導航:首頁 > 研究方法 > 三角形研究思路方法

三角形研究思路方法

發布時間:2022-08-16 09:49:11

㈠ 全等三角形的基本圖形基本方法思路

在直角三角形中,各邊長度兩兩之間的比值是銳角的函數.每個銳角有6個三角函數,記做正弦(sin)、餘弦(cos)、正切(tan或者tg)、餘切(cot或者ctg)、正割(sec)、餘割(csc)。關於某個角A的三角函數:(直角三角形中) sin A=角A的對邊/三角形的斜邊 cos A=角A的鄰邊(不是斜邊)/斜邊 tg A=角A的對邊/角A的鄰邊=sin A/cos A ctg A=角A的鄰邊/角A的對邊=1/tg A sec A=斜邊/角A的鄰邊=1/sin A csc A=斜邊/角A的鄰邊=1/cos A 三角函數可以推廣到任意角。這里由於時間問題不說了。 解直角三角形與直角三角形的概念、性質、判定和作圖有著密切的聯系,是在深入研究幾何圖形性質的基礎上,根據已知條件,計算直角三角形未知的邊長、角度和面積,以及與之相關的幾何圖形的數量。 如圖4,在△ABC中、D、F分別在AC、BC上,且AB⊥AC,AF⊥BC,BD=DC=FC=1,求AC。 分析:由數形結合易知,△ABC是直角三角形,AF為斜邊上的高線,CF是直角邊AC在斜邊上的射影,AC為所求,已知的另外兩邊都在△BDC中,且BD=DC=1,即△BDC是等腰三角形。因此,可以過D作DE⊥BC,拓開思路。由於DE,AF同垂直於BC,又可以利用比例線段的性質,逐步等價轉化求得AC。 解:在△ABC中,設AC為x,∵AB⊥AC,AF⊥BC,又FC=1,根據射影定理,得: ,即BC= 。 再由射影定理, 得: ,即。在△BDC中,過D作DE⊥BC於E,∵BD=DC=1,∴BE=EC,又∵AF⊥BC,∴DE‖AF, 。在Rt△DEC中, ,即 ,整理得 。 說明:本題體現了基本圖形基本性質的綜合應用。還應該注意,作垂線構造直角三角形是解直角三角形時常用的方法。

求採納

㈡ 三角形的學習方法有哪些

與同學合作學習,探究學習,自己自主學習
1、聽老師的話,緊跟老師的步伐,高質量完成老師布置的任務。千萬不要厭惡老師,和老師對著干。要學會包容老師,就是老師出點錯也很正常。不要全盤否定。
2、買個筆記本,專門收集錯題。並堅持一個月回顧一遍錯題。
3、不要扣的太細,以題目會做為度。高考不是科研,以題目答案衡量你的成績。你要體現自己的科研,到大學再去體現吧。
4、以題目帶知識點,這是一條捷徑。
5、要有好的精神狀態,上課不能迷糊,一定要跟住老師的思路。
6、不要總做難題,容易失去信心,不要盲目,要有學習計劃,要有自己的目標,理科多做題。7、文科要多背背,課本不能丟,可以多與同學們交流,不要給自己太大的壓力,順其自然,適當的放鬆自己,聽聽音樂什麼的.......
8、對於三角形,首先要理解概念,打好基礎,再有能力的基礎上,在適當鑽研一些難題。
祝你好運!

㈢ 初三數學相似三角形,有沒有什麼好的學習方法

相似三角形解題思路是:遇等積化等比,橫找豎找定相似,不相似不用急,等線等比等積來替換,三點共線取平截。輔助線考慮X型圖和A型圖。這些方法都掌握,相似類問題就沒問題了。
學習數學肯定要先多做題,多做同一類型的,不懂是要堅決弄懂,如果水平中等或以下就去問老師同學,水平較高建議你獨自思考。歸納總結出某類型題目的解題思路,舉一反三。不會的可以抄在錯題本上,註明這道題的解題思路,考察到的知識點,用什麼方法(數形結合啦轉化啦引入參數啦),學到最後要形成一個知識網路,用自己的方法整理出來,可以列表格來看知識點之間的區別與聯系,如果能將不同的知識相結合,難題就沒問題了

㈣ 向量法判斷三角形的研究

2005年向量與三角函數、圓錐曲線知識點交匯高考題選編

1----7.(湖南卷)設函數f (x)的圖象與直線x =a,x =b及x軸所圍成圖形的面積稱為函數f(x)在[a,b]上的面積,已知函數y=sinnx在[0, ]上的面積為 (n∈N* ),(i)y=sin3x在[0, ]上的面積為 ;(ii)y=sin(3x-π)+1在[ , ]上的面積為 .

2-----(17)(山東卷)已知向量

求 的值.

3------(17)(全國卷Ⅰ)
設函數 圖像的一條對稱軸是直線 。
(Ⅰ)求 ;(Ⅱ)求函數 的單調增區間;
(Ⅲ)畫出函數 在區間 上的圖像。

4-----18.(江西卷)
已知向量 .
求函數f(x)的最大值,最小正周期,並寫出f(x)在[0,π]上的單調區間.

5-----(8)(全國)已知點 , , .設 的平分線 與 相交於 ,那麼有 ,其中 等於 C
(A)2(B) (C)-3(D)-

6-----(15)(全國) 的外接圓的圓心為O,兩條邊上的高的交點為H, ,則實數 .

7------(18)(江蘇) 在△ABC中,O為中線AM上的一個動點,若AM=2,則 的最小值是 .

