Ⅰ 機器學習的含義是什麼
一張圖告訴你機器學習是什麼?
Ⅱ 機器學習的研究內容有哪些
近年來,有很多新型的機器學習技術受到人們的廣泛關注,也在解決實際問題中,提供了有效的方案。這里,我們簡單介紹一下深度學習、強化學習、對抗學習、對偶學習、遷移學習、分布式學習、以及元學習,讓大家可以明確機器學習的方向都有哪些,這樣再選擇自己感興趣或擅長的研究方向,我覺得這是非常理智的做法。
▌深度學習
不同於傳統的機器學習方法,深度學習是一類端到端的學習方法。基於多層的非線性神經網路,深度學習可以從原始數據直接學習,自動抽取特徵並逐層抽象,最終實現回歸、分類或排序等目的。在深度學習的驅動下,人們在計算機視覺、語音處理、自然語言方面相繼取得了突破,達到或甚至超過了人類水平。深度學習的成功主要歸功於三大因素——大數據、大模型、大計算,因此這三個方向都是當前研究的熱點。
在過去的幾十年中,很多不同的深度神經網路結構被提出,比如,卷積神經網路,被廣泛應用於計算機視覺,如圖像分類、物體識別、圖像分割、視頻分析等等;循環神經網路,能夠對變長的序列數據進行處理,被廣泛應用於自然語言理解、語音處理等;編解碼模型(Encoder-Decoder)是深度學習中常見的一個框架,多用於圖像或序列生成,例如比較熱的機器翻譯、文本摘要、圖像描述(image captioning)問題。
▌強化學習
2016 年 3 月,DeepMInd 設計的基於深度卷積神經網路和強化學習的 AlphaGo 以 4:1 擊敗頂尖職業棋手李世乭,成為第一個不藉助讓子而擊敗圍棋職業九段棋手的電腦程序。此次比賽成為AI歷史上里程碑式的事件,也讓強化學習成為機器學習領域的一個熱點研究方向。
強化學習是機器學習的一個子領域,研究智能體如何在動態系統或者環境中以「試錯」的方式進行學習,通過與系統或環境進行交互獲得的獎賞指導行為,從而最大化累積獎賞或長期回報。由於其一般性,該問題在許多其他學科中也進行了研究,例如博弈論、控制理論、運籌學、資訊理論、多智能體系統、群體智能、統計學和遺傳演算法。
▌遷移學習
遷移學習的目的是把為其他任務(稱其為源任務)訓練好的模型遷移到新的學習任務(稱其為目標任務)中,幫助新任務解決訓練樣本不足等技術挑戰。之所以可以這樣做,是因為很多學習任務之間存在相關性(比如都是圖像識別任務),因此從一個任務中總結出來的知識(模型參數)可以對解決另外一個任務有所幫助。遷移學習目前是機器學習的研究熱點之一,還有很大的發展空間。
▌對抗學習
傳統的深度生成模型存在一個潛在問題:由於最大化概率似然,模型更傾向於生成偏極端的數據,影響生成的效果。對抗學習利用對抗性行為(比如產生對抗樣本或者對抗模型)來加強模型的穩定性,提高數據生成的效果。近些年來,利用對抗學習思想進行無監督學習的生成對抗網路(GAN)被成功應用到圖像、語音、文本等領域,成為了無監督學習的重要技術之一。
▌對偶學習
對偶學習是一種新的學習範式,其基本思想是利用機器學習任務之間的對偶屬性獲得更有效的反饋/正則化,引導、加強學習過程,從而降低深度學習對大規模人工標注數據的依賴。對偶學習的思想已經被應用到機器學習很多問題里,包括機器翻譯、圖像風格轉換、問題回答和生成、圖像分類和生成、文本分類和生成、圖像轉文本和文本轉圖像等等。
▌分布式學習
分布式技術是機器學習技術的加速器,能夠顯著提高機器學習的訓練效率、進一步增大其應用范圍。當「分布式」遇到「機器學習」,不應只局限在對串列演算法進行多機並行以及底層實現方面的技術,我們更應該基於對機器學習的完整理解,將分布式和機器學習更加緊密地結合在一起。
▌元學習
元學習(meta learning)是近年來機器學習領域的一個新的研究熱點。字面上來理解,元學習就是學會如何學習,重點是對學習本身的理解和適應,而不僅僅是完成某個特定的學習任務。也就是說,一個元學習器需要能夠評估自己的學習方法,並根據特定的學習任務對自己的學習方法進行調整。
Ⅲ 什麼是學習和機器學習 為什麼要研究機器學習
機器學習很簡單,就是使機器具有人的學習能力,人的思考能力,人的認知能力,至於判斷機器學習的方法,有註明的圖靈機測試。
機器學習是一門熱門的學科,究其原因是為了服務人類的。
