❶ 甘油二酯到底是什麼
1、什麼是甘油二酯?
甘油二酯(Diacylglycerol, DG),是一類甘油三酯(Triacylglycerol, TG)中一個脂肪酸被羥基取代的結構脂質。
DG是天然植物油脂的微量成分及體內脂肪代謝的內源中間產物,它是公認安全(GRAS)的食品成分。科學研究發現,膳食DG具有減少內臟脂肪、抑制體重增加、降低血脂等作用,因而受到廣泛的關注。
❷ 北京化工大學什麼時候開始對分子蒸餾技術研究的
這個我知道二十世紀九十年代初,北京化工大學開始了對分子蒸餾技術的研究,先後建立了實驗研究基地、中試基地。其研究重點圍繞三個方面:一是分子蒸餾機理研究;二是設備結構及裝置系統性能研究;三是工業化應用研究。到目前為止,已開發新產品50餘種,並已先後完成了利用分子蒸餾技術精製魚油、天然維生素E、α-亞麻酸、二聚脂肪酸、異氰酸酯加成物、辣椒紅色素、角鯊烯等多個產品的工業化生產,建成了分子蒸餾生產裝置30餘套,遍及全國15個省市。所有生產的產品均為填補國內空白,許多產品達到國際先進水平。
❸ 卵磷脂型DHA的新發現
(一)卵磷脂型DHA的來源
卵磷脂型DHA只存在於蛋黃中,因此只能來源於蛋黃。而魚油DHA、藻油DHA不是甲酯型,就是乙酯型或甘油三酯型。
(二)卵磷脂型DHA的分子結構
卵磷脂Lecithin是一類含磷脂類物質,最早由Uauquelin於1812年從人腦中發現, Golbley於1844年從蛋黃中分離出卵磷脂(也稱為蛋黃素),並於1850年按照希臘文lekithos(蛋黃)命名為Lecithos。廣義的卵磷脂是各種磷脂的總稱,包括磷脂醯膽鹼(Phosphatidylcholine,PC)、磷脂醯乙醇胺(Phosphatidythanolamine,PE)、神經鞘磷脂(Sphingomyelin,SM)、肌醇磷脂(Phosphatidylinositol,PI)、溶血磷脂醯膽鹼(Lysophosphatidylcholine,LPC))磷脂醯絲氨酸(Phosphatidyserine,PS)等,狹義的卵磷脂是指磷脂醯膽鹼(PC)。
科學家經過長期研究發現,雞蛋黃中卵磷脂主要為磷脂醯膽鹼(70%~75%)和磷脂醯乙醇胺(15%~20%),當卵磷脂成分中的R1,R2為DHA時即形成了卵磷脂型DHA。磷脂醯膽鹼和磷脂醯乙醇胺的結構式(R1,R2代表脂肪酸)如下:
(三)新一代卵磷脂型DHA具備的特點
1、純天然
市售的甲酯型和乙酯型DHA是通過分子蒸餾等方法把魚油或海藻中的DHA水解下來分離純化得到的,而蛋黃中含有的卵磷脂型DHA是雞吃了含有DHA或α-亞麻酸的飼料,在雞體內經過一系列消化吸收等生理反應自然形成的,具有純天然特性。至於雞為什麼會在體內轉化、吸收並特異性的積累形成卵磷脂型DHA還需要科學界進一步探索研究。
2、更容易被人體吸收
DHA存在形態不同,被人體吸收利用的效率差異很大。乙酯型DHA在人體內是以被動擴散的方式被吸收,吸收率僅為20%左右;甘油三酯型吸收率遠高於乙酯型,也只有50%左右。因為卵磷脂可促進脂肪酸代謝,因此蛋黃卵磷脂型DHA在人體內吸收方式為主動吸收,吸收率接近100%。
3、安全性高
眾所周知,蛋黃因為其營養豐富及安全性高是嬰幼兒添加輔食的第一選擇。蛋雞是「生物篩」,雞蛋形成過程中的屏蔽效能可將對嬰幼兒健康產生不利影響物質阻擋在雞蛋之外,因此蛋黃卵磷脂型DHA既不含對人體有升高膽固醇和破壞血管內膜作用的豆蔻酸、月桂酸等;也不存在被重金屬污染而超標問題,產品更安全,媽媽和寶寶的健康更有保障。
同時,從人體對各種DHA的消化吸收過程來看,甲酯型DHA在人體內分解為甲醇和DHA;乙酯型DHA分解為乙醇和DHA;卵磷脂型DHA分解為卵磷脂和DHA。甲醇具有毒性,乙醇對胚胎和嬰幼兒具有刺激性,而磷脂是很好的乳化劑,能促進乳糜微粒的形成,有助於提高乳糜的穩定性和運輸脂肪酸的能力。因此可以促進DHA的運輸能力,進而提高吸收率。磷脂的乳化能力具有與膽汁的協同作用,具有節約膽汁的作用,對於肝膽發育尚未完全的嬰幼兒具有更大價值。
4、營養豐富
蛋黃中卵磷脂型DHA屬於動物胚胎磷脂,除了卵磷脂和DHA外,還富含人體所必須的其他營養素:蛋白質和多種礦物質(鈣、鐵、鋅、硒、鉀、鎂等)和多種維生素(如維生素A、維生素E、維生素B2、B12,還含有豐富的長鏈不飽和脂肪酸—油酸、亞油酸以及多種氨基酸,打破了單純補充DHA的模式,實現了生命所需營養的全方位補充,能對孕產婦和嬰幼兒進行全面營養補充。
5、穩定性好
卵磷脂和DHA緊密結合在一起, 相比游離DHA更穩定,不易被氧化,保質期更長。
6、降低血液中膽固醇濃度,防止膽結石
體內過多的膽固醇會發生沉澱,從而形成膽結石,蛋黃卵磷脂型DHA中的卵磷脂可將膽固醇乳化為極細的顆粒,這種微細的乳化膽固醇顆粒可透過血管壁被組織利用,故具有降低血液中的膽固醇濃度及防止膽結石的作用。
7、產品氣味、滋味好
新一代蛋黃卵磷脂型DHA氣味芬芳,有淡淡的蛋香味,作為輔食添加在牛奶、面條、粥等主食里,使主食的滋味、氣味更好,能夠增加食慾;即使直接用溫水沖服,也很容易被孕婦和嬰幼兒接受和喜愛。
附:
卵磷脂型DHA與普通乙酯型DHA對比表 項 目 蛋黃DHA 普通DHA製品 來源 蛋黃 魚油、海藻油 DHA類型 卵磷脂型 乙酯型 生產工藝 生物技術 分子蒸餾等方法 產品形態 粉末 油狀 溶劑殘留 無 有 豆蔻酸,月桂酸等 無 有(藻油) 消化吸收方式 主動吸收 被動吸收 DHA消化吸收率 ≥99% 21% 人體消化產生的物質 卵磷脂+DHA 乙醇+DHA 穩定性 穩定,不易氧化 不穩定,易氧化 口感及風味 蛋香味,無腥味 腥味重 適宜人群 孕產婦,嬰幼兒 老年人,心腦血管病患者 主要營養成分對比 DHA含量(例) 100mg/袋 100mg/粒 卵磷脂(PC) 豐富 無 蛋白質 豐富 無 多種維生素(維生素A、維生素E、維生素B2、B12等) 富含 少量或無 多種礦物質(鈣、鐵、鋅、硒、鉀、鎂等) 富含 無 油酸(長鏈不飽和脂肪酸) 豐富 無 亞油酸(長鏈不飽和脂肪酸) 富含 無 多種氨基酸 豐富 無 (四)卵磷脂型DHA的研究進展
卵磷脂型DHA只存在於蛋黃中,但由於含量極低,吃普通雞蛋無法起到補充卵磷脂型DHA的作用。中國農業大學的科學家發明創新的復合植物提取物促進技術,採用純植物提取物,根據生物富集和轉化過程中各個階段的特點,經過反復試驗,把純植物提取物進行科學配比,再與飼料充分發酵融合,充分釋放了純植物提取物的活性,使其在生物富集、轉化過程的各個階段發揮了強有力地促進作用,大大提高了富集率和轉化率,為人們提供更多更好更優質的卵磷脂型DHA創造了條件。
卵磷脂+DHA是1+1>2
卵磷脂存在於人體所有的器官和細胞中,是構成細胞膜的主要成分,占細胞膜乾重的70—80%,並集中存在腦及神經系統,磷脂醯膽鹼因此被稱為「細胞膜的建築磚」。卵磷脂肩負著細胞的營養代謝、能量代謝、信息傳遞等功能,是生命和健康的必需物質,被譽為與蛋白質、維生素並列的「第三營養素」。
牛奶、動物的腦、骨髓以及大豆和雞蛋等食物中都含有卵磷脂,其中蛋黃卵磷脂是營養成分最完整,營養價值最高的。卵磷脂的質量差異取決於所含活性成分的含量,其中最主要的活性成分即磷脂醯膽鹼和磷脂醯乙醇胺。
DHA是腦細胞增殖和大腦溝回形成所必須的重要構成成分的物質,但是僅有獨立的腦神經細胞,大腦仍不能夠正常思維,只有當各神經細胞間建立起信息傳遞的通道時,大腦才能具備思維的能力。信息傳遞的通道,就象一條條高速公路,高速公路的路面決定信息傳遞的速度,DHA促進了高速公路的延伸,保證高速公路四通八達;而高速公路的護欄,可確保信息傳遞的准確性,防止信息「上錯路」,卵磷脂不但是高速公路路面的物質前體,同時也是護欄的重要組成部分。DHA和卵磷脂二者緊密合作才能保證信息安全高速准確地到達目的地,二者對大腦的作用相輔相成,密不可分。因此,同時補充卵磷脂和DHA能起到事半功倍的效果,使得1+1>2。
參考文獻:
1、Beckermann B, Beneke M, Seitz I. (1990). Comparativebioavailability of eicosapentaenoic acid and docosahexaenoic acid fromtriglycerides, free fatty acids and ethyl esters in volunteers.Arzneimittelforschung; 40(6): 700-704.
