導航:首頁 > 研究方法 > 對數據統計分析方法的理解

對數據統計分析方法的理解

發布時間:2022-08-20 16:37:20

Ⅰ 統計數據分析有哪些方法

1、對比分析法


就是將某一指標與選定的比較標准進行比較,比如:與歷史同期比較、與上期比較、與其他競爭對手比較、與預算比較。一般用柱狀圖進行呈現。


2、結構分析法


就是對某一項目的子項目佔比進行統計和分析,一般用餅圖進行呈現。比如:A公司本年度營業額為1000萬,其中飲料營業額佔33.6%、啤酒佔55%,其他產品的營業額佔11.4%。


3、趨勢分析法


就是對某一指標進行連續多個周期的數據進行統計和分析,一般用折線圖進行呈現。比如:A公司前年度營業額為880萬,去年900萬,本年度1000萬,預計明年為1080萬。


4、比率分析法


就是用相對數來表示不同項目的數據比率,比如:在財務分析中有“盈利能力比率、營運能力比率、償債能力比率、增長能力比率”。


5、因素分析法


就是對某一指標的相關影響因素進行統計與分析。比如,房價與物價、土地價格、地段、裝修等因素有關


6、綜合分析法


就是運用多種分析方法進行數據的統計與分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

Ⅱ 數據分析的分析方法有哪些

數據分析的分析方法有:

1、列表法

將數據按一定規律用列表方式表達出來,是記錄和處理最常用的方法。表格的設計要求對應關系清楚,簡單明了,有利於發現相關量之間的相關關系;此外還要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。

2、作圖法

作圖法可以最醒目地表達各個物理量間的變化關系。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。

圖表和圖形的生成方式主要有兩種:手動製表和用程序自動生成,其中用程序製表是通過相應的軟體,例如SPSS、Excel、MATLAB等。將調查的數據輸入程序中,通過對這些軟體進行操作,得出最後結果,結果可以用圖表或者圖形的方式表現出來。

圖形和圖表可以直接反映出調研結果,這樣大大節省了設計師的時間,幫助設計者們更好地分析和預測市場所需要的產品,為進一步的設計做鋪墊。同時這些分析形式也運用在產品銷售統計中,這樣可以直觀地給出最近的產品銷售情況,並可以及時地分析和預測未來的市場銷售情況等。所以數據分析法在工業設計中運用非常廣泛,而且是極為重要的。

(2)對數據統計分析方法的理解擴展閱讀:

數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。

數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。

Ⅲ 統計分析方法有哪些


統計分析方法有以下:
1、描述性統計分析方法。描述性統計分析方法是指運用製表和分類和圖形概括性數據來描述數據的集中趨勢、離散趨勢、偏度、峰度。
2、相關分析方法。相關分析方法是研究現象之間是否存在某種依存關系,對具體有依存關系的現象探討相關方向及相關程度。
3、方差分析方法。方差分析是用來分析一項實驗的影響因素與相應變數的關系,同時考慮多個影響因素之間的關系。
4、列聯表分析方法。列聯表分析是用於分析離散變數或定型變數之間是否存在相關。
5、主成分分析方法。主成分分析方法是將彼此梠關的一組指標變適轉化為彼此獨立的一組新的指標變數,並用其中較少的幾個新指標變數就能綜合反應原多個指標變數中所包含的主要信息。

Ⅳ 數據分析法是什麼

數據分析法是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析法是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。

數據分析法的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。

數據分析法的目的

數據分析的目的是把隱藏在一大批看來雜亂無章的數據中的信息集中和提煉出來,從而找出所研究對象的內在規律。在實際應用中,數據分析可幫助人們做出判斷,以便採取適當行動。數據分析是有組織有目的地收集數據、分析數據,使之成為信息的過程。

這一過程是質量管理體系的支持過程。在產品的整個壽命周期,包括從市場調研到售後服務和最終處置的各個過程都需要適當運用數據分析過程,以提升有效性。例如設計人員在開始一個新的設計以前,要通過廣泛的設計調查,分析所得數據以判定設計方向,因此數據分析在工業設計中具有極其重要的地位。

