導航:首頁 > 研究方法 > 有限元三個研究方法

有限元三個研究方法

發布時間:2022-08-07 18:51:20

如何進行有限元分析

有限元分析的基本步驟如下。
1)建立研究對象的近似模型。
在進行數值計算之前,需要建立研究對象的模型。建模過程主要依靠基礎實驗或者觀測的結果,需要大量學科領域知識。在進行有限元分析的時候很難把研究對象的
所有細節都 包括進來,有時是因為缺乏實驗觀測數據,有時是需要縮小計算模,因此需要對研究對象進行不同程度的簡化。通常在研究對象的幾何形狀、材料特性和邊界條件這三個方面做適當的化。
2)將研究對象分割成有限數量的單元 研究者很難從整體上分析對象系統,需要把對象系統分解成有限數量的、形式相同、相對簡單的分區或組成部分,這個過程也被稱為離散化。每個分區是一個由基本單元,把空間連續的問題轉化成由一些基本單元組成的離散問題。
3)用標准方法對每個單元提出一個近似解 研究者能夠比較容易地分析基本單元的行為,提出求解基本單元的方法。提出適用於所有單元的標准求解方法,就可以編制計算機程序求解所有的單元。
4)將所有單元按標准方法組合成一個與原有系統近似的系統 將基本單元組裝成一個近似系統,在幾何形狀和性能特徵方面可以近似地代表研究對象。通過分析近似系統,可以了解研究對象的性能特徵。找到某種標準的組裝方法,就可以 用計算機程序組裝數目巨大的單元。
5)用數值方法求解這個近似系統。 採用離散化之後,就不需要再求解復雜的偏微分方程組,而轉換為求解線性方程組。數學家提出了許多求解大規模線性方程組的數值演算法。
6)計算結果處理與結果驗證
由數值計算可以得到大量的數據,如何顯示、分析數據並找到有用的結論是人們一直關系的問題。目前,商用有限元軟體都具有後處理功能,可以實現數據的圖形化
顯示,如顯示物體的變形、溫度場分布等,使得計算結果變得更加直觀。也可以使用一些專用的數據可視化工具來處理計算結果。如何判定計算結果是否正確,是有限單元法應用中的關鍵問題。可 以採用與實驗或觀測數據對比、與簡化模型對比或與理論計算結果對比。研究者的領域知識也有助於正確理解計算結果

什麼是有限元方法基本思想是什麼基本步驟

有限元法是一種有效解決數學問題的解題方法。

基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,單元上所作用的力等效到節點上,將微分方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式,就是用叉值函數來近似代替 ,藉助於變分原理或加權餘量法,將微分方程離散求解。

望採納,謝謝

⑶ 有限元分析的基本步驟是什麼

元計算FELAC有限元分析的基本步驟如下。1)建立研究對象的近似模型。2)將研究對象分割成有限數量的單元 研究者很難從整體上分析對象系統,需要把對象系統分解成有限數量的、形式相同、相對簡單的分區或組成部分,這個過程也被稱為離散化。3)用標准方法對每個單元提出一個近似解 研究者能夠比較容易地分析基本單元的行為,提出求解基本單元的方法。4)將所有單元按標准方法組合成一個與原有系統近似的系統 將基本單元組裝成一個近似系統,在幾何形狀和性能特徵方面可以近似地代表研究對象。5)用數值方法求解這個近似系統。 採用離散化之後,就不需要再求解復雜的偏微分方程組,而轉換為求解線性方程組。數學家提出了許多求解大規模線性方程組的數值演算法。6)計算結果處理與結果驗證 由數值計算可以得到大量的數據,如何顯示、分析數據並找到有用的結論是人們一直關系的問題。
內容拷貝元計算官網