2、Best CA, Laposata M. (2003). Fatty acid ethylesters: toxic non-oxidative metabolites of ethanol and markers of ethanolintake. Front Biosci; 8: 202-17.
3、Bondía-Martínez E,López-Sabater MC,Castellote-BargallóAI,Rodríguez-PalmeroM,González-CorbellaMJ,Rivero-Urgell M,Campoy-Folgoso C,Bayés-García R.(1998).
4、Fatty acid composition of plasma and erythrocytes interm infants fed human milk and formulae with and without docosahexaenoic andarachidonic acids from egg yolk lecithin.Early Hum Dev.; 53 Suppl:S109-19.
5、Carlier H., Bernard A, Caseli A. (1991). Digestionand absorption of polyunsaturated fatty acids. Reprod Nutr Dev; 31: 475-500.
6、Carlson SE,Ford AJ,Werkman SH,Peeples JM,Koo WW.(1996). Visual acuity and fatty acid status of term infants fed human milk andformulas with and without docosahexaenoate and arachidonate from egg yolklecithin.Pediatr Res; May;39(5):882-8.
7、DyerbergJ, Madsen P, Moller JM, Aardestrup I, Schmidt EB. (2010).Bioavailability of marine n-3 fatty acid formations. Prostaglandins Leutkot.Essent. Fatty Acids 83,137-141.
8、Fave G, Coste TC and Armand M. (2004).Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability.Cellular and Molecular Biology TM 50 (7), 815-831.
9、Habber TS., Wilson JS, Minoti VA, Pirola RC. (1991).Fatty acid ethyl esters increase rat pancreatic lysosomal fragility. J. Lab.Clin. Med. 121:75-764.
10、HansenJB, Olsen JO, Wilsgård L, Lyngmo V, Svensson B. (1993). Comparativeeffects of prolonged intake of highly purified fish oils as ethyl ester ortriglyceride on lipids, homeostasis and platelet function in normolipaemic men. EurJ Clin Nutr;,47: 497-507.
11、Harris WS, Zucker ML, Dujovne CA. (1988). Omega-3fatty acids in hypertriglyceridemic patients: triglycerides vs methyl esters. AmJ Clin Nutr; 48: 992-997
12、Ikeda I, Sasaki E, Yasunami H, Nomiyama S, NakayamaM, Sugano M, Imaizumi K, Yazawa K. (1995). Digestion and lymphatic transport ofeicosapentaenoic and docosahexaenoic acids given in the form oftriacylglycerol, free acid and ethyl ester in rats. Biochim Biophys Acta; 1259:297-304.
13、Krokan HE, Bjerve KS, Mørk E. (1993). The enteral bioavailability ofeicosapentaenoic acid and docosahexaenoic acid is as good from ethyl esters asfrom glyceryl esters in spite of lower hydrolytic rates by pancreatic lipase invitro. Biochim Biophys Acta; 1168: 59-67.
14、Lambert MS, Botham KM, Mayes PA. (1997).Modification of the fatty acid composition of dietary oils and fats onincorporation into chylomicrons and chylomicron remnants. Br J Nutr.;76:435-45
15、Lange, L. G., and B. E. Sobel. (1983). Mitochondrial dysfunction inced by fatty acid ethyl esters, myocardialmetabolites of ethanol. J. CZin. Invest. 72: 724-731,1983.
16、Lawson LD, Hughes BG. (1988). Human absorption offish oil fatty acids as triacylglycerols, free acids, or ethyl esters. BiochemBiophys Res Commun, 52, 328-335.
17、MogelsonS, Pieper SJ, Lange LG. (1984). Thermodynamic bases for fatty acid ethyl ester synthase catalyzedesterification of free fatty acid with ethanol and accumulation of fatty acidethyl esters. Biochemistry. 1984 Aug 28;23(18):4082-7.
18、Neubronner J, Schuchardt JP, Kressel G, Merkel M,Schacky C and Hahn A. Enhanced increase of omega-3 index in response to longterm n-3 fatty acid supplementation from triacylglycerides versus ethyl esters.Eur. J. of Clin. Nutr.(2010),1-8.
19、NordøyA, Barstad L, Connor WE, Hatcher L. (1991). Absorption of the n-3eicosapentaenoic and docosahexaenoic acids as ethyl esters and triglycerides byhumans. Am J Clin Nutr 53:1185-90.
20、Saghir M, Werner J, Laposata M. (1997). Rapid invivo hydrolysis of fatty acid ethyl esters, toxic nonoxidative ethanolmetabolites. Am J Physiol.;273:G184-90.
21、Song JH, Inoue Y, Miyazawa T. (1997). Oxidativestability of docosahexaenoic acid-containing oils in the form of phospholipids,triacylglycerols, and ethyl esters. Biosci Biotechnol Biochem. 61(12):2085-8
22、Szczepiorkowski, Z. RI., G. R. Dickersin, and M.Laposata. (1995)Fatty acid ethyl esters decrease human hepatoblastoma cellproliferation and protein synthesis. GastroenteroZogy 108: 515- 522.
23、Visioli F, Rise P, Barassi MC, Marangoni F, Galli C.(2003). Dietary intake of fish vs. formulations leads to higher plasmaconcentrations of n-3 fatty acids. Lipids; 38: 415-418.
24、Valenzuela A, Valenzuela V, Sanhueza J, Nieto S.(2005). Effect of supplementation with docosahexaenoic acid ethyl ester andsn-2 docosahexaenyl monoacylglyceride on plasma and erythrocyte fatty acids inrats. Ann Nutr Metab; 49: 49-53.
25、Werner J, Laposata M, Fernandez-del Castillo C,Saghir M, Iozzo RV, Lewandrowski KB, Warshaw AL. (1997). Pancreatic injury in rats inced by fatty acid ethyl ester, a nonoxidativemetabolite of alcohol. Gastroenterology;113: 286–94.
26、Yang LY, Kuksis A, Myher JJ. (1990). Lipolysis ofmenhaden oil triacylglycerols and the corresponding fatty acid alkyl esters bypancreatic lipase in vitro: a reexamination. J Lipid Res. 31(1):137-47.