目前的機器學習其實是有著其「瓶頸」所在,比如,機器人學習新生事物時候,數據其實是人為指定的,而非自己去思考,也即,現在的機器學習是人為灌輸思想的被動學習,而真正想讓機器主動學習,具有人的思維方式,還有待研究。
Ⅳ 為什麼要研究機器學習機器學習
機器學習是一種方法論,通過研究數據的各種獨立角度尋找數據的函數變化關系,代入函數後通過機器自動在海量數據中去尋找函數輸出值(也就是我們需要挖掘的內容,比如從眾多圖片中尋找所有屬於人的臉;找出所有圖片中的貓;通過話單分析人的活動軌跡,常住地、娛樂地、工作地、性格特徵等)。
日常生活中,我們每天使用的美團外賣、淘寶購物、每日頭條等APP,都使用了一種對用戶使用習慣進行分析的學習型演算法,通過對我們在APP中的操作行為與歷史瀏覽數據學習,分析出我們的口味、購物習慣、興趣愛好等,最後在APP中實現在首頁推送我們感興趣的物品與新聞等信息,自動迎合每個人的不同愛好,而這一切都是不需要人工去識別操作。
在通信領域,通過用戶的行為數據(各類網管系統日誌或告警信息)構建學習--這一塊應該通過學習演算法建立機器學習模型,通過計算機自動學習識別,可以對用戶群體的各種特徵與網路運行維護指標、網路設備性能指標進行關聯分析,最終實現網路生態化(即網路可以根據用戶的行為習慣自動調度優化設備資源配置,滿足業務需求的同時防止設備能力建設維護的過度或不足,降低維護成本)
Ⅳ 機器學習的方法
機器學習(Machine Learning, ML)是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。
它是人工智慧的核心,是使計算機具有智能的根本途徑,其應用遍及人工智慧的各個領域,它主要使用歸納、綜合而不是演繹。
機器學習是近20多年興起的一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。機器學習理論主要是設計和分析一些讓計算機可以自動「學習」的演算法。機器學習演算法是一類從數據中自動分析獲得規律,並利用規律對未知數據進行預測的演算法。因為學習演算法中涉及了大量的統計學理論,機器學習與統計推斷學聯系尤為密切,也被稱為統計學習理論。演算法設計方面,機器學習理論關注可以實現的,行之有效的學習演算法。很多推論問題屬於無程序可循難度,所以部分的機器學習研究是開發容易處理的近似演算法。
機器學習已經有了十分廣泛的應用,例如:數據挖掘、計算機視覺、自然語言處理、生物特徵識別、搜索引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫識別、戰略游戲和機器人運用。
學習是人類具有的一種重要智能行為,但究竟什麼是學習,長期以來卻眾說紛紜。社會學家、邏輯學家和心理學家都各有其不同的看法。比如,Langley(1996) 定義的機器學習是「機器學習是一門人工智慧的科學,該領域的主要研究對象是人工智慧,特別是如何在經驗學習中改善具體演算法的性能」。(Machine learning is a science of the artificial. The field's main objects of study are artifacts, specifically algorithms that improve their performance with experience.')Tom Mitchell的機器學習(1997)對資訊理論中的一些概念有詳細的解釋,其中定義機器學習時提到,「機器學習是對能通過經驗自動改進的計算機演算法的研究」。(Machine Learning is the study of computer algorithms that improve automatically through experience.)Alpaydin(2004)同時提出自己對機器學習的定義,「機器學習是用數據或以往的經驗,以此優化計算機程序的性能標准。」(Machine learning is programming computers to optimize a performance criterion using example data or past experience.)