8------14、(天津)在直角坐標系xOy中,已知點A (0,1)和點B ( 3,4),若點C在∠AOB的平分線上且| OC | = 2,則 = __________。

9-----21.(本小題滿分12分)(福建)
已知方向向量為v=(1, )的直線l過點(0,-2 )和橢圓C: 的焦點,且橢圓C的中心關於直線l的對稱點在橢圓C的右准線上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在過點E(-2,0)的直線m交橢圓C於點M、N,滿足 ,
cot∠MON≠0(O為原點).若存在,求直線m的方程;若不存在,請說明理由.

10------19.(本小題滿分14分)(湖南)
已知橢圓C: + =1(a>b>0)的左.右焦點為F1、F2,離心率為e. 直線
l:y=ex+a與x軸.y軸分別交於點A、B,M是直線l與橢圓C的一個公共點,P是點F1關於直線l的對稱點,設 =λ .
(Ⅰ)證明:λ=1-e2;
(Ⅱ)確定λ的值,使得△PF1F2是等腰三角形.

11------21、(本題14分)(天津)
拋物線C的方程為 ,過拋物線C上一點 ( )作斜率為 的兩條直線分別交拋物線C於 , 兩點(P、A、B三點互不相同),且滿足 ( ≠0且 )。
(Ⅰ)求拋物線C的焦點坐標和准線方程
(Ⅱ)設直線AB上一點M,滿足 ,證明線段PM的中點在y軸上
(Ⅲ)當 時,若點P的坐標為(1, 1),求∠PAB為鈍角時點A的縱坐標 的取值范圍。

12------(21)(本小題滿分14分)(全國II)
P、Q、M、N四點都在橢圓 上,F為橢圓在y軸正半軸上的焦點.已知 與 共線, 與 共線,且 .求四邊形PMQN的面積的最小值和最大值.

13-----(21)(本大題滿分14分)(全國Ⅰ)
已知橢圓的中心為坐標原點O,焦點在 軸上,斜率為1且過橢圓右焦點F的直線交橢圓於A、B兩點, 與 共線.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設M為橢圓上任意一點,且 ,證明 為定值.

14------(22)(本小題滿分14分)(天津)
拋物線C的方程為 ,過拋物線C上一點P(x0,y0)(x0¹0)作斜率為k1,k2的兩條直線分別交拋物線C於A(x1,y1)、B(x2,y2)兩點(P、A、B三點互不相同),且滿足
(Ⅰ)求拋物線C的焦點坐標和准線方程
(Ⅱ)設直線AB上一點M,滿足 ,證明線段PM的中點在y軸上
(Ⅲ)當 時,若點P的坐標為(1, 1),求ÐPAB為鈍角時點A的縱坐標 的取值范圍

㈤ 研究三角形的性質從那些方面著手

並不是所有的三角形都有中心
中心是正多邊形才具有的,例如正方形、正三角形。
特點是:中心是所有角平分線、中線以及高線的交點

㈥ 三角形的有關概念

第七章 「三角形」簡介
課程教材研究所 薛彬
「三角形」一章章節結構是「與三角形有關的線段」「與三角形有關的角」「多邊形及其內角和」「課題學習
鑲嵌」.這與以往的內容安排有所不同.按照以往的教材,受三角形、多邊形、圓順次展開的限制,這些內容分別屬於不同年級.而新的結構是一種專題式設計,以內角和為主題,先研究三角形內角和,再順勢推廣到多邊形內角和,最後將內角和公式應用於鑲嵌.
本章教學時間約需10課時,具體分配如下(僅供參考):
7.1 與三角形有關的線段 2課時
7.2 與三角形有關的角 2課時
7.3 多邊形及其內角和 2課時
7.4 課題學習 鑲嵌 2課時
數學活動
小結 2課時
一、教科書內容和課程學習目標
(一)本章知識結構
本章知識結構框圖如下:

(二)教科書內容
本章首先介紹三角形的有關概念和性質.例如,在了解三角形的高的基礎上,了解三角形的中線、角平分線.又如,在知道三角形的三個內角的和等於180°的基礎上,了解這個結論成立的道理.通過本章內容的學習,可以豐富和加深學生對三角形的認識.另一方面,
這些內容是以後學習各種特殊三角形(如等腰三角形、直角三角形)的基礎,也是研究其他圖形的基礎知識.
以三角形的有關概念和性質為基礎,本章接著介紹多邊形的有關概念與多邊形的內角和、外角和公式.三角形是多邊形的一種,因而可以藉助三角形建立多邊形的有關概念,如多邊形的邊、內角、外角、內角和都可由三角形的有關概念推廣而來.三角形是最簡單的多邊形,因而常常將多邊形分為若干個三角形,利用三角形的性質研究多邊形.多邊形的內角和公式就是利用上述方法,由三角形的內角和等於180°得到的.將多邊形的有關內容與三角形的有關內容緊接安排,可以加強它們之間的聯系,便於學生學習.
鑲嵌作為課題學習的內容安排在本章的最後,學習這個內容要用到多邊形的內角和公式.通過這個課題的學習,學生可以經歷從實際問題抽象出數學問題,建立數學模型,綜合應用已有知識解決問題的過程,從而加深對相關知識的理解,提高思維能力.
(三)課程學習目標
1了解與三角形有關的線段(邊、高、中線、角平分線),知道三角形兩邊的和大於第三邊,會畫出任意三角形的高、中線、角平分線,了解三角形的穩定性.
2了解與三角形有關的角(內角、外角),會用平行線的性質與平角的定義說明三角形內角和等於180°,探索並了解三角形的一個外角等於與它不相鄰的兩個內角的和.
3了解多邊形的有關概念(邊、內角、外角、對角線、正多邊形),探索並了解多邊形的內角和與外角和公式.
4通過探索平面圖形的鑲嵌,知道任意一個三角形、四邊形或正六邊形可以鑲嵌平面,並能運用這幾種圖形進行簡單的鑲嵌設計.
二、本章編寫特點
(一)加強與實際的聯系
三角形是最常見的幾何圖形之一,在生產和生活中有廣泛的應用.教科書通過舉出三角形的實際例子讓學生認識和感受三角形,形成三角形的概念.多邊形概念的引入,也是類似處理的.
三角形有很多重要的性質,如穩定性,三角形的內角和等於180°.教科書在介紹三角形的穩定性的同時,順帶介紹了四邊形的不穩定性.這些內容是通過如下的實際問題引入的:「蓋房子時,在窗框未安裝好之前,木工師傅常常先在窗框上斜釘一根木條.為什麼要這樣做呢?」.然後讓學生通過實驗得出三角形有穩定性,四邊形沒有穩定性的結論,進而明白在上述實際問題中「斜釘一根木條」的道理.除此之外,教科書還舉出了一些應用三角形的穩定性,四邊形的不穩定性的實際例子.對於三角形的內角和等於180°,教科書則安排求視角的實際問題作為例題,加強與實際的聯系.
在本章的課題學習中,教科書從用地磚鋪地引入鑲嵌,進而讓學生探究一些多邊形能否鑲嵌成平面圖案,並運用通過探究得出的結論進行簡單的鑲嵌設計.在編寫時關註上述從實踐到理論,再從理論到實踐的全過程,使學生對理論來源於實踐又運用於實踐的認識進一步加深.
(二)加強與已學內容的聯系
學生在前兩個學段已學過三角形的一些知識,對三角形的許多重要性質有所了解,在第三學段又學過線段、角以及相交線、平行線等知識,初步了解了一些簡單幾何體和平面圖形及其基本特徵,會進行簡單的說理.
上述內容是學習本章的基礎:三角形的高、中線、角平分線分別與已學過的垂線、線段的中點、角的平分線有關;用拼圖的方法認識三角形的內角和等於180°可以啟發學生得出說明這個結論正確的方法,而說明的過程中要用到平行線的性質與平角的定義.在編寫時關注本章內容與已學內容的聯系,幫助學生掌握本章所學內容.另一方面,又注意讓學生通過本章內容的學習,復習鞏固已學的內容.
(三)加強推理能力的培養
在本章中加強推理能力的培養,一方面可以提高學生已有的水平,另一方面又可以為學生正式學習證明作準備.為達到上述要求,在編寫時注意了以下內容的處理:
(1)由「兩點之間,線段最短」說明「三角形兩邊的和大於第三邊」;
(2)由平行線的性質與平角的定義說明「三角形的內角和等於180°」;
(3)由「三角形的內角和等於180°」得出「三角形的一個外角等於與它不相鄰的兩個內角的和」;
(4)由「三角形的內角和等於180°」得出多邊形內角和公式;
(5)由多邊形內角和公式得出多邊形外角和公式;
(6)由多邊形內角和公式說明任意一個三角形、四邊形或正六邊形可以鑲嵌平面.
上述內容都包含了推理,教科書注意分析得出結論的思路,通過多提問題,留給學生足夠的思考時間,讓學生經歷得出結論的過程.
三、幾個值得關注的問題
(一)把握好教學要求

與三角形有關的一些概念在本章中只要求達到了解(認識)的程度就可以了,進一步的要求可通過後續學習達到.如在本章中知道什麼是三角形的角平分線就可以了,如學生在畫角平分線時發現三條角平分線交於一點,可直接肯定這個結論,對這個結論的證明在後面學習「全等三角形」一章時再介紹.同樣,三條中線交於一點的結論也可直接點明,以後還會知道這個點是三角形的重心.
在本章中,三角形的穩定性是通過實驗得出的,待以後學過「三邊對應相等的兩個三角形全等」,可進一步明白其中的道理.說明三角形的內角和等於180°有一定的難度,只要學生了解得出結論的過程,不要在輔助線上花太多的精力,以免影響對內容本身的理解與掌握.要明確本章仍是正式介紹證明的准備階段,對推理的要求應循序漸進.
(二)開展好課題學習
可以如下展開課題學習:
背景 了解多邊形覆蓋平面問題來自實際.
實驗 發現有些多邊形能覆蓋平面,有些則不能.
(3)分析 討論多邊形能覆蓋平面的基本條件,發現問題與多邊形的內角大小有密切關系,運用多邊形內角和公式對實驗結果進行分析.
(4)運用 進行簡單的鑲嵌設計.
首先引入用地磚鋪地,用瓷磚貼牆等問題情境,並把這些實際問題轉化為數學問題:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋.然後讓學生通過實驗探究一些多邊形能否鑲嵌成平面圖案,並記下實驗結果:
(1) 用正三角形、正方形或正六邊形可以鑲嵌成一個平面圖案(圖1).用正五邊形不能鑲嵌成一個平面圖案.

(2)用正三角形與正方形可以鑲嵌成一個平面圖案.用正三角形與正六邊形也可以鑲嵌成一個平面圖案.
(3)用任意三角形可以鑲嵌成一個平面圖案, 用任意四邊形可以鑲嵌成一個平面圖案(圖2).