27、Yang LY, Kukis A, Myher JJ. (1990). Intestinalabsorption of menhaden and rapeseed and their fatty acid methyl and ethylesters in the rat. Biochem Cell Biol.;68:480-91
28、曹萬新,孟橘,田玉霞。DHA的生理功能及應用研究進展,中國油脂,2011,36(3)
29、常皓,王二雷,宮新統,劉靜波。蛋黃卵磷脂研究概況,食品工業科技,2010,5
30、丁慧萍,李艷紅,丁倩,張福東,王濤,王俐,蔡美琴。藻油及魚油二十二碳六烯酸復方制劑對兒童記憶功能的影響,中華臨床營養雜志,2011,19(2)
31、傅利軍,趙蔚蔚。蛋黃來源卵磷脂的應用及進展,食品安全導刊。2011,12
32、宮新統,林松毅,劉靜波,李丹,黃金枝。HPLC在高純度蛋黃卵磷脂提取技術中的應用研究。食品科學,2008,12
33、古紹彬,虞龍,向砥,於洋,余增亮。利用海洋微藻生產DHA和EPA的研究現狀及前景。中國水產科學,2001,8(3)
34、郝穎,汪之和。EPA、DHA的營養功能及其產品安全性分析。現代食品科技,2006,22(3)
36、李揚。高純度蛋黃卵磷脂制備工藝的研究。吉林大學,2007
梁井瑞,胡耀池,陳園力,蔣露,張紅漫。分子蒸餾法純化DHA藻油。中國油脂,2012,37(6)
37、劉偉民,馬海樂,李國文。魚油生理活性物質EPA和DHA分離進展。食品科學,2002, 23(10)
38、劉艷,豐利芳,唐慶,徐三清,羅小平。孕期補充DHA對脂多糖所致宮內感染仔鼠腦組織TLR4表達的影響。華中科技大學學報(醫學版),2011,40(4)
39、孟麗萍,張堅,趙文華。母親DHA攝入與胎兒、嬰兒DHA營養狀況及發育的關系。衛生研究,2005,34(2)
40、彭雲,李汴生,林應勝,黃巍峰,張影霞。微藻DHA在蛋糕中的應用。現代食品科技,2012,28(2)
41、任國譜,黃興旺,岳紅,肖蓮榮,申衍豪。嬰幼兒配方奶粉中二十二碳六烯酸(DHA)的氧化穩定性研究。中國乳品工業,2011,39(1)
42、阮征,吳謀成,胡筱波,薛照輝。多不飽和脂肪酸的研究進展。中國油脂,2003,28(2)
43、譚利偉,麻麗坤,趙進,尹兆正。蛋黃卵磷脂的應用研究進展。中國家禽,2005,21
44、田冰,劉亞軍,劉繼明。高效快速提取蛋黃卵磷脂的新方法。食品科技,2000,2
45、王衛飛,馬永鈞,范海星,王永華,楊博。酶法合成富含DHA、EPA甘油三酯的研究。中國油脂,2011,36(2)
46、吳克剛,孟宏昌。嬰幼兒配方奶粉強化DHA和AA的研究。中國乳品工業,2004,32(2)
47、張娟梅,柯崇榕,黃建忠。DHA單細胞油脂的萃取與濃縮。中國油脂,2008,33(10)
48、丁宗一,杜麗蓉。不同喂養方法對嬰幼兒生長速率影響的研究。中華兒科雜志,2002,40(11)
49、張義明。DHA的來源及合理應用。食品工業科技,2003,24(8)
50、周遠揚,雷百戰,潘藝。魚油EPA與DHA提取方法研究進展。廣東農業科學,2009,(12)
51、周冉,王飛,常明,岳紅坤,史蘭香,劉司婕。從微藻中提取分離EPA和DHA的方法。安徽農業科學,2012,40(14)
52、朱路英,張學成,宋曉金,況成宏,孫遠征。n-3多不飽和脂肪酸DHA、EPA研究進展。海洋科學,2007,31(11)
❹ 如何提煉純辣椒素
你在網上時找不到這篇文章的。給你分享分享吧 1、從干紅辣椒中提取辣椒紅素 對有機溶劑提取、非連續酶法提取和連續酶法提取辣椒紅素進行了研究,並對這三種提取方法的提取條件分別進行了優化。將這三種提取方法分別在最優提取條件下進行比較發現:丙酮提取法所得辣椒紅素色價最高,而非連續酶法提取所得辣椒紅素色價居中,但是其副產物-辣椒鹼的含量比丙酮提取法提高了 30%,連續酶法提取所得辣椒紅素所含雜質較多色價較低,辣椒鹼含量也不高。因此,本實驗採用丙酮提取法提取辣椒紅素。提取所得的辣椒紅素採用硅膠柱層析分離出辣 2、紅辣椒色素的提取分離及光穩定性 紅辣椒粉中的色素和辣椒鹼類化合物的測定方法;確定了有機溶劑法提取和初步精製辣椒油樹脂的工藝;分別以辣椒粉和辣椒油樹脂為原料,採用超臨界二氧化碳萃取分離技術和分子蒸餾技術分離辣椒色素和辣椒鹼類化合 物;由硅膠柱層析分離得到黃色素,並與混合辣 3、紅辣椒中辣椒素的提取純化及其檢測方法 以干紅辣椒皮粉為原料,採用索氏提取法制備辣椒樹脂,結果表明:從提取效率和經濟成本這兩方面來考慮,提取的最佳條件為:提取溶劑95%乙醇,原料粒度40^60目,料液比1:4 g/mL,提取時間4h,經索氏提取後的溶液經濃縮可得到辣椒素總含量為1.25%辣椒樹脂。 採用了水蒸氣蒸餾法、硅膠柱層析法、減壓升華法純化辣椒素,結果表明:減壓升華法為最佳純化方法。以辣椒樹脂為原料,在110℃下減壓升華8h左右,然後用丙酮洗下彎管及冷凝管上沾附的辣椒素,過濾後去除溶劑,用4、辣椒紅色素超臨界流體技術提取和應用 以干紅辣椒為原料,採用溶劑法和超臨界法結合提取辣椒紅色素等產品的系統研究。首先要以干椒為原料制備粗產品,浸取溶劑、辣椒皮粉細度、固液比和浸取時間等工藝參數的影響,在此基礎上確定出採用傳統溶劑法製取辣椒樹脂中間產品的最佳工藝條件:然後以辣椒樹脂為原料,進行了超臨界預實驗、樹脂超臨界萃取正交實驗、裝料系數與萃取時間測定研究,確定出採用超臨界COz萃取法提取辣椒紅色素產品的最佳工藝條件。為使現有工藝與工業化接軌,提高現有色素產品的品質 5、辣椒鹼提取工藝的優化設計 辣椒鹼易溶於多種有機溶劑,選用九種有機溶劑進行比較,結果表明:從提取效率和經濟成本這兩方面來考慮,乙醇可作為提取辣椒鹼的最佳浸提劑。其浸提的最佳條件是:原料粒度 80 目,浸提溫度 75℃,料液比 1:5,提取時間 1h,提取次數 4~6 次,辣椒鹼提取率可達(87+1)%,辣椒鹼提取量0.876%,辣度為 131400。 超臨界流體萃取技術作為一種新型化工分離技術,在食品加工領域有著廣闊的應用前景。本文採用超臨界 CO2流體萃取,其萃取的最佳條件是:萃取壓力10 MPa6、辣椒素的提取工藝及分析方法 干紅辣椒為原料制備辣椒樹脂,並分別研究了浸取溶劑、辣椒皮粉細度、固液比、浸取時間和虹吸次數等工藝參數的影響,在此基礎上確定出索氏浸取法製取辣椒樹脂的最佳工藝條件;其次以辣椒樹脂為原料,分別進行了萃取溶劑用量、萃取溫度、時間、次數的單因素實驗以及四因素三水平正交實驗,確定出溶劑萃取法制備辣椒精的最佳工藝條件;最後以辣椒精為原料,分別進行了相轉移預處理過程中pH值、樹脂的靜態篩選、洗脫劑、上柱流速、洗脫流速和結晶溶劑、溫度等參數的選擇 7、辣椒中紅色素和辣椒素的分離與精製 確定了提取辣椒紅素過程的有機溶劑種類和操作方式,根據結果研究了兩種提取辣椒紅素的方法:丙酮索 氏提取法和乙醇超聲提取法。