Ⅰ 圓周率計算方法
3.
π=4∑(k=0,..∞)(-1)^k/(2k+1)
圓周率即圓的周長與其直徑之間的比率。關於它的計算問題,歷來是中外數學家極感興趣、孜孜以求的問題。德國的一位數學家曾經說過:「歷史上一個國家所算得的圓周率的准確程度,可以作為衡量這個國家當時數學發展的一個標志。」我國古代在圓周率的計算方面長期領先於世界水平,這應當歸功於魏晉時期數學家劉徽所創立的新方法——「割圓術」。
所謂「割圓術」,是用圓內接正多邊形的周長去無限逼近圓周並以此求取圓周率的方法。這個方法,是劉徽在批判總結了數學史上各種舊的計算方法之後,經過深思熟慮才創造出來的一種嶄新的方法。
中國古代從先秦時期開始,一直是取「周三徑一」(即
)的數值來進行有關圓的計算。但用這個數值進行計算的結果,往往誤差很大。正如劉徽所說,用「周三徑一」計算出來的圓周長,實際上不是圓的周長而是圓內接正六邊形的周長(參見圖1-5-1),其數值要比實際的圓周長小得多。東漢的張衡不滿足於這個結果,他從研究圓與它的外切正方形的關系著手(參見圖1-5-2)得到圓周率。這個數值比「周三徑一」要好些,但劉徽認為其計算出來的圓周長必然要大於實際的圓周長,也不精確。劉徽以極限思想為指導,提出用「割圓術」來求圓周率,既大膽創新,又嚴密論證,從而為圓周率的計算指出了一條科學的道路。
在劉徽看來,既然用「周三徑一」計算出來的圓周長實際上是圓內接正六邊形的周長,與圓周長相差很多;那麼我們可以在圓內接正六邊形把圓周等分為六條弧的基礎上,再繼續等分,把每段弧再分割為二,做出一個圓內接正十二邊形,這個正十二邊形的周長不就要比正六邊形的周長更接近圓周了嗎?如果把圓周再繼續分割,做成一個圓內接正二十四邊形,那麼這個正二十四邊形的周長必然又比正十二邊形的周長更接近圓周。(參見圖1-5-3)。這就表明,越是把圓周分割得細,誤差就越少,其內接正多邊形的周長就越是接近圓周。如此不斷地分割下去,一直到圓周無法再分割為止,也就是到了圓內接正多邊形的邊數無限多的時候,它的周長就與圓周「合體」而完全一致了。
按照這樣的思路,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,並由此而求得了圓周率 為3.14和
3.1416這兩個近似數值。這個結果是當時世界上圓周率計算的最精確的數據。劉徽對自己創造的這個「割圓術」新方法非常自信,把它推廣到有關圓形計算的各個方面,從而使漢代以來的數學發展大大向前推進了一步。
以後到了南北朝時期,祖沖之在劉徽的這一基礎上繼續努力,終於求得了圓周率為:精確到了小數點以後的第七位。在西方,這個成績是由法國數學家韋達於1593年取得的,
比祖沖之要晚了一千一百多年。祖沖之還求得了圓周率的兩個分數值,一個是「約率」 ,另一個是「密率」.,其中
這個值,在西方是由德國的奧托和荷蘭的安東尼茲在16世紀末才得到的,都比祖沖之晚了一千一百年。劉徽所創立的「割圓術」新方法對中國古代數學發展的重大貢獻,歷史是永遠不會忘記的。
Ⅱ 計算圓周率簡單方法
它定義為圓形之周長與直徑之比
最簡單的就是直接量圓的周長和直徑然後相比。
以上是本人拙見,下面出自網路
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。
把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。如果用魯道夫算出的35位精度的圓周率值,來計算一個能把太陽系包起來的一個圓的周長,誤差還不到質子直徑的百萬分之一。以前的人計算圓周率,是要探究圓周率是否循環小數。自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了。現在的人計算圓周率,多數是為了驗證計算機的計算能力,還有,就是為了興趣。
Ⅲ 計算圓周率的三種方法
蒙特卡洛法、割圓迭代法、梅欽級數法。
蒙特卡羅法也稱統計模擬法、統計試驗法。是把概率現象作為研究對象的數值模擬方法。割圓迭代法就是採用圓的內接止多邊形相員的外切止多邊形,通過將多邊形的切數成信增大到一定數值時二者(圓與正多邊形)周長近似相等,從而得到有關π和n,從而計算。梅欽類公式的形式為:其中,和為正整數,且,為非零整數,且為正整數。梅欽類公式的應用可結合反正切函數的泰勒級數展開即可。
圓周率就是圓的周長與直徑的比值的數學常數。
Ⅳ 圓周率正確計算方法
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
圓周率正確計算方法是用圓的周長與直徑的比值
Ⅳ 圓周率的計算方法
計算方法
圓周率