觀察上述實驗結果,得出多邊形能鑲嵌成一個平面圖案需要滿足的兩個條件:
(1)拼接在同一個點(例如圖2中的點O)的各個角的和恰好等於360°(周角);
(2)相鄰的多邊形有公共邊(例如圖2中的OA兩側的多邊形有公共邊OA).
運用上述結論解釋實驗結果,例如,三角形的內角和等於180°,在圖2中,∠1+∠2+∠3=180°.因此,把6個全等的三角形適當地拼接在同一個點(如圖2),
一定能使以這點為頂點的6個角的和恰好等於360°,並且使邊長相等的兩條邊貼在一起.於是,
用三角形能鑲嵌成一個平面圖案.又如,由多邊形內角和公式,可以得到五邊形的內角和等於
(5-2)×180°=540°.
因此,正五邊形的每個內角等於
540°÷5=108°,
360°不是108°的整數倍,也就是說用一些108°的角拼不成360°的角.因此,用正五邊形不能鑲嵌成一個平面圖案.
最後,讓學生進行簡單的鑲嵌設計,使所學內容得到鞏固與運用.

㈦ 簡述塔曼三角形方法的原理

塔曼三角形的原理:

(1)如果體系各熔合體的重量相等,而又在完全相同的條件下進行冷卻,則在冷卻曲線上相當於低共熔溫度停頓的時間或水平線段的長短和析出的低共熔物的重量成正比。

(2)在純組分(或化合物)處停頓的時間等於零,而在組成相當於低共熔物時,停頓的時間最長。

據此,低共熔點的組成可以如此求得,即在組成熔點圖上在相當於低共熔點的溫度處,垂直於組成軸在相應的組成作某些線段,使其與停頓的時間成正比,經過諸線段的末端劃兩條直線,而得到一個三角形。

三角形高度的組成即相當於所求的低共熔點的組成。


(7)三角形研究思路方法擴展閱讀:

塔曼三角形方法來源於塔曼溫度。塔曼溫度(Tammann temperature),也稱泰曼溫度。 根據固體物理學的晶格動力學理論,在絕對零度下,構成固體晶格的原子/離子在其平衡位置附近振動。

作為研究晶格振動與化學反應相關性的先驅之一,泰曼(Gustav Tammann)發現,隨著溫度上升,原子/離子在平衡位置附近的振幅越來越大,原子/離子離開平衡位置,擴散加強。