確定了各自的最佳條件,丙酮索氏提取的最優條件為:每5克辣椒粉用1 S OmL丙酮在65℃下提取4h;超聲提取辣椒紅素的最優條件為:在功率為200W下,取無水乙醇與辣椒粉的液固比為12:1,超聲提取3 Omin。將這兩種提取方法分別在最優提取條件下比較提取的色素收率和色價發現,超聲提取過程僅需要 很短時間就能達到和索氏法相同的收率,因此採用 8、辣椒中辣椒素提取分離純化工藝 建立了一種准確、快速分析測定辣椒素含量的反相高效液相色譜方法,對提取物中辣椒素與辣椒素類物質的色譜分離條件進行優化,確定流動相為甲醇一水(70:30 V/V),流速0.6mL/min,檢測波長280nm,柱溫控制在25 C;在保證良好線性關系的條件下,擴大了測定方法的線性范圍;該方法具有較高的精密度和准確性,且分析周期短,適用於辣椒素含量的精確分析。同時,對分光 9、葯用天然結晶辣椒鹼的製造方法 10、辣椒油脂中辣椒色素的提取方法 11、辣椒色素和辣素的提取方法 12、天然辣椒色素的生產方法 13、由辣椒提取辣椒色素和辣素工藝方法 14、辣椒紅色素的提取方法 15、從辣椒中提取紅色素的方法 16、辣椒紅色素的提取新方法 17、自紅辣椒中提取辣椒紅色素和辣椒素的新工藝 18、快速提取無味辣椒紅色素的新方法 19、由干紅辣椒提取辣椒鹼的工藝方法 20、超臨界二氧化碳萃取辣椒鹼類化合物的生產方法 21、超臨界二氧化碳精製脫臭辣椒紅色素生產方法 22、一種含辣椒鹼的農葯殺蟲劑 23、用辣椒油樹脂生產晶體狀辣椒鹼類化合物的方法 24、辣椒紅色素的制備方法 25、以辣椒素為原料製造高純度辣椒鹼的方法 26、皮膚用辣椒鹼脂質體制劑 27、辣椒鹼自拋光防污塗料及其制備方法 28、從干辣椒生產辣椒素晶體的方法 29、從殘次辣椒中提取辣椒精的方法 30、汽液逆流淋漓提取辣椒紅色素的方法 31、從辣椒中分離辣椒紅素和辣椒鹼的方法 32、以6號溶劑油提取天然辣椒紅色素的工業生產方法 33、提高辣椒精質量的工業方法 34、一種苦參鹼·辣椒鹼殺蟲劑 35、辣椒鹼和辣椒紅色素的分步法生產工藝 36、從辣椒中提取辣椒鹼晶體的方法 37、分子蒸餾洗滌法生產天然辣椒鹼晶體的工業方法 38、一種用離子交換樹脂法生產高純辣椒素晶體的方法 39、從紅辣椒中提取分離辣椒鹼和辣椒紅色素的方法 40、辣椒紅色素和辣椒精的生產工藝與方法 41、水溶性辣椒紅色素的制備方法 42、一種水分散型辣椒紅色素微囊及其制備方法 43、大孔吸咐樹脂法富集與純化辣椒鹼的方法 44、分子蒸餾法富集與純化辣椒鹼的方法 45、一種天然辣椒紅色素的提取純化方法 46、一種辣椒鹼殺蟲劑 47、高辣度辣椒精的制備方法 48、天然辣椒鹼的提取方法 49、辣椒鹼殺蟲劑的生產方法及其應用 50、辣椒素和色素的微波一次提取法 文獻資料 51、辣椒鹼的研究進展及應用 52、離子交換法制備辣椒鹼類化合物 53、辣椒紅素與辣椒鹼的分離 54、萃取_結晶法制備高純辣椒鹼類化合物 55、辣椒鹼主要組分的RP_HPLC法測定 56、辣椒精中辣椒鹼的提取工藝 57、離子交換法制備高純辣椒鹼類化合物 58、辣椒鹼類化合物及脫色辣椒精生產技術研究 59、由干紅辣椒提取辣椒鹼的工藝方法 60、辣椒紅色素提取方法研究進展 61、辣椒素類物質制備方法的研究 62、反相高效液相色譜法制備純辣椒素的研究 63、辣椒紅色素提取方法研究 64、辣椒紅色素的提取及穩定性的研究 65、柱層析法分離精製辣椒紅色素 66、辣椒素的分析方法及辣度分級 67、辣椒中辣椒素與色素提取的優化研究 68、辣椒素的應用與提取 69、超臨界CO_2萃取辣椒紅色素工藝條件的探討 70、超聲提取辣椒紅素的研究 71、超臨界CO_2萃取辣椒紅色素工藝條件的研究 72、辣椒紅色素提取與檢測方法的研究進展 73、正交試驗法優選辣椒中辣椒素提取工藝的研究 74、超聲強化提取辣椒素的研究 75、超臨界二氧化碳精製辣椒紅色素的研究 76、辣椒紅色素提取技術的研究 77、紅辣椒中辣椒紅色素的提取工藝研究 78、辣椒紅色素的提取工藝及穩定性研究 79、辣椒素的工業化提取工藝 80、辣椒素的制備工藝及分析方法 81、從干紅辣椒中提取辣椒紅色素的研究 82、辣椒紅色素的分離提取技術 83、辣椒中紅色素的提取工藝 84、辣椒辣素的提取分離技術研究 85、辣椒辣素的分離純化及分析 86、超臨界萃取技術在辣椒紅色素中的應用 87、辣椒提取辣椒紅色素新工藝 88、超臨界二氧化碳萃取技術在辣椒紅色素精製工藝 89、紅辣椒中紅色素的提取與性質研究 90、天然辣椒紅色素提取精製工藝研究 91、辣椒紅色素提取精製方法 92、辣椒深加工產品中辣素含量的測定 93、辣椒素的提取與純化 94、辣椒中辣椒紅素的簡便分離方法 95、辣椒紅色素製取和應用研究概述 96、辣椒辣素的提取與純化方法研究 97、辣椒紅色素提取的研究 98、用硅膠柱層析分離辣椒紅色素 99、微波法萃取辣椒中辣椒素的研究 100、辣椒紅色素晶體制備技術的研究 101、辣椒鹼的生產和應用 102、辣椒中辣椒鹼和辣椒紅色素的提取及應用 103、高效液相色譜法測定辣椒鹼 104、辣椒鹼的製取純化及應用研究 105、辣椒鹼的研究概述 106、辣椒鹼的提取檢測及其在有害生物防治中的應用 107、類辣椒鹼素純化實驗研究 108、辣椒鹼的 (略啦)
麻煩採納,謝謝!
❺ 蒸餾設備的設備
(molecular distillation equipment)
分子蒸餾亦稱短程蒸餾.它是一項較新的尚未廣泛應用於工業化生產的液-液分離技術.其應用能解決大量常規蒸餾技術所不能解決的問題.
分子蒸餾與常規蒸餾技術相比有以下特點:
1.普通蒸餾是在沸點溫度下進行分離操作:而分子蒸餾只要冷熱兩個面之間達到足夠的溫度差.就可以在任何溫度下進行分離.因而分子蒸餾操作溫度遠低於物料的沸點.
2.普通蒸餾有鼓泡.沸騰現象:而分子蒸餾是液膜表面的自由蒸發.操作壓力很低.一般為0.1-1Pa數量級,受熱時間很短.一般僅為十秒至幾十秒.
3.普通蒸餾的蒸發和冷凝是可逆過程.液相和氣相之間處於動態相平衡,而在分子蒸餾過程中.從加熱面逸出的分子直接飛射到冷凝面上.理論上沒有返回到加熱面的可能性.所以分子蒸餾沒有不易分離的物質.