如何做數據統計與分析

數據統計與分析的方法有:1.比較分析法,是統計分析中最常用的方法。是通過有關的指標對比來反映事物數量上差異和變化的方法。指標分析對比分析方法可分為靜態比較和動態比較分析。靜態比較是同一時間條件下不同總體指標比較,如不同部門、不同地區、不同國家的比較,也叫橫向比較;動態比較是同一總體條件不同時期指標數值的比較,也叫縱向比較。這兩種方法既可單獨使用,也可結合使用。2.分組分析法,統計分析不僅要對總體數量特徵和數量關系進行分析,還要深入總體的內部進行分組分析。分組分析法就是根據統計分析的目的要求,把所研究的總體按照一個或者幾個標志劃分為若干個部分,加以整理,進行觀察、分析,以揭示其內在的聯系和規律性。
統計分組法的關鍵問題在於正確選擇分組標值和劃分各組界限。

Ⅵ 統計數據分析的基本方法有哪些

1、對比分析法


就是將某一指標與選定的比較標准進行比較,比如:與歷史同期比較、與上期比較、與其他競爭對手比較、與預算比較。一般用柱狀圖進行呈現。


2、結構分析法


就是對某一項目的子項目佔比進行統計和分析,一般用餅圖進行呈現。比如:A公司本年度營業額為1000萬,其中飲料營業額佔33.6%、啤酒佔55%,其他產品的營業額佔11.4%。


3、趨勢分析法


就是對某一指標進行連續多個周期的數據進行統計和分析,一般用折線圖進行呈現。比如:A公司前年度營業額為880萬,去年900萬,本年度1000萬,預計明年為1080萬。


4、比率分析法


就是用相對數來表示不同項目的數據比率,比如:在財務分析中有“盈利能力比率、營運能力比率、償債能力比率、增長能力比率”。


5、因素分析法


就是對某一指標的相關影響因素進行統計與分析。比如,房價與物價、土地價格、地段、裝修等因素有關


6、綜合分析法


就是運用多種分析方法進行數據的統計與分析,比如:5W2H分析法、SWOT分析法、PEST分析法、漏斗分析法等。

Ⅶ 統計分析的概念是什麼

統計分析,是指以統計資料為依據,以統計方法為手段,定量分析與定性分析相結合去認識事物的一種分析研究活動,為統計工作的最後階段,是充分發揮統計的信息、咨詢、監督作用的高級階段。

統計最基本的特點是以數字為語言,用數字說話。因此,統計分析必然以統計資料為依據,從大量的數據入手,通過深入研究,發現問題,分析問題,形成觀點,總結經驗教訓,提出改進工作的對策建議。這是統計分析最基本的特點。

統計分析要通過大量的、散亂的數據去觀察事物的整體,了解事物的全貌,要透過事物的數量去認識事物的本質及其運動規律,就必須使用各種科學的統計方法。如大量觀察法、抽樣推斷法、分組分析法、比較分析法、平均分析法、相關與回歸分析法、時間數列分析法、指數分析法與連環替代法,以及各種統計預測方法等。不用這些方法對大量的數據進行分類、比較,並加工計算各種分析指標,我們就無法確定事物的性質,無法掌握事物運動的規律,無法判斷事物水平的高低、質量的優劣、速度的快慢、效益的大小和發展前景的好壞。

Ⅷ 數據分析的方法有哪些

數據分析是指通過統計分析方法對收集到的數據進行分析,將數據加以匯總、理解並消化,通過數據分析可以幫助人們作出判斷,根據分析結果採取恰當的對策,常用的數據分析方法如下:

將收集到的數據通過加工、整理和分析的過程,使其轉化為信息,通常來說,數據分析常用的方法有列表法和作圖法,所謂列表法,就是將數據按一定規律用列表方式表達出來,是記錄和處理數據最常用的一種方法;