㈧ 初三數學三角形知識點總結歸納 急啊~~~~~

三角形的定義
三角形是多邊形中邊數最少的一種。它的定義是:由不在同一條直線上的三條線段首尾順次相接組成的圖形叫做三角形。
三條線段不在同一條直線上的條件,如果三條線段在同一條直線上,我們認為三角形就不存在。另外三條線段必須首尾順次相接,這說明三角形這個圖形一定是封閉的。三角形中有三條邊,三個角,三個頂點。
三角形中的主要線段
三角形中的主要線段有:三角形的角平分線、中線和高線。
這三條線段必須在理解和掌握它的定義的基礎上,通過作圖加以熟練掌握。並且對這三條線段必須明確三點:
(1)三角形的角平分線、中線、高線均是線段,不是直線,也不是射線。
(2)三角形的角平分線、中線、高線都有三條,角平分線、中線,都在三角形內部。而三角形的高線在當△ABC是銳角三角形時,三條高都是在三角形內部,鈍角三角形的高線中有兩個垂足落在邊的延長線上,這兩條高在三角形的外部,直角三角形中有兩條高恰好是它的兩條直角邊。
(3)在畫三角形的三條角平分線、中線、高時可發現它們都交於一點。在以後我們可以給出具體證明。今後我們把三角形三條角平分線的交點叫做三角形的內心,三條中線的交點叫做三角形的重心,三條高的交點叫做三角形的垂心。
三角形的按邊分類
三角形的三條邊,有的各不相等,有的有兩條邊相等,有的三條邊都相等。所以三角形按邊的相等關系分類如下:
等邊三角形是等腰三角形的一種特例。
判定三條邊能否構成三角形的依據
△ABC的三邊長分別是a、b、c,根據公理「連接兩點的所有線中,線段最短」。可知:
③a+b>c,①a+c>b,②b+c>a
定理:三角形任意兩邊的和大於第三邊。
由②、③得 b―a<c,且b―a>―c
故|a―b|<c,同理可得|b―c|<a,|a―c|<b。
從而得到推論:
三角形任意兩邊的差小於第三邊。
上述定理和推論實際上是一個問題的兩種敘述方法,定理包含了推論,推論也可以代替定理。另外,定理和推論是判定三條線段能否構成三角形的依據。如:三條線段的長分別是5、4、3便能構成三角形,而三條線段的長度分別是5、3、1,就不能構成三角形。
判定三條邊能否構成三角形
對於某一條邊來說,如一邊a,只要滿足|b-c|<a<b+c,則可構成三角形。這是因為|b-c|<a,即b-c<a,且b-c>-a.也就是a+c>b且a+b>c,再加上b+c>a,便滿足任意兩邊之和大於第三邊的條件。反過來,只要a、b、c三條線段滿足能構成三角形的條件,則一定有|b-c|<a<b+c。
在特殊情況下,如果已知線段a最大,只要滿足b+c>a就可判定a、b、c三條線段能夠構成三角形。同時如果已知線段a最小,只要滿足|b-c|<a,就能判定三條線段a、b、c構成三角形。
證明三角形的內角和定理
除了課本上給出的證明方法外還有多種證法,這里再介紹兩種證法的思路:
方法1 如圖,過頂點A作DE‖BC,
運用平行線的性質,可得∠B=∠2,
∠C=∠1,從而證得三角形的內角
和等於平角∠DAE。
方法2 如圖,在△ABC的邊BC上任取
一點D,過D作DE‖AB,DF‖AC,
分別交AC、AB於E、F,再運用平行
線的性質可證得△ABC的內角和等於
平角∠BDC。
三角形按角分類
根據三角形的內角和定理可知,三角形的任一個內角都小於180°,其內角可能都是銳角,也可能有一個直角或一個鈍角。
三角形按角可分類如下:
根據三角形的內角和定理可有如下推論:
推論1 直角三角形的兩個銳角互余。
推論2 三角形的一個外角等於和它不相鄰的兩個內角的和。
推論3 三角形的一個外角大於任何一個和它不相鄰的內角。
同時我們還很容易得到如下幾條結論:
(1)一個三角形最多有一個直角或鈍角。
(2)一個三角形至少有兩個內角是銳角。
(3)一個三角形至少有一個角等於或小於60°(否則,若三個內角都大於60°;則這個三角形的內角和大於180°,這與定理矛盾)。
(4) 三角形有六個外角,其中兩兩是對頂角相等,所以三角形的三個外角和等於360°。
全等三角形的性質
全等三角形的兩個基本性質
(1)全等三角形的對應邊相等。
(2)全等三角形的對應角相等。
確定兩個全等三角形的對應邊和對應角
怎樣根據已知條件准確迅速地找出兩個全等三角形的對應邊和對應角?其方法主要可歸結為:
(1)若兩個角相等,這兩個角就是對應角,對應角的對邊是對應邊。
(2)若兩條邊相等,這兩條邊就是對應邊,對應邊的對角是對應角。
(3)兩個對應角所夾的邊是對應邊。
(4)兩個對應邊所夾的角是對應角。
由全等三角形的定義判定三角形全等
由全等三角形的定義知,要判定兩個三角形全等,需要知道三條邊,三個角對應相等,但在應用中,利用定義判定兩個三角形全等卻是十分麻煩的,因而需要找到能完全確定一個三角形的條件,以便用較少的條件,簡便的方法來判定兩個三角形的全等。
判定兩個三角形全等的邊、角、邊公理
內容:有兩邊和它們的夾角對應相等的兩個三角形全等(即SAS)。
這個判定方法是以公理形式給出的,我們可以通過實踐操作去驗證它,但驗證不等於證明,這點要區分開來。
公理中的題設條件是三個元素:邊、角、邊,意指兩條邊和這兩條邊所夾的角對應相等。不能理解成兩邊和其中一個角相等。否則,這兩個三角形就不一定全等。
例如 在△ABC和△A′B′C′中,
如右圖,AB=A′B′,∠A=∠A′,
BC=A′C′,但是△ABC不全等於
△A′B′C′。
又如,右圖,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,AC=A′C′,但△ABC和△A′B′C′不全等。
原因就在於兩邊和一角對應相等不是
公理中所要求的兩邊和這兩條邊的夾
角對應相等的條件。
說明:從以上兩例可以看出,SAS≠SSA。
判定兩個三角形全等的第二個公理
內容:有兩角和它們的夾邊對應相等的兩個三角形全等(即ASA)。