一套完整的分子蒸餾設備主要包括:分子蒸發器、脫氣系統、進料系統、加熱系統、冷卻真空系統和控制系統。分子蒸餾裝置的核心部分是分子蒸發器,其種類主要有3種:(1)降膜式:為早期形式,結構簡單,但由於液膜厚,效率差,當今世界各國很少採用;(2)刮膜式:形成的液膜薄,分離效率高,但較降膜式結構復雜;(3)離心式:離心力成膜,膜薄,蒸發效率高,但結構復雜,真空密封較難,設備的製造成本高。為提高分離效率,往往需要採用多級串聯使用而實現不同物質的多級分離。
1.降膜式分子蒸餾器
該裝置是採取重力使蒸發面上的物料變為液膜降下的方式。將物料加熱,蒸發物就可在相對方向的冷凝面上凝縮。降膜式裝置為早期形式,結構簡單,在蒸發面上形成的液膜較厚,效率差,現在各國很少採用。
2.刮膜式分子蒸餾裝置
我國在80年代末才開展刮膜式分子蒸餾裝置和工藝應用研究。它採取重力使蒸發面上的物料變為液膜降下的方式,但為了使蒸發面上的液膜厚度小且分布均勻,在蒸餾器中設置了一硬碳或聚四氟乙烯制的轉動刮板。該刮板不但可以使下流液層得到充分攪拌,還可以加快蒸發面液層的更新,從而強化了物料的傳熱和傳質過程。其優點是:液膜厚度小,並且沿蒸發表面流動;被蒸餾物料在操作溫度下停留時間短,熱分解的危險性較小,蒸餾過程可以連續進行,生產能力大。缺點是:液體分配裝置難以完善,很難保證所有的蒸發表面都被液膜均勻覆蓋;液體流動時常發生翻滾現象,所產生的霧沫也常濺到冷凝面上。但由於該裝置結構相對簡單,價格相對低廉,現在的實驗室及工業生產中,大部分都採用該裝置。
3.離心式分子蒸餾裝置
該裝置將物料送到高速旋轉的轉盤中央,並在旋轉面擴展形成薄膜,同時加熱蒸發,使之與對面的冷凝面凝縮,該裝置是目前較為理想的分子蒸餾裝置。但與其它兩種裝置相比,要求有高速旋轉的轉盤,又需要較高的真空密封技術。離心式分子蒸餾器與刮膜式分子蒸餾器相比具有以下優點:由於轉盤高速旋轉,可得到極薄的液膜且液膜分布更均勻,蒸發速率和分離效率更好;物料在蒸發面上的受熱時間更短,降低了熱敏物質熱分解的危險;物料的處理量更大,更適合工業上的連續生產。 (alcohol distilling equipment)
特點:第一,節能。採用高效低阻的板型,降低釜溫,適量迴流,建立合理利用各級能量的蒸餾流程;盡量採用儀表控制或微機自控系統,使設備處於最佳負荷狀態。
第二,生產強度高。提高單位塔截面的汽液通量,特別是對醪塔的設計,更應注意其汽液比的關系。使設備更加緊湊、生產強度和處理能力又能提高的方法之一,採用高效塔板代替原有舊式塔校(塔體不動)。
第三,排污性能好。在盡量減少成熟醪中纖維物含量的同時,對設備也要考慮其適應含固形物發酵液的蒸餾,最大限度減少停產清塔的次數。
第四,充分考慮塔器的放大效應.特別是對年產量在15000噸以上的塔設備,由於塔徑均大於1.5米以上,所以要對大直徑塔設備採取積極先進措施,以減輕分離效率的降低。
第五,結構簡單,造價降低。在工藝條件許可的情況下,選用塔板結構簡單而效率又高的新型塔板。
裝置原理:
本裝置適用於制葯、食品、輕工、化工等待業的稀酒精回收,也適用於甲醇等其他溶煤的蒸餾。本裝置根據用戶的要求,可將30。左右的稀酒精蒸餾至90。-95。酒精,成品酒精度數要求再高。可加大迴流比,但產量就相應減少。
採用高效的不銹鋼波紋填料。蒸餾塔體採用不銹鋼製作,從而是防止了鐵屑堵塞填料的現象,延長了裝置的使用期限。本裝置中凡接觸酒精的設備部分如冷凝器、穩壓罐、冷卻蛇管等均採用不銹鋼,以確保成品酒精不被污染。蒸餾釜採用可拆式U型加熱管,在檢修時可將U型加熱管移出釜外,便於對加熱管外壁及蒸餾釜內壁進行清洗。本裝置可間歇生產,也可連續生產。
能力參數: 型號 塔徑mm 30~40%進料的生產能力 60~80%進料的生產能力 90%酒精 95%酒精 90%酒精 95%酒精 T-200 φ200 35kg 26kg 45kg 36kg T-300 φ300 80kg 64kg 100kg 80kg T-400 φ400 150kg 120kg 180kg 140kg T-500 φ500 230kg 185kg 275kg 220kg T-600 φ600 335kg 270kg 400kg 320kg 減壓蒸餾設備(atmospheric-vacuum distillation unit)常減壓蒸餾裝置通常包括三部分:
(1)原油預處理。採用加入化學物質和高壓電場聯合作用下的電化學法除去原油中混雜的水和鹽類。
(2)常壓蒸餾。原油在加熱爐內被加熱至370℃左右,送入常壓蒸餾塔在常壓(1大氣壓)下蒸餾出沸點較低的汽油和柴油餾分,殘油是常壓重油。
(3)減壓蒸餾。常壓重油再經加熱爐被加熱至410℃左右,進入減壓蒸餾塔在約8.799千帕(60毫米汞柱)絕壓下蒸餾,餾出裂化原料的潤滑油原料,殘油為減壓渣油。參見原油蒸餾。 水氣蒸餾是用來分散以及提純液態或者固態有機化合物的一種要領,經常使用於下列幾種環境:(1)某些沸點高的有機化合物,在常壓下蒸餾雖可與副產物分散,但易被破壞;(2)混淆物中含有大量樹脂狀雜質或者不揮發性雜質,採用蒸餾、萃取等要領都難以分散;(3)從較多固體反應物中分散出被吸附的液體。
基本原理
按照道爾頓分壓定律,當與水不相混溶的物質與水並存時,全般系統的蒸氣壓應為各組分蒸氣壓之以及,即:
p= pA+ pB
其中p 代表總的蒸氣壓,pA為水的蒸氣壓,pB 為與水不相混溶物質的蒸氣壓。
當混淆物中各組分蒸氣壓總以及等於外界大氣壓時,這時候的溫度即為它們的沸點。此沸點比各組分的沸點都低。是以,在常壓下應用水氣蒸餾,就能在低於100℃的環境下將高沸點組分與水一路蒸出來。由於總的蒸氣壓與混淆物中兩者間的相對於量無關,直至其中一組分幾乎完全移去,溫度才上漲至留在瓶中液體的沸點。我們懂得,混淆物蒸氣中各個氣體分壓(pA,pB)之比等於它們的物質的量(nA,nB)之比,即:
而nA=mA/MA;nB=mB/MB。其中
mA、mB為各物質在肯定是容量中蒸氣的質量,MA、MB為物質A以及B的相對於份子質量。是以:
可見,這兩種物質在餾液中的相對於證量(就是它們在蒸氣中的相對於證量)與它們的蒸氣壓以及相對於份子質量成正比。
以苯胺為例,它的沸點為184.4℃,且以及水不相混溶。當以及水一路加熱至98.4℃時,水的蒸氣壓為95.4 kPa,苯胺的蒸氣壓為5.6 kPa,它們的總壓力靠近大氣壓力,於是液體就開始沸騰,苯胺就隨水氣一路被蒸餾出來,水以及苯胺的相對於份子質量別離為18以及93,代入上式:
即蒸出3.3 g水可以容或者帶出1 g苯胺。苯胺在溶液中的組分佔23.3%。測試中蒸出的水量往往超過計算值,由於苯胺微溶於水,測試中尚有一部分水氣不遑與苯胺充分接觸便離開蒸餾燒杯的緣故。