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。阿基米德用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;魯道夫用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其它公式和由這些經典公式衍生出來的公式,就不一一列舉了。 1、馬青公式 π=16arctan1/5-4arctan1/239 這個公式由英國天文學教授約翰·馬青於1706年發現。他利用這個公式計算到了100位的圓周率。馬青公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。 還有很多類似於馬青公式的反正切公式。在所有這些公式中,馬青公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,馬青公式就力不從心了。 2、拉馬努金公式 1914年,印度天才數學家拉馬努金在他的論文里發表了一系列共14條圓周率的計算公式。這個公式每計算一項可以得到8位的十進制精度。1985年Gosper用這個公式計算到了圓周率的17,500,000位。 1989年,大衛·丘德諾夫斯基和格雷高里·丘德諾夫斯基兄弟將拉馬努金公式改良,這個公式被稱為丘德諾夫斯基公式,每計算一項可以得到15位的十進制精度。1994年丘德諾夫斯基兄弟利用這個公式計算到了4,044,000,000位。丘德諾夫斯基公式的另一個更方便於計算機編程的形式是: 3、AGM(Arithmetic-Geometric Mean)演算法 高斯-勒讓德公式:
圓周率
這個公式每迭代一次將得到雙倍的十進制精度,比如要計算100萬位,迭代20次就夠了。1999年9月,日本的高橋大介和金田康正用這個演算法計算到了圓周率的206,158,430,000位,創出新的世界紀錄。 4、波爾文四次迭代式: 這個公式由喬納森·波爾文和彼得·波爾文於1985年發表的。 5、ley-borwein-plouffe演算法 這個公式簡稱BBP公式,由David Bailey, Peter Borwein和Simon Plouffe於1995年共同發
丘德諾夫斯基公式
表。它打破了傳統的圓周率的演算法,可以計算圓周率的任意第n位,而不用計算前面的n-1位。這為圓周率的分布式計算提供了可行性。 6.丘德諾夫斯基公式 這是由丘德諾夫斯基兄弟發現的,十分適合計算機編程,是目前計算機使用較快的一個公式。以下是這個公式的一個簡化版本: 7.萊布尼茨公式 π/4=1-1/3+1/5-1/7+1/9-1/11+……
圓周率的計算方法
古人計算圓周率,一般是用割圓法。即用圓的內接或外切正多邊形來逼近圓的周長。Archimedes用正96邊形得到圓周率小數點後3位的精度;劉徽用正3072邊形得到5位精度;Ludolph Van Ceulen用正262邊形得到了35位精度。這種基於幾何的演算法計算量大,速度慢,吃力不討好。隨著數學的發展,數學家們在進行數學研究時有意無意地發現了許多計算圓周率的公式。下面挑選一些經典的常用公式加以介紹。除了這些經典公式外,還有很多其他公式和由這些經典公式衍生出來的公式,就不一一列舉了。
Machin公式
這個公式由英國天文學教授John Machin於1706年發現。他利用這個公式計算到了100位的圓周率。Machin公式每計算一項可以得到1.4位的十進制精度。因為它的計算過程中被乘數和被除數都不大於長整數,所以可以很容易地在計算機上編程實現。
Machin.c 源程序
還有很多類似於Machin公式的反正切公式。在所有這些公式中,Machin公式似乎是最快的了。雖然如此,如果要計算更多的位數,比如幾千萬位,Machin公式就力不從心了。下面介紹的演算法,在PC機上計算大約一天時間,就可以得到圓周率的過億位的精度。這些演算法用程序實現起來比較復雜。因為計算過程中涉及兩個大數的乘除運算,要用FFT(Fast Fourier Transform)演算法。FFT可以將兩個大數的乘除運算時間由O(n2)縮短為O(nlog(n))。
Ⅶ 圓周率的計算方法是什麼
早在一千七百多年前,我國古代數學家劉徽曾用割圓術求出圓周率是3.14.繼劉徽之後,我國古代數學家祖沖之在推求圓周率的研究方面,又有了重要發展.他計算的結果共得到兩個數:一個是盈數(即過剩的近似值),為3.1415927;另一個是(nǜ)數(即不足的近似值),為 3.1415926.圓周率的真值正好在盈兩數之間.祖沖之還採用了兩個分數值:一個是22/7(約等於3.14),稱之為「約率」;另一個是 355/113(約等於3.1415929),稱之為「密率」.祖沖之求得的密率,比外國數學家求得這個值,至少要早一千年.
⑴ 2∕π=√2∕2*√(2+√2)∕2*√(2+√(2+√2))∕2……
⑵ π∕2=2*2*4*4*6*6*8*8……∕(1*3*3*3*4*5*5*7*7……)
⑶ π∕4=4arctg(1∕5)-arctg(1∕239) (註:tgx=…………)
⑷ π=426880√10005∕(∑((6n)!*(545140134n+13591409))
∕((n!)*(3n)!*(-640320)^(3n)))
(0≤n→∞)
現代數學家計算圓周率大多採用此類公式,普通人是望塵莫及的.
而中國圓周率公式的使用就簡單多了,普通中學生使用常規計算工具就能輕松解決問題!
Ⅷ 圓周率的准確計算方法
准確計算方法可以用微積分的原理,設原半徑為r的話,圓的面積就可以用積分式表達。面積為4(r^2-y^2)關於dy的積分,積分下限為0,上限為r。用面積除以r^2,就可以求得圓周率。