這個公理也應該通過畫圖和實驗去進一步理解它。
公理強調了兩角和這兩角的夾邊對應相等,這里實質上包含了一個順序關系。千萬不能理解成為在其中一個三角形中是兩角和其夾邊,而在另一個三角形中卻是兩角和其中一角的對邊。
如右圖,在△ABC和△A′B′C′中,
∠A=∠A′,∠B=∠B′,AB=A′C′,
但這兩個三角形顯然不全等。原因就是
沒有注意公理中「對應」二字。
公理一中的邊、角、邊,其順序是不能改變的,即SAS不能改為SSA或ASS。而ASA
公理卻能改變其順序,可改變為AAS或SAA,但兩個三角形之間的「對應」二字不能變。同時這個公理反映出有兩個角對應相等,實質上是在兩個三角形中有三個角對應相等,故在應用過程中只須注意有一條對應邊相等就行了。
由公理二可知,有一個銳角與一條邊對應相等的兩個直角三角形全等
判定兩個三角形全等的邊、邊、邊公理
公理:三條邊對應相等的兩個三角形全等(即邊、邊、邊公理)。
邊、邊、邊公理在判定兩個三角形全等時,其對應邊就是相等的兩條邊。
這個公理告訴我們,只要一個三角形的三邊長度確定了,則這個三角形的形狀就完全確定了。這就是三角形的穩定性。
判定兩個三角形全等
通過以上三個公理的學習,可以知道,在判定兩個三角形全等時,無需根據定義去判定兩個三角形的三角和三邊對應相等,而只需要其中三對條件。
三個角和三條邊這六個條件中任取三個條件進行組合。無非有如下情況:
(1)三邊對應相等。
(2)兩邊和一角對應相等。
(3)一邊和兩角對應相等。
(4)三角對應相等。
HL公理
我們知道,滿足邊、邊、角對應相等的兩個三角形不一定全等。
但是,對於兩個直角三角形來說,這個結論卻一定成立。
斜邊、直角邊公理:有斜邊和一條直角邊對應相等的兩個直角三角形全等(簡寫為HL)。
這個公理的題設實質上也是三個元素對應相等,其本身包含了一個直角相等。這種邊、 邊、角對應相等的兩個三角形全等成立的核心是有一個角是直角的條件。由於直角三角形是一種特殊的三角形,所以過去學過的四種判定方法對於直角三角形照常適用。
角平分線的性質定理和逆定理
性質定理:在角平分線上的點到這個角的兩邊的距離相等。
逆定理:到一個角的兩邊距離相等的點,在這個角的平分線上。
點在角平分線上點到這個角的兩邊距離相等。
用符號語言表示角平分線的性質定理和逆定理
性質定理:
∵P在∠AOB的平分線上
PD⊥OA,PE⊥OB
∴PD=PE
逆定理:
∵PD=PE,PD⊥OA,PE⊥OB
∴點P在∠AOB的平分線上。
角平分線定義
如果一條射線把一個角分成兩個相等的角,那麼這條射線叫做這個角的平分線。
角的平分線是到角兩邊距離相等的所有點的集合。
三角形角平分線性質
三角形三條平分線交於一點,並且交點到三邊距離相等。
互逆命題
在兩個命題中,如果第一個命題的題設是第二個命題的結論,而第一個命題的結論是第二個命題的題設,那麼這兩個命題叫做互逆命題,如果把其中一個叫做原命題,那麼另一個叫做它的逆命題。
原命題和逆命題的真假性
每個命題都有逆命題,但原命題是真命題,而它的逆命題不一定是真命題,原命題和逆命題的真假性一般有四種情況:真、假;真、真;假、假;假、真。
互逆定理
如果一個定理的逆命題經過證明是真命題,那麼它也是一個定理,這兩個定理叫做互逆定理,其中一個叫做另一個的逆定理。
每個命題都有逆命題,但不是所有的定理都有逆定理
尺規作圖
限定用直尺(沒有刻度)和圓規的作圖方法叫尺規作圖。
基本作圖
最基本最常見的尺規作圖稱之為基本作圖,主要有以下幾種:
(1)作一個角等於已知角;
(2)平分已知角;
(3)過一點作已知直線的垂線;
(4)作已知線段的垂直平分線;
(5)過直線外一點作已知直線的平行線。
有關概念
有兩邊相等的三角形稱為等腰三角形。
三邊都相等的三角形稱為等邊三角形,又稱為正三角形。
有一個直角的等腰三角形稱為等腰直角三角形。
等邊三角形和等腰直角三角形都是等腰三角形的特例。
等腰三角形的有關概念
等腰三角形中,相等的兩邊稱為腰,另一邊稱為底邊,兩腰的夾角稱為頂角,底邊上的兩個角稱為底角。
等腰三角形的主要性質
兩底角相等。
如圖,ΔABC中AB=AC,取BC中點D,連結AD,
容易證明:ΔABD≌ΔACD,∴∠B=∠C。
如圖,ΔABC中為等邊三角形,
那麼,由AB=AC,得∠B=∠C,
由CA=CB,得∠A=∠B,
於是∠A=∠B=∠C,但∠A+∠B+∠C=180°,
∴∠A=∠B=∠C=60°
如圖,ΔABC中AB=AC,且AD平分∠BAC,
那麼由ΔABD≌ΔACD,
可得BD=CD,∠ADB=∠ADC,
但∠ADB+∠ADC=180°,
∴∠ADB=90°,從而AD⊥BC,
由此又可得到另外兩個重要推論。
兩個重要推論
等腰三角形頂角的平分線垂直且平分底邊;
等邊三角形各內角相等,且都等於60°。
等腰三角形性質及其推論的另一種論述方法
三角形中,相等的邊所對的角相等。
等腰三角形頂角的平分線、底邊上的中線和高三線合而為一。
等腰三角形的判定定理及其兩個推論的核心都可概括為等角對等邊。它們都是證明兩條線段相等的重要方法。
推論3
在直角三角形中,如果一個銳角等於30°,那麼它所對的直角邊等於斜邊的一半。
容易證明:這個推論的逆命題也是正確的。即:在直角三角形中,如果一條直角邊等於斜邊的一半,那麼這條直角邊所對的角等於30°。
運用
利用等腰三角形的判定定理和性質定理容易證明結論:「在一個三角形內,如果兩條邊不等,那麼它們所對的角也不等,大邊所對的角也較大;反過來,在一個三角形中,如果兩個角不等,那麼它們所對的邊也不等,大角所對的邊較大。」
對稱軸及中心
線段的垂直平分線把線段分為相等的兩部分。
線段的中點就是它的中心,今後要學習「線段是關於中點對稱的中心圖形」。
線段是以它的中垂線為對稱軸的圖形。
三線合一的定理的逆定理
如圖所示,線段中垂線的性質定理的幾何語言為:

於是可以用來判定等腰三角形,其定理實質上是
三線合一定理的逆定理。
「距離」不同,「心」也不同
「線段垂直平分線的性質定理與逆定理中的「距離」是指「兩點間的距離」,而角平分線的性質定理與逆定理中的「距離」是指「點到直線的距離」。
三角形三條角平分線相交於一點,這點到三邊的距離相等(這點稱為三角形的內心)。

三角形三邊的垂直平分線相交於一點,這點到三個頂點的距離相等(這點稱為三角形的外心)。

重要的軌跡

圖(A)所示。到角的兩邊OA、OB的距
離相等的點P1、P2,P3…組成一條射
線OP,即點的集合。

如圖(B)所示,到線段AB的兩端點的距離
相等的所有點P1、P2、P3…組成一條直
線P1P2,因此這條直線可以看成動點形
成的「軌跡」。

第十三節軸線稱和軸對稱圖形

軸對稱

把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那麼這兩個圖形叫做關於這條直線對稱,也稱軸對稱。

根據定義,兩個圖形和如果關於直線l軸對稱,則:
(1)和這兩個圖形的大小及形狀完全相同。
(2)把其中一個圖形沿l翻折後,和應完全重合,自然兩個圖形中的有關對應點也應重合。

事實上,直線l是兩個軸對稱圖形中對應點連線的垂直平分線。所以容易得到如下性質:
性質1 關於某條直線對稱的兩個圖形是全等形。
性質2 如果兩個圖形關於某條直線對稱,那麼對稱軸是對應點連線的垂直平分線。
性質3 兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那麼交點必在對稱軸上。

不難看出,如果兩個圖形的對應點的連線被同一條直線垂直平分,那麼這兩個圖形關於這條直線對稱。

軸對稱圖形

如果一個圖形沿著一條直線翻折,直線兩旁的部分能夠互相重合,那麼這個圖形就叫做軸對稱圖形。

軸對稱和軸對稱圖形的區別和聯系

區別

①軸對稱是指兩個圖形關於某條直線對稱,而軸對稱圖形是一個圖形關於某條直線對稱。

②軸對稱的對應點分別在兩個圖形上,而軸對稱圖形中的對應點都在這一個圖形上。

③軸對稱中的對稱軸可能在兩個圖形的外邊,而軸對稱圖形中的對稱軸一定過這個圖形。

聯系

①都是沿著某一條直線翻折後兩邊能夠完全重合。

②如果把軸對稱的兩個圖形看成是一個整體,那麼這個整體反映出的圖形便是一個
軸對稱圖形;反過來,如果把一個軸對稱圖形中關於對稱軸的兩邊部分看成是兩個
圖形,那麼這兩部分對應的兩個圖形則關於這條對稱軸而成軸對稱。

第十四節 勾股定理

直角三角形

直角三角形中,兩銳角互余,夾直角的兩邊叫直角邊,直角的對邊叫斜邊,斜邊最長。

等腰直角三角形

等腰直角三角形是直角三角形中的特例。也是等腰三角形中的特例。等腰直角三角形的兩個底角都等於45°,頂角等於90°,相等的兩條直角邊是腰。

勾股定理

直角三角形中,兩直角邊a、b的平方和等於斜邊c的平方,即,這就是勾股定理。

判定直角三角形

如果ΔABC的三邊長為a、b、c,且滿足,那麼ΔABC是直角三角形,其中∠C=90°。

第十五節勾股定理的逆定理

勾股定理的逆定理

勾股定理是直角三角形的性質定理,而勾股定理的逆定理是直角三角形的判定定理。即:在△ABC中,若a2+b2=c2,則△ABC為Rt△。

如何判定一個三角形是否是直角三角形

首先求出最大邊(如c)。

驗證c2與a2+b2是否具有相等關系。
若c2=a2+b2,則△ABC是以∠C=90°的直角三角形。若c2≠a2+b2,則△ABC不是直角三角形。

**********************

*****攻關秘技****

方法1: 證明「文字敘述的

幾何命題」的方法

這類題目證明起來較一般幾何題要難,但還是有一定的思路和方法,一般先對題目進行總體分析,分析內容大致分為以下四點,然後逐步解決。
(1)分析命題的題設和結論;
(2)結合題設和結論畫出圖形;
(3)綜合題設結論和圖形寫出已知、求證;
(4)進行證題分析。

方法2: 等腰三角形的邊角求值法

在解等腰三角形的邊角求值題時,應考慮到各種可能的情況,還要排除不能構成三角形的情形。特別在解決線段或角的和差倍半關系時,常利用合成法或分解法,藉助添加輔助線來完成。

方法3: 判定一個三角形是

直角三角形的方法

判定一個直角三角形可利用勾股定理的逆定理、線段的垂直平分線性質或直角三角形的定義等,這些方法都要求掌握並能靈活運用。

方法4: 作圖題

幾何作圖題的每一步都必須有根有據,所以就要求我們掌握好已學過的公理、定理等。要掌握好尺規作圖,還要多畫多練。

知識點: 全等三角形的判定與性質

方 法: 分析法

能 力: 分析與解決問題的能力

難 度: 中等

知識點: 全等三角形;角平分線

方 法: 合成法;分解法

能 力: 分析與解決問題的能力;

邏輯推理能力

難 度: 中等偏難

知識點: 等腰直角三角形的性質;

線段的垂直平分線性質;勾股定理

方 法: 綜合法

能 力: 分析與解決問題的能力

難 度: 中等偏難

知識點: 線段的性質

方 法: 數形結合法

能 力: 空間想像能力;

分析與解決問題的能力

難 度: 中等偏難

****************************

%%%%%%熱點追蹤%%%%%
%%%%%%%%%%%%%%%%%%%%%%%
專題1: 一題多問、一題多圖和多題一解

提高分析問題和解決問題能力的方法是多種多樣的,而認真的設計課本中例題、習題的變式,挖掘其潛能也是方法之一。課本中的例題、習題為中考命題提供了豐富的源泉,它們具有豐富的內涵,在由知識轉化為能力上具有示範性和啟發性,在解題思路和方法上具有典型性和代表性。如果我們不以得到解答為滿足,而是在解完之後,深入其中作進一步的挖掘和多方位探索,不僅可得到一系列的新命題,也可從「題海」中解脫出來,達到事半功倍的效果。而且通過不同角度、不同方位去思考問題,探索不同的解答方案,從而拓寬了思路,培養了思維的靈活性和應變能力。