哄騙水氣蒸餾來分散提純物質時,要求此物質在100℃擺布時的蒸氣壓至少在1.33 kPa擺布。要是蒸氣壓在 0.13~0.67 kPa,則其在餾出液中的含量僅佔1%,甚至更低。為了要使餾出液中的含量增高,就要想辦法提高此物質的蒸氣壓,也就是說要提高溫度,使蒸氣的溫度超過100℃,即要用過熱水氣蒸餾。例如苯甲醛(沸點178℃),進行水氣蒸餾時,在97.9℃沸騰,這時候pA=93.8 kPa,pB=7.5 kPa,則:
這時候餾出液中苯甲醛佔32.1%。
假如導入133℃過熱蒸氣,苯甲醛的蒸氣壓可達29.3kPa,故而只要有72 kPa的水氣壓,就可使系統沸騰,則:
這樣餾出液中苯甲醛的含量就提高到了70.6%。
應用過熱水氣還具有使水氣冷凝少的長處,為了防止過熱蒸氣冷凝,可在蒸餾瓶下保溫,甚至加熱。
從上面的分析可以看出,施用水氣蒸餾這種分散要領是有條件限定的,被提純物質必需具備以下幾個條件:(1)不溶或者難溶於水;(2)與沸水永劫間並存而不發生化學反應;(3)在100℃擺布必需具有肯定似的蒸氣壓(一般不小於1.33 kPa)。
❻ 分子蒸餾的應用
1、單甘酯的生產
分子蒸餾技術廣泛應用於食品工業,主要用於混合油脂的分離。可得到w(單脂肪酸甘油酯)>90%的高純度產品。從蒸餾液面上將單甘酯分子蒸發出來後立即進行冷卻,實現分離。利用分子蒸餾可將未反應的甘油、單甘酯依次分離出來。單甘酯即甘油一酸酯,它是重要的食品乳化劑。單甘酯的用量目前占食品乳化劑用量的三分之二。在商品中它可起到乳化、起酥、蓬鬆、保鮮等作用,可作為餅干、麵包、糕點、糖果等專用食品添加劑。單甘酯可採用脂肪酸與甘油的酯化反應和油脂與甘油的醇解反應兩種工藝製取,其原料為各種油脂、脂肪酸和甘油。採用酯化反應或醇解反應合成的單甘酯,通常都含有一定數量的雙甘酯和三甘酯,通常w(單甘酯)=40%~50%,採用分子蒸餾技術可以得到w(單甘酯)>90%的高純度產品。此法是目前工業上高純度單甘酯生產方法中最常用和最有效的方法,所得到的單甘酯達到食品級要求。分子蒸餾單甘酯產品以質取勝,逐漸代替了純度低、色澤深的普通單甘酯,市場前景樂觀,開發分子蒸餾單甘酯可為企業帶來豐厚的利潤。
2、魚油的精製
從動物中提取天然產物,也廣泛採取分子蒸餾技術,如精製魚油等[8]。魚油中富含全順式高度不飽和脂肪酸二十碳五烯酸(簡稱EPA)和二十二碳六烯酸(簡稱DHA),此成分具有很好的生理活性,不僅具有降血脂、降血壓、抑制血小板凝集、降低血液黏度等作用,而且還具有抗炎、抗癌、提高免疫能力等作用,被認為是很有潛力的天然葯物和功能食品。EPA、DHA主要從海產魚油中提取,傳統分離方法是採用尿素包合沉澱法[9]和冷凍法[10]。運用尿素包合沉澱法可以有效地脫除產品中飽和的及低不飽和的脂肪酸組分,提高產品中DHA和EPA的含量,但由於很難將其他高不飽和脂肪酸與DHA和EPA分離,只能使w(DHA+EPA)<80%。而且產品色澤重,腥味大,過氧化值高,還需進一步脫色除臭後才能製成產品,回收率僅為16%;由於物料中的雜質脂肪酸的平均自由程同EPA、DHA乙酯相近,分子蒸餾法盡管只能使w(EPA+DHA)=72 5%,但回收率可達到70%,產品的色澤好、氣味純正、過氧化值低,而且可以將混合物分割成DHA與EPA不同含量比例的產品。因此分子蒸餾法不失為分離純化EPA、DHA一種有效方法。
3、油脂脫酸
在油脂的生產過程中,由於從油料中提取的毛油中含有一定量的游離脂肪酸,從而影響油脂的色澤和風味以及保質期。傳統工業生產中化學鹼煉或物理蒸餾的脫酸方法有一定的局限性。由於油品酸值高,化學鹼煉工藝中添加的鹼量大,鹼在與游離脂肪酸的中和過程中,也皂化了大量中性油使得精煉得率偏低;物理精煉用水蒸氣氣提脫酸,油脂需要在較長時間的高溫下處理,影響油脂的品質,一些有效成分會隨水蒸氣溢出,從而會降低保健營養價值。
馬傳國等在對高酸值花椒籽油脫酸的研究中,利用分子蒸餾對不同酸值的花椒籽油進行脫酸,能獲得比較高的輕(脂肪酸)、重(油脂)餾分得率,這是目前化學鹼煉或物理蒸餾等工藝所不能達到的。對酸值為28mgKOH/g和41 2mgKOH/g的高酸值油脂用分子蒸餾法脫酸後,油脂的酸值分別下降到2 6mgKOH/g和3 8mgKOH/g,油脂的得率分別為86%和80 9%,中性油脂基本沒有損失。所以利用分子蒸餾技術對高酸值油脂脫酸具有良好的效果,具有廣闊的應用前景。
4、高碳醇的精製
高碳脂肪醇是指二十碳以上的直鏈飽和醇,具有多種生理活性。目前最受關注的是二十八烷醇和三十烷醇,它們具有抗疲勞、降血脂、護肝、美容等功效,可做營養保健劑的添加劑,某些國家也作為降血脂葯物,發展前景看好。
精製高碳醇,其工藝十分復雜,需要經過醇相皂化,多種及多次溶劑浸提,然後用多次柱層析分離,最後還要採用溶劑結晶才能得到一定純度的產品。日本採用蠟脂皂化、溶劑提取、真空分餾的方法得到w(高碳醇)=10%~30%的產品。而劉元法等對米糠蠟中二十八烷醇精製研究中得出,經多級分子蒸餾後,可得到w(高碳醇)=80%的產品。張相年等利用富含二十八烷醇的長鏈脂肪酸高碳醇酯,還原得到二十八烷醇。即以蟲蠟為原料,在乙醚中加氫化鋁鋰(AlLiH4),在70~80℃還原2 5h得到高碳醇混合物,經分子蒸餾純化,高碳醇純度達到w(高碳醇)=96%,其中w(二十八烷醇)=16 7%。利用分子蒸餾技術精製高碳醇,工藝簡單,操作安全可靠,產品質量高。 (二)在精細化工中的應用
分子蒸餾技術在精細化工行業中可用於碳氫化合物、原油及類似物的分離;表面活性劑的提純及化工中間體的制備;羊毛脂及其衍生物的脫臭、脫色;塑料增塑劑、穩定劑的精製以及硅油、石蠟油、高級潤滑油的精製等。在天然產物的分離上,許多芳香油的精製提純,都應用分子蒸餾而獲得高品質精油。
1、芳香油的提純
隨著日用化工、輕工、制葯等行業和對外貿易的迅速發展,對天然精油的需求量不斷增加。精油來自芳香植物,從芳香植物中提取精油的方法有:水蒸氣蒸餾法、浸提法、壓榨法和吸附法。精油的主要成分大都是醛、酮、醇類。且大部分都是萜類,這些化合物沸點高,屬熱敏性物質,受熱時很不穩定。因此,在傳統的蒸餾過程中,因長時間受熱會使分子結構發生改變而使油的品質下降。
陸韓濤等用分子蒸餾的方法對山蒼子油、姜樟油、廣藿香油等幾種芳香油進行了提純,結果見表3。結果表明,分子蒸餾技術是提純精油的一種有效的方法,可將芳香油中的某一主要成分進行濃縮,並除去異臭和帶色雜質,提高其純度。由於此過程是在高真空和較低溫度下進行,物料受熱時間極短,因此保證了精油的質量,尤其是對高沸點和熱敏性成分的芳香油,更顯示了其優越性。
此外,利用分子蒸餾技術分離毛葉木姜子果油中的檸檬醛可得到w(檸檬醛)=95%,產率53%的產品;對乾薑的有效成分的分離中,通過調節不同的蒸餾溫度和真空度可得到不同的有效成分種類及其相對含量,調節適宜的蒸餾溫度和真空度可獲得相對含量較高的有效成分。
2、高聚物中間體的純化