⑷ 什麼是」有限元分析法」

有限元分析(FEA,Finite Element Analysis)的基本概念是用較簡單的問題代替復雜問題後再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。這個解不是准確解,而是近似解,因為實際問題被較簡單的問題所代替。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
有限元是那些集合在一起能夠表示實際連續域的離散單元。有限元的概念早在幾個世紀前就已產生並得到了應用,例如用多邊形(有限個直線單元)逼近圓來求得圓的周長,但作為一種方法而被提出,則是最近的事。有限元法最初被稱為矩陣近似方法,應用於航空器的結構強度計算,並由於其方便性、實用性和有效性而引起從事力學研究的科學家的濃厚興趣。經過短短數十年的努力,隨著計算機技術的快速發展和普及,有限元方法迅速從結構工程強度分析計算擴展到幾乎所有的科學技術領域,成為一種豐富多彩、應用廣泛並且實用高效的數值分析方法
有限元方法與其他求解邊值問題近似方法的根本區別在於它的近似性僅限於相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:「有限元法=Rayleigh Ritz法+分片函數」,即有限元法是Rayleigh Ritz法的一種局部化情況。不同於求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優於其他近似方法的原因之一。
對於不同物理性質和數學模型的問題,有限元求解法的基本步驟是相同的,只是具體公式推導和運算求解不同。有限元求解問題的基本步驟通常為:
第一步:問題及求解域定義:根據實際問題近似確定求解域的物理性質和幾何區域。
第二步:求解域離散化:將求解域近似為具有不同有限大小和形狀且彼此相連的有限個單元組成的離散域,習慣上稱為有限元網路劃分。顯然單元越小(網路越細)則離散域的近似程度越好,計算結果也越精確,但計算量及誤差都將增大,因此求解域的離散化是有限元法的核心技術之一。
第三步:確定狀態變數及控制方法:一個具體的物理問題通常可以用一組包含問題狀態變數邊界條件的微分方程式表示,為適合有限元求解,通常將微分方程化為等價的泛函形式。
第四步:單元推導:對單元構造一個適合的近似解,即推導有限單元的列式,其中包括選擇合理的單元坐標系,建立單元試函數,以某種方法給出單元各狀態變數的離散關系,從而形成單元矩陣(結構力學中稱剛度陣或柔度陣)。
為保證問題求解的收斂性,單元推導有許多原則要遵循。 對工程應用而言,重要的是應注意每一種單元的解題性能與約束。例如,單元形狀應以規則為好,畸形時不僅精度低,而且有缺秩的危險,將導致無法求解。
第五步:總裝求解:將單元總裝形成離散域的總矩陣方程(聯合方程組),反映對近似求解域的離散域的要求,即單元函數的連續性要滿足一定的連續條件。總裝是在相鄰單元結點進行,狀態變數及其導數(可能的話)連續性建立在結點處。
第六步:聯立方程組求解和結果解釋:有限元法最終導致聯立方程組。聯立方程組的求解可用直接法、選代法和隨機法。求解結果是單元結點處狀態變數的近似值。對於計算結果的質量,將通過與設計准則提供的允許值比較來評價並確定是否需要重復計算。
簡言之,有限元分析可分成三個階段,前處理、處理和後處理。前處理是建立有限元模型,完成單元網格劃分;後處理則是採集處理分析結果,使用戶能簡便提取信息,了解計算結果。
參考資料:智造中國

⑸ 有限元分析方法是指什麼

有限元分析(FEA,Finite Element Analysis)利用數學近似的方法對真實物理系統(幾何和載荷工況)進行模擬。利用簡單而又相互作用的元素(即單元),就可以用有限數量的未知量去逼近無限未知量的真實系統。

有限元分析是用較簡單的問題代替復雜問題後再求解。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。

因為實際問題被較簡單的問題所代替,所以這個解不是准確解,而是近似解。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。

(5)有限元三個研究方法擴展閱讀:

有限元方法與其他求解邊值問題近似方法的根本區別在於它的近似性僅限於相對小的子域中。20世紀60年代初首次提出結構力學計算有限元概念的克拉夫(Clough)教授形象地將其描繪為:「有限元法=Rayleigh Ritz法+分片函數」,即有限元法是Rayleigh Ritz法的一種局部化情況。

不同於求解(往往是困難的)滿足整個定義域邊界條件的