表格設計應清楚表明對應關系,簡潔明了,有利於發現要相關量之間的關系,並且在標題欄中還要註明各個量的名稱、符號、數量級和單位等;

而作圖法則能夠醒目地表達各個物理量間的變化關系,從圖線上可以簡便求出實驗需要的某些結果,一些復雜的函數關系也可以通過一定的變化用圖形來表現。

想要了解更多關於數據分析的問題,可以咨詢一下CDA認證中心。CDA行業標准由國際范圍數據領域的行業專家、學者及知名企業共同制定並每年修訂更新,確保了標準的公立性、權威性、前沿性。通過CDA認證考試者可獲得CDA中英文認證證書。

Ⅸ 數據分析方法

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

Ⅹ 數據統計分析方法有哪些

1、分解主題分析


所謂分解主題分析,是指對於不同分析要求,我們可以初步分為營銷主題、財務主題、靈活主題等,然後將這些大的主題逐步拆解為不同小的方面來進行分析。


2、鑽取分析


所謂鑽取分析,是指改變維的層次,變換分析的粒度。按照方向方式分為:向上和向下鑽取。向上鑽取是在某一維上將低層次的細節數據概括到高層次的匯總數據,或者減少維數;是自動生成匯總行的分析方法。向下鑽取是從匯總數據深入到細節數據進行觀察或增加新維的分析方法。


3、常規比較分析


所謂常規比較分析,是指一般比較常見的對比分析方法,例如有時間趨勢分析、構成分析、同類比較分析、多指標分析、相關性分析、分組分析、象限分析等。


4、大型管理模型分析


所謂大型管理模型分析,是指依據各種成熟的、經過實踐論證的大型管理模型對問題進行分析的方法。比較常見的大型管理模型分析包括RCV模型、阿米巴經營、品類管理分析等。


5、財務和因子分析


所謂財務和因子分析,主要是指因子分析法在財務信息分析上的廣泛應用。因子分析的概念起源於20世紀初的關於智力測試的統計分析,以最少的信息丟失為前提,將眾多的原有變數綜合成較少的幾個綜合指標,既能大大減少參與數據建模的變數個數,同時也不會造成信息的大量丟失,達到有效的降維。比較常用的財務和因子分析法有杜邦分析法、EVA分析、財務指標、財務比率、坪效公式、品類公式、流量公式等。


6、專題大數據分析


所謂專題大數據分析,是指對特定的一些規模巨大的數據進行分析。大數據常用來描述和定義信息爆炸時代產生的海量數據,並命名與之相關的技術發展與創新。常見特徵是數據量大、類型繁多、價值密度低、速度快、時效低。比較常見的專題大數據分析有:市場購物籃分析、重力模型、推薦演算法、價格敏感度分析、客戶分組分析等分析方法。

閱讀全文

與對數據統計分析方法的理解相關的資料

熱點內容
切線釣魚的正確方法 瀏覽:472
鐵路工程成本分析方法主要有哪些 瀏覽:286
548除以72的簡便計算方法 瀏覽:370
之大聖歸來畫法最簡單的方法 瀏覽:532
商品品種名稱及命名方法有哪些 瀏覽:440
胸針的使用方法 瀏覽:251
分控開關的安裝方法 瀏覽:700
引流袋寶塔頭尿袋連接軟管的方法 瀏覽:915
正方形數圖形的方法和技巧 瀏覽:75
步行的正確方法 瀏覽:728
最簡單的肥羊圈方法 瀏覽:461
治療脫發的方法土方 瀏覽:39
上下肢訓練方法圖解 瀏覽:638
電腦電源啟動線槽查找方法 瀏覽:722
idea快速main方法 瀏覽:351
信息型方程式計算方法 瀏覽:319
怎麼方法讓別人永遠進不了qq空間 瀏覽:635
手機散熱方法圖片 瀏覽:258
華為手機有哪種方法可以喚醒屏幕 瀏覽:276
理解決定訂貨的方法 瀏覽:678