在由單體合成聚合物的過程中,總會殘留過量的單體物質,並產生一些不需要的小分子聚合體,這些雜質嚴重影響產品的質量。傳統清除單體物質及小分子聚合體的方法是採用真空蒸餾,這種方法操作溫度較高。由於高聚物一般都是熱敏性物質,因此溫度一高,高聚物就容易歧化、縮合或分解。例如,對聚醯胺樹脂中的二聚體進行純化,採用常規蒸餾方法只能使w(二聚體聚醯胺樹脂)=75%~87%,採用分子蒸餾技術則可以使w(二聚體聚醯胺樹脂)=90%~95%。在對酚醛樹脂和聚氨酯的純化中,採用分子蒸餾的方法可以使酚醛樹脂中的單體酚含量脫除到w(單體酚)<0 .01%,使w(二異氰酸酯單體)<0 .1%。分子蒸餾技術能極好地保護高聚物產品的品質,提高產品純度,簡化工藝,降低成本。
3、羊毛脂的提取
羊毛脂及其衍生物廣泛應用於化妝品。羊毛脂成分復雜,主要含酯、游離醇、游離酸和烴。這些組分相對分子質量較大,沸點高,具熱敏性。用分子蒸餾技術將各組分進行分離,對不同成分進行物理和化學方法改性,可得到聚氧乙烯羊毛脂、乙醯羊毛脂、羊毛酸、異丙酯及羊毛聚氧乙烯脂等性能優良的羊毛脂系列產品。 利用分子蒸餾技術,在醫葯工業中可提取天然維生素A、維生素E;製取氨基酸及葡萄糖的衍生物;以及胡蘿卜和類胡蘿卜素等。現以維生素E為例:天然維生素E在自然界中廣泛存在於植物油種子中,特別是大豆、玉米胚芽、棉籽、菜籽、葵花籽、米胚芽中含有大量的維生素E。由於維生素E是脂溶性維生素,因此在油料取油過程中它隨油一起被提取出來。脫臭是油脂精練過程中的一道重要工序,餾出物是脫臭工序的副產品,主要成分是游離脂肪酸和甘油以及由它們的氧化產物分解得到的揮發性醛、酮碳氫類化合物,維生素E等。從脫臭餾出物中提取維生素E,就是要將餾出物中非維生素E成分分離出去,以提高餾出物中維生素E的含量。曹國峰等將脫臭餾出物先進行甲脂化,經冷凍、過濾後分離出甾醇,經減壓真空蒸餾後再在220~240℃、壓力為10-3~10-1Pa的高真空條件下進行分子蒸餾,可得到w(天然維生素E)=50%~70%的產品。採取色譜法、離子交換、溶劑萃取等可對其進一步精製。此外,在分子生物學領域中,可以將分子蒸餾技術作為生物研究的一種前處理技術,以保存原有組織的生物活性和制備生物樣品等。
綜上所述,分子蒸餾技術作為一種特殊的新型分離技術,主要應用於高沸點、熱敏性物料的提純分離。實踐證明,此技術不但科技含量高,而且應用范圍廣,是一項工業化應用前景十分廣闊的高新技術。它在天然葯物活性成分及單體提取和純化過程的應用還剛剛開始,尚有很多問題需要進一步探索和研究。
❼ 簡述中草葯有效成分提取和分離方法
草葯提取分離中方法有超臨界流體萃取法、膜分離技術、超微粉碎技術、中葯絮凝分離技術、半仿生提取法、超聲提取法、旋流提取法、加壓逆流提取法、酶法、大孔樹脂吸附法、超濾法、分子蒸餾法等。具體如下 :
1、超臨界流體萃取
利用超臨界狀態下的流體為萃取劑,從液體或固體中萃取中葯材中的葯效成分並進行分離的方法。原理是以一種超臨界流體在高於臨界溫度和壓力下,從目標物中萃取有效成分,當恢復到常壓常溫時,溶解在流體中成分立即以溶於吸收液的液體狀態與氣態流體分開。
2、膜提取分離技術
分離基本原理是利用化學成分分子量差異而達到分離目的.在中葯應用方面主要是濾除細菌、微粒、大分子雜質(膠質、鞣質、蛋白、多糖)等或脫色。
3、超微粉碎技術
是利用超聲粉碎、超低溫粉碎技術,使生葯中心粒徑在5~10μm以下,細胞破壁率達到95%。葯效成分易於提取也容易被人體直接吸收。適合於各種不同質地的葯材,而且可使其中的有效成分直接暴露出來,從而使葯材成分的溶出和起效更加迅速完全。
4、葯絮凝分離技術
將絮凝劑加到中葯的水提液中通過絮凝劑的吸附、架橋、絮凝作用以及無機鹽電解質微粒和表面電荷產生凝聚作用,使許多不穩定的微粒如蛋白質、錳液質、鞍質等連接成絮團沉降,經濾過達到分離純化的目的。
(7)分子蒸餾研究方法擴展閱讀:
中草葯提取和分離經歷了三個發展階段。第一階段,是傳統的丹、丸、膏、散;第二階段,是以水醇法或醇水法為主的提取、粗處理技術與現代工業制劑技術相結合而製成中成葯;第三階段,是運用現代分離技術和檢測技術精製化和定量化的現代植物葯。
植物葯的三個階段,只是說明它們先後產生的時間順序,並不表示後一階段會取代或取消前一階段。正如化學葯不能取消天然葯物、生物葯也不能取消化學葯一樣。但後一層次比前一層次更多體現或運用了現代科技。
植物提取物和現代植物葯在概念的內涵上存在著交叉性,互相包含著彼此的部分內容。現代植物葯在很大程度上是以提取物為基礎的,植物提取物是現代植物葯的主要原料和組成部分;而有些植物提取物品種則被直接作為葯用。
❽ 如何提煉辣椒素
1、從干紅辣椒中提取辣椒紅素
對有機溶劑提取、非連續酶法提取和連續酶法提取辣椒紅素進行了研究,並對這三種提取方法的提取條件分別進行了優化。將這三種提取方法分別在最優提取條件下進行比較發現:丙酮提取法所得辣椒紅素色價最高,而非連續酶法提取所得辣椒紅素色價居中,但是其副產物-辣椒鹼的含量比丙酮提取法提高了 30%,連續酶法提取所得辣椒紅素所含雜質較多色價較低,辣椒鹼含量也不高。因此,本實驗採用丙酮提取法提取辣椒紅素。提取所得的辣椒紅素採用硅膠柱層析分離出辣
2、紅辣椒色素的提取分離及光穩定性
紅辣椒粉中的色素和辣椒鹼類化合物的測定方法;確定了有機溶劑法提取和初步精製辣椒油樹脂的工藝;分別以辣椒粉和辣椒油樹脂為原料,採用超臨界二氧化碳萃取分離技術和分子蒸餾技術分離辣椒色素和辣椒鹼類化合
物;由硅膠柱層析分離得到黃色素,並與混合辣
3、紅辣椒中辣椒素的提取純化及其檢測方法
以干紅辣椒皮粉為原料,採用索氏提取法制備辣椒樹脂,結果表明:從提取效率和經濟成本這兩方面來考慮,提取的最佳條件為:提取溶劑95%乙醇,原料粒度40^60目,料液比1:4 g/mL,提取時間4h,經索氏提取後的溶液經濃縮可得到辣椒素總含量為1.25%辣椒樹脂。 採用了水蒸氣蒸餾法、硅膠柱層析法、減壓升華法純化辣椒素,結果表明:減壓升華法為最佳純化方法。以辣椒樹脂為原料,在110℃下減壓升華8h左右,然後用丙酮洗下彎管及冷凝管上沾附的辣椒素,過濾後去除溶劑,用4、辣椒紅色素超臨界流體技術提取和應用
以干紅辣椒為原料,採用溶劑法和超臨界法結合提取辣椒紅色素等產品的系統研究。首先要以干椒為原料制備粗產品,浸取溶劑、辣椒皮粉細度、固液比和浸取時間等工藝參數的影響,在此基礎上確定出採用傳統溶劑法製取辣椒樹脂中間產品的最佳工藝條件:然後以辣椒樹脂為原料,進行了超臨界預實驗、樹脂超臨界萃取正交實驗、裝料系數與萃取時間測定研究,確定出採用超臨界COz萃取法提取辣椒紅色素產品的最佳工藝條件。為使現有工藝與工業化接軌,提高現有色素產品的品質
5、辣椒鹼提取工藝的優化設計
辣椒鹼易溶於多種有機溶劑,選用九種有機溶劑進行比較,結果表明:從提取效率和經濟成本這兩方面來考慮,乙醇可作為提取辣椒鹼的最佳浸提劑。其浸提的最佳條件是:原料粒度 80 目,浸提溫度 75℃,料液比 1:5,提取時間 1h,提取次數 4~6 次,辣椒鹼提取率可達(87+1)%,辣椒鹼提取量0.876%,辣度為 131400。