專題2: 利用擴、剖、串、改提高解題能力
學習幾何時,感到例題好學易懂,但對稍加變化拓寬引申的問題束手無策,原因是把例題的學習看成是孤立的學一道題,學完就了事,致使解題時缺乏應變能力,但如果平時能重視對題目的擴充、剖解、串聯和改編,就能較好地解決這一問題。
1.擴充:將原題條件拓展,使結論更加豐富充分。
2.剖解:分析原題,將較復雜的圖形肢解為若干個基本圖形,使問題化隱為顯。
3.串聯:由例題的形式(條件、結論等),聯想與它相似、相近、相反的問題。
4.改編:改變原題的條件形式,探索結論是否成立?
專題3: 分析、綜合、輔助線
我們研究不等式的有關問題時,會發現很多巧妙的方法,還會不斷學習掌握類比的數學思想,形數結合的思想,從未知向已知轉化的化歸思想,通過研究這些不斷變化的問題,全面把握不等式及不等式組的解法,從而提高我們分析問題、解決問題的能力。
專題4: 不等式的若干應用
在平面幾何里,證題思路主要有:(1)分析法,即從結論入手,逐步逆推,直至達到已知事實後為止。(2)綜合法,先從已知條件入手,運用已學過的公式、定理、性質等推出證明的結論。(3)兩頭湊,就是將綜合法和分析法有機地結合起來思考:一方面「從已知推可知」,從已知看可以推出哪些結論;另一方面「由未知看需知」,從所求結論逆推看需要什麼條件,一旦可知與需知溝通,證題思路即有了。添加輔助線是證明幾何題的重要手段,也是學習中的難點之一。
專題5: 幾何證題的基本方法有兩種:
一種是從條件出發,通過一系列已確立的命題逐步向前推演,直到達到證題目的,簡言之,這是由因導果的方法,我們稱之為直接證法或綜合法,綜合法證題的程序如下:欲證AB,由於AC,CD,…,x,而xB,故AB.
另一種則反過來,先假定命題的結論成立,考慮達到目的需具備什麼條件,通過一系列的逆推直到回朔到已知條件為止。簡言之,這是執果索因的方法,我們稱之為分析法,分析法證題的程序如下:欲證「AB」,也就是BA,若能分析出BC,CD,…,x,而xA,則斷言BA,也就是AB。
在實際操作上,往往把這兩種方法結合起來,先分析探求鋪路,再綜合解題成功,簡言之就是「倒著推,順著走」。
—平移、旋轉、對稱
在幾何證題中,常需要將一個圖形進行適當的變換,常見的幾何變換有全等變換,等積變換和相似變換。
本章只講全等變換,也就是不改變圖形的形狀和大小,只改變圖形位置的變換。
常見的全等變換的形式有三:
1.平移:將圖形中的某些線段乃至整個圖形平行移動到某一適當位置,作出輔助圖形,使問題得
到解決。平移的基本特點是:任一線段在平移過
程中,其長度保持不變。
2.旋轉:將平面圖形繞平面內一定點M旋轉一個定角α得到與原來形狀和大小相同的圖形,這樣
的變換叫做旋轉變換,M叫旋轉中心,α角叫旋
轉角。
旋轉變換的主要性質:(1)變換後的圖形與原圖形全等;(2)原圖中任一線段與旋轉後的對應線段所成的角等於旋轉角。
3.對稱:將一個圖形(或它的一部分)繞著一條直線翻轉180°,得一個與原來形狀、大小完全相同的圖形,這種變換稱為軸對稱變換,軸對稱變換的主要特點是:對稱軸是一切翻轉前後對應點連線的垂直平分線。
除軸對稱外,還有中心對稱,這一點我們將在下一章四邊形中講到。
方法總結:
復雜的圖形都是由較簡單的基本圖形組成,故可將復雜的圖形分解成幾個基本圖形這樣使問題顯而易見。
當直接證題有困難時,常通過添加輔助線構造基本圖形以達到解題的目的。
綜合法是從已知條件出發探索解題途徑的方法。
分析法是從結論出發,用倒推來尋找證明思路的方法。
兩頭「湊」的方法,也就是綜合運用以上兩種方法才能找到證明思路。(又叫分析――綜合法)。
轉化思想就是將復雜問題轉化、分解為簡單的問題;或將陌生的問題轉化為熟悉的問題來處理的一種思想。
不錯吧
賞分給我嗎

閱讀全文

與三角形研究思路方法相關的資料

熱點內容
41的豎式計算方法 瀏覽:944
如何快速選擇有效的治療方法 瀏覽:919
centos安裝軟體的方法 瀏覽:288
掛衣架安裝方法和步驟 瀏覽:908
乙肝表抗定量檢測方法 瀏覽:604
戒酒什麼方法最快 瀏覽:336
拉力測試儀使用方法 瀏覽:245
電子放大鏡使用方法 瀏覽:971
冰梯的製作方法和步驟 瀏覽:684
榻榻米和床連接方法 瀏覽:192
雜土渣土的鑒別方法圖解 瀏覽:698
冰用哪些方法溶化 瀏覽:633
中國移動寬頻電視網線連接方法 瀏覽:816
簡單有效的去扁平疣方法 瀏覽:526
鳥簡便方法怎麼畫 瀏覽:831
選擇高層管理者最常用甄選方法 瀏覽:220
機械硬碟放在光碟機位置安裝方法 瀏覽:805
外部存儲的計算方法 瀏覽:741
金剛石液壓塊安裝方法 瀏覽:113
資金貨物比例計算方法 瀏覽:270