盡管如此,為了便於進行討論和估計學科的進展,有必要對機器學習給出定義,即使這種定義是不完全的和不充分的。顧名思義, 機器學習是研究如何使用機器來模擬人類學習活動的一門學科。稍為嚴格的提法是:機器學習是一門研究機器獲取新知識和新技能,並識別現有知識的學問。這里所說的「機器」,指的就是計算機;現在是電子計算機,以後還可能是中子計算機、光子計算機或神經計算機等等
機器能否象人類一樣能具有學習能力呢?1959年美國的塞繆爾(Samuel)設計了一個下棋程序,這個程序具有學習能力,它可以在不斷的對弈中改善自己的棋藝。4年後,這個程序戰勝了設計者本人。又過了3年,這個程序戰勝了美國一個保持8年之久的常勝不敗的冠軍。這個程序向人們展示了機器學習的能力,提出了許多令人深思的社會問題與哲學問題。
機器的能力是否能超過人的,很多持否定意見的人的一個主要論據是:機器是人造的,其性能和動作完全是由設計者規定的,因此無論如何其能力也不會超過設計者本人。這種意見對不具備學習能力的機器來說的確是對的,可是對具備學習能力的機器就值得考慮了,因為這種機器的能力在應用中不斷地提高,過一段時間之後,設計者本人也不知它的能力到了何種水平。
Ⅵ 機器學習的分類
機器學習的分類主要有學習策略、學習方法、數據形式。學習目標等。
從學習策略方面來看,如果比較嚴謹的講,那就是可分為兩種:
(1) 模擬人腦的機器學習
符號學習:模擬人腦的宏現心理級學習過程,以認知心理學原理為基礎,以符號數據為輸入,以符號運算為方法,用推理過程在圖或狀態空間中搜索,學習的目標為概念或規則等。符號學習的典型方法有記憶學習、示例學習、演繹學習.類比學習、解釋學習等。
神經網路學習(或連接學習):模擬人腦的微觀生理級學習過程,以腦和神經科學原理為基礎,以人工神經網路為函數結構模型,以數值數據為輸人,以數值運算為方法,用迭代過程在系數向量空間中搜索,學習的目標為函數。典型的連接學習有權值修正學習、拓撲結構學習。
(2) 直接採用數學方法的機器學習
主要有統計機器學習。
統計機器學習是基於對數據的初步認識以及學習目的的分析,選擇合適的數學模型,擬定超參數,並輸入樣本數據,依據一定的策略,運用合適的學習演算法對模型進行訓練,最後運用訓練好的模型對數據進行分析預測。
統計機器學習三個要素:
模型(model):模型在未進行訓練前,其可能的參數是多個甚至無窮的,故可能的模型也是多個甚至無窮的,這些模型構成的集合就是假設空間。
策略(strategy):即從假設空間中挑選出參數最優的模型的准則。模型的分類或預測結果與實際情況的誤差(損失函數)越小,模型就越好。那麼策略就是誤差最小。
演算法(algorithm):即從假設空間中挑選模型的方法(等同於求解最佳的模型參數)。機器學習的參數求解通常都會轉化為最優化問題,故學習演算法通常是最優化演算法,例如最速梯度下降法、牛頓法以及擬牛頓法等。
如果從學習方法方面來看的話,主要是歸納學習和演繹學習以及類比學習、分析學習等。
如果是從學習方式方面來看,主要有三種,為監督學習、無監督學習、 強化學習。
當從數據形式上來看的話,為 結構化學習、非結構化學習、
還可從學習目標方面來看,為 概念學習、規則學習、函數學習、類別學習、貝葉斯網路學習。
Ⅶ 什麼是機器學習,人工智慧,深度學習
人工智慧(AI)、機器學習(machinelearning)和深度學習(deeplearning)都用上了。這三者在AlphaGo擊敗李世乭的過程中都起了作用,但它們說的並不是一回事。
今天我們就用最簡單的方法——同心圓,可視化地展現出它們三者的關系和應用。
如下圖,人工智慧是最早出現的,也是最大、最外側的同心圓;其次是機器學習,稍晚一點;最內側,是深度學習,當今人工智慧大爆炸的核心驅動。
Ⅷ 人工智慧,機器學習,統計學,數據挖掘之間有什麼區別
說到人工智慧,就不能不提到機器學習和深度學習。很多時候,我們得先明確人工智慧與機器學習和深度學習的關系,我們才能更好地去分析和理解人工智慧與數據分析、統計學和數據挖掘思維關聯。人工智慧與統計學、數據分析和數據挖掘的聯系,更多的是機器學習與深度學習,同數據分析與數據挖掘的關聯。