超臨界流體萃取技術作為一種新型化工分離技術,在食品加工領域有著廣闊的應用前景。本文採用超臨界 CO2流體萃取,其萃取的最佳條件是:萃取壓力10 MPa6、辣椒素的提取工藝及分析方法
干紅辣椒為原料制備辣椒樹脂,並分別研究了浸取溶劑、辣椒皮粉細度、固液比、浸取時間和虹吸次數等工藝參數的影響,在此基礎上確定出索氏浸取法製取辣椒樹脂的最佳工藝條件;其次以辣椒樹脂為原料,分別進行了萃取溶劑用量、萃取溫度、時間、次數的單因素實驗以及四因素三水平正交實驗,確定出溶劑萃取法制備辣椒精的最佳工藝條件;最後以辣椒精為原料,分別進行了相轉移預處理過程中pH值、樹脂的靜態篩選、洗脫劑、上柱流速、洗脫流速和結晶溶劑、溫度等參數的選擇
7、辣椒中紅色素和辣椒素的分離與精製
確定了提取辣椒紅素過程的有機溶劑種類和操作方式,根據結果研究了兩種提取辣椒紅素的方法:丙酮索
氏提取法和乙醇超聲提取法。確定了各自的最佳條件,丙酮索氏提取的最優條件為:每5克辣椒粉用1 S OmL丙酮在65℃下提取4h;超聲提取辣椒紅素的最優條件為:在功率為200W下,取無水乙醇與辣椒粉的液固比為12:1,超聲提取3 Omin。將這兩種提取方法分別在最優提取條件下比較提取的色素收率和色價發現,超聲提取過程僅需要
很短時間就能達到和索氏法相同的收率,因此採用
8、辣椒中辣椒素提取分離純化工藝
建立了一種准確、快速分析測定辣椒素含量的反相高效液相色譜方法,對提取物中辣椒素與辣椒素類物質的色譜分離條件進行優化,確定流動相為甲醇一水(70:30 V/V),流速0.6mL/min,檢測波長280nm,柱溫控制在25 C;在保證良好線性關系的條件下,擴大了測定方法的線性范圍;該方法具有較高的精密度和准確性,且分析周期短,適用於辣椒素含量的精確分析。同時,對分光
9、葯用天然結晶辣椒鹼的製造方法
10、辣椒油脂中辣椒色素的提取方法
11、辣椒色素和辣素的提取方法
12、天然辣椒色素的生產方法
13、由辣椒提取辣椒色素和辣素工藝方法
14、辣椒紅色素的提取方法
15、從辣椒中提取紅色素的方法
16、辣椒紅色素的提取新方法
17、自紅辣椒中提取辣椒紅色素和辣椒素的新工藝
18、快速提取無味辣椒紅色素的新方法
19、由干紅辣椒提取辣椒鹼的工藝方法
20、超臨界二氧化碳萃取辣椒鹼類化合物的生產方法
21、超臨界二氧化碳精製脫臭辣椒紅色素生產方法
22、一種含辣椒鹼的農葯殺蟲劑
23、用辣椒油樹脂生產晶體狀辣椒鹼類化合物的方法
24、辣椒紅色素的制備方法
25、以辣椒素為原料製造高純度辣椒鹼的方法
26、皮膚用辣椒鹼脂質體制劑
27、辣椒鹼自拋光防污塗料及其制備方法
28、從干辣椒生產辣椒素晶體的方法
29、從殘次辣椒中提取辣椒精的方法
30、汽液逆流淋漓提取辣椒紅色素的方法
31、從辣椒中分離辣椒紅素和辣椒鹼的方法
32、以6號溶劑油提取天然辣椒紅色素的工業生產方法
33、提高辣椒精質量的工業方法
34、一種苦參鹼·辣椒鹼殺蟲劑
35、辣椒鹼和辣椒紅色素的分步法生產工藝
36、從辣椒中提取辣椒鹼晶體的方法
37、分子蒸餾洗滌法生產天然辣椒鹼晶體的工業方法
38、一種用離子交換樹脂法生產高純辣椒素晶體的方法
39、從紅辣椒中提取分離辣椒鹼和辣椒紅色素的方法
40、辣椒紅色素和辣椒精的生產工藝與方法
41、水溶性辣椒紅色素的制備方法
42、一種水分散型辣椒紅色素微囊及其制備方法
43、大孔吸咐樹脂法富集與純化辣椒鹼的方法
44、分子蒸餾法富集與純化辣椒鹼的方法
45、一種天然辣椒紅色素的提取純化方法
46、一種辣椒鹼殺蟲劑
47、高辣度辣椒精的制備方法
48、天然辣椒鹼的提取方法
49、辣椒鹼殺蟲劑的生產方法及其應用
50、辣椒素和色素的微波一次提取法
文獻資料
51、辣椒鹼的研究進展及應用
52、離子交換法制備辣椒鹼類化合物
53、辣椒紅素與辣椒鹼的分離
54、萃取_結晶法制備高純辣椒鹼類化合物
55、辣椒鹼主要組分的RP_HPLC法測定
56、辣椒精中辣椒鹼的提取工藝
57、離子交換法制備高純辣椒鹼類化合物
58、辣椒鹼類化合物及脫色辣椒精生產技術研究
59、由干紅辣椒提取辣椒鹼的工藝方法
60、辣椒紅色素提取方法研究進展
61、辣椒素類物質制備方法的研究
62、反相高效液相色譜法制備純辣椒素的研究
63、辣椒紅色素提取方法研究
64、辣椒紅色素的提取及穩定性的研究
65、柱層析法分離精製辣椒紅色素
66、辣椒素的分析方法及辣度分級
67、辣椒中辣椒素與色素提取的優化研究
68、辣椒素的應用與提取
69、超臨界CO_2萃取辣椒紅色素工藝條件的探討
70、超聲提取辣椒紅素的研究
71、超臨界CO_2萃取辣椒紅色素工藝條件的研究
72、辣椒紅色素提取與檢測方法的研究進展
73、正交試驗法優選辣椒中辣椒素提取工藝的研究
74、超聲強化提取辣椒素的研究
75、超臨界二氧化碳精製辣椒紅色素的研究
76、辣椒紅色素提取技術的研究
77、紅辣椒中辣椒紅色素的提取工藝研究
78、辣椒紅色素的提取工藝及穩定性研究
79、辣椒素的工業化提取工藝
80、辣椒素的制備工藝及分析方法
81、從干紅辣椒中提取辣椒紅色素的研究
82、辣椒紅色素的分離提取技術
83、辣椒中紅色素的提取工藝
84、辣椒辣素的提取分離技術研究
85、辣椒辣素的分離純化及分析
86、超臨界萃取技術在辣椒紅色素中的應用
87、辣椒提取辣椒紅色素新工藝
88、超臨界二氧化碳萃取技術在辣椒紅色素精製工藝
89、紅辣椒中紅色素的提取與性質研究
90、天然辣椒紅色素提取精製工藝研究
91、辣椒紅色素提取精製方法
92、辣椒深加工產品中辣素含量的測定
93、辣椒素的提取與純化
94、辣椒中辣椒紅素的簡便分離方法
95、辣椒紅色素製取和應用研究概述
96、辣椒辣素的提取與純化方法研究
97、辣椒紅色素提取的研究
98、用硅膠柱層析分離辣椒紅色素
99、微波法萃取辣椒中辣椒素的研究
100、辣椒紅色素晶體制備技術的研究
101、辣椒鹼的生產和應用
102、辣椒中辣椒鹼和辣椒紅色素的提取及應用
103、高效液相色譜法測定辣椒鹼
104、辣椒鹼的製取純化及應用研究
105、辣椒鹼的研究概述
106、辣椒鹼的提取檢測及其在有害生物防治中的應用
107、類辣椒鹼素純化實驗研究
108、辣椒鹼的 (略啦)
❾ 固體如何蒸餾
分子蒸餾技術分子蒸餾技術是一種適合於高沸點、熱敏性物料的濃縮、純化的高新分離技術,已廣泛應用於醫葯、食品、化工等領域。經過多年精心研究,我們不僅成功推出了適用於液態物料純化的分子蒸餾技術及其裝置,如魚油、亞麻酸、共軛亞油酸,精油等產品精製,而且將分子蒸餾拓展到固體物料的純化,目前已成功用於二十八烷醇、香紫蘇醇、龍涎內酯等產品的純化。 該技術及其裝置尤適合分子量500以下的有機化合物的分離純化,如天然浸膏中有效成分提取、合成精細化學品的純化。