍,分4個方向採集8個點的土樣。將全園80個點的土樣混合為1個,風干後送實驗室測定相關土壤指標。對於一二年生草本花卉可參照蔬菜土壤樣品采樣點位置的確定方法進行。(4)采樣方法普通土樣用土鑽垂直採集,測定微量元素土樣的採集與普通土樣同步進行,采樣時避免使用鐵、銅等金屬器具。如果需要測定深層土壤的養分,則可用同樣的方法採集30~60厘米土層土壤。(5)采樣數量具體需要的土壤數量視測定項目多少而定。一個混合土樣取土1.0千克左右為宜(用於推薦施肥的取0.5千克,用於田間試驗的基礎樣品應至少取2.0千克)。對多點採集的土壤先全部混勻,然後用四分法逐次減少樣品的數量,直至剩下1.0千克左右,將多餘的土壤棄去。具體做法是:將採集的土壤樣品放在盤子里或塑料布上,弄碎混勻,鋪成四方形,畫對角線將土樣分成4份,把對角的2份合並成1份,保留1份,棄去1份。如果所得的樣品仍然很多,可再用四分法處理,直至所需數量為止(圖4-1)。
圖4-1四分法取樣步驟(6)采樣周期同一采樣單元,無機氮每季或每年採集3~5次,或進行植株氮營養診斷;土壤有效磷、速效鉀每年採集2~3次;中量、微量元素每年採集1~2次,也可根據試驗要求靈活掌握。(7)樣品標記採集的土壤樣品放入統一的樣品袋內,用鉛筆寫好標簽,袋內外各掛放一張。采樣標簽見表4-1。同時要做好田間采樣與試驗地基本情況調查記錄。主要內容包括:
表4-1土壤采樣標簽土壤采樣標簽統一編號:(和農戶調查表編號一致)郵編:______采樣時間:______年______月______日______時采樣地點:______省______縣______鄉(鎮)______村______地塊農戶名:____________地塊在村的:(中部、東部、南部、西部、北部、東南、西南、東北、西北)采樣深度:①0~20厘米;②______厘米(不是0~20厘米的,請註明)采樣點數:______個(該土樣由7~20個點混合)經度:______度______分______秒緯度:______度______分______秒采樣人:______聯系電話:______土壤樣品信息:土壤名稱、土壤類型、土壤質地、土層厚度、土壤障礙因素、樣本編號、采樣日期、采樣人等。
試驗地基本情況信息:試驗地的地址、位置、試驗前一茬或二茬作物施肥與生長情況、土壤肥力狀況等。