0.人工智慧
人工智慧英文縮寫為AI,它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。人工智慧是計算機科學研究領域的一個重要分支,又是眾多學科的一個交叉學科,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括語音識別、圖像識別、機器人、自然語言處理、智能搜索和專家系統等等,人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧包括眾多的分支領域,比如大家熟悉的機器學習、自然語言理解和模式識別等。
1.機器學習
機器學習屬於人工智慧研究與應用的一個分支領域。機器學習的研究更加偏向理論性,其目的更偏向於是研究一種為了讓計算機不斷從數據中學習知識,而使機器學習得到的結果不斷接近目標函數的理論。
機器學習,引用卡內基梅隆大學機器學習研究領域的著名教授Tom Mitchell的經典定義:
如果一個程序在使用既有的經驗E(Experience)來執行某類任務T(Task)的過程中被認為是「具備學習能力的」,那麼它一定要展現出:利用現有的經驗E,不斷改善其完成既定任務T的性能(Performance)的特質。
機器學習已經有了十分廣泛的應用,例如:數據挖掘、計算機視覺、自然語言處理、生物特徵識別、搜索引擎、醫學診斷、檢測信用卡欺詐、證券市場分析、DNA序列測序、語音和手寫識別、戰略游戲和機器人運用。在我們當下的生活中,語音輸入識別、手寫輸入識別等技術,識別率相比之前若干年的技術識別率提升非常巨大,達到了將近97%以上,大家可以在各自的手機上體驗這些功能,這些技術來自於機器學習技術的應用。
那機器學習與數據挖掘的聯系是什麼呢?
機器學習為數據挖掘提供了理論方法,而數據挖掘技術是機器學習技術的一個實際應用。逐步開發和應用了若干新的分析方法逐步演變而來形成的;這兩個領域彼此之間交叉滲透,彼此都會利用對方發展起來的技術方法來實現業務目標,數據挖掘的概念更廣,機器學習只是數據挖掘領域中的一個新興分支與細分領域,只不過基於大數據技術讓其逐漸成為了當下顯學和主流。
2.數據挖掘
數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘本質上像是機器學習和人工智慧的基礎,它的主要目的是從各種各樣的數據來源中,提取出超集的信息,然後將這些信息合並讓你發現你從來沒有想到過的模式和內在關系。這就意味著,數據挖掘不是一種用來證明假說的方法,而是用來構建各種各樣的假說的方法。數據挖掘不能告訴你這些問題的答案,他只能告訴你,A和B可能存在相關關系,但是它無法告訴你A和B存在什麼相關關系。機器學習是從假設空間H中尋找假設函數g近似目標函數f。數據挖掘是從大量的數據中尋找數據相互之間的特性。
數據挖掘是基於資料庫系統的數據發現過程,立足與數據分析技術之上,提供給為高端和高級的規律趨勢發現以及預測功能;同時數據量將變得更為龐大,依賴於模式識別等計算機前沿的技術;其還有另外一個名稱為商業智能(BI, Business Intelligence),依託於超大型資料庫以及數據倉庫、數據集市等資料庫技術來完成。
主要挖掘方法有: 分類 、 估計、預測、相關性分組或關聯規則、 聚類、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)等技術。
3.深度學習
深度學習的概念源於人工神經網路的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特徵形成更加抽象的高層表示屬性類別或特徵,以發現數據的分布式特徵表示。晦澀難懂的概念,略微有些難以理解,但是在其高冷的背後,卻有深遠的應用場景和未來。
那深度學習和機器學習是什麼關系呢?
深度學習是實現機器學習的一種方式或一條路徑。其動機在於建立、模擬人腦進行分析學習的神經網路,它模仿人腦的機制來解釋數據。比如其按特定的物理距離連接;而深度學習使用獨立的層、連接,還有數據傳播方向,比如最近大火的卷積神經網路是第一個真正多層結構學習演算法,它利用空間相對關系減少參數數目以提高訓練性能,讓機器認知過程逐層進行,逐步抽象,從而大幅度提升識別的准確性和效率。
神經網路是機器學習的一個分支,而深度學習又是神經網路的一個大分支,深度學習的基本結構是深度神經網路。
4.數據分析
數據分析的概念:基於資料庫系統和應用程序,可以直觀的查看統計分析系統中的數據,從而可以很快得到我們想要的結果;這個就是最基本的數據分析功能,也是我們在信息化時代了,除了重構業務流程、提升行業效率和降低成本之外的了。另外數據分析更多的是指從歷史數據裡面發現有價值的信息,從而提高決策的科學性。數據分析更側重於通過分析數據的歷史分布然後從中得出一些有價值的信息。還有一個數據分析更重要的功能,就是數據可視化。
比如說,在財務系統的信息化中,基於企業的財務系統,我們可以直觀獲取企業現金流量表、資產負債表和利潤表,這些都來自與我們的數據分析技術。數據分析目前常用的軟體是Excel, R, Python等工具。
在對比數據分析和數據挖掘時,數據分析則更像是對歷史數據的一個統計分析過程,比如我們可以對歷史數據進行分析後得到一個粗糙的結論,但當我們想要深入探索為什麼會出現這個結論時,就需要進行數據挖掘,探索引起這個結論的種種因素,然後建立起結論和因素之間模型,當有因素有新的值出現時,我們就可以利用這個模型去預測可能產生的結論。
因此數據分析更像是數據挖掘的一個中間過程。
5.總結
人工智慧與機器學習、深度學習的關系
嚴格意義上說,人工智慧和機器學習沒有直接關系,只不過是機器學習的方法被大量的應用於解決人工智慧的問題而已。目前機器學習是人工智慧的一種實現方式,也是最重要的實現方式。
深度學習是機器學習比較火的一個方向,其本身是神經網路演算法的衍生,在圖像、語音等富媒體的分類和識別上取得了非常好的效果。
數據挖掘與機器學習的關系
數據挖掘主要利用機器學習界提供的技術來分析海量數據,利用資料庫界提供的技術來管理海量數據。
機器學習是數據挖掘的一種重要方法,但機器學習是另一門學科,並不從屬於數據挖掘,二者相輔相成。
深度學習、機器學習的發展帶了許多實際的商業應用,讓虛幻的AI逐步落地,進而影響人類社會發展;
深度學習、機器學習以及未來的AI技術,將讓無人駕駛汽車、更好的預防性治療技術、更發達智能的疾病治療診斷系統、更好的人類生活娛樂輔助推薦系統等,逐步融入人類社會的方方面面。
AI即使是現在,也是未來,不再是一種科幻影像和概念,業界變成了人類社會當下的一種存在,不管人類是否喜歡或者理解,他們都將革命性地改變創造AI的我們人類自身。
Ⅸ 什麼是機器學習
機器學習(Machine Learning, ML)是一門多領域交叉學科,涉及概率論、統計學、逼近論、凸分析、演算法復雜度理論等多門學科。專門研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能。
它是人工智慧的核心,是使計算機具有智能的根本途徑,其應用遍及人工智慧的各個領域,它主要使用歸納、綜合而不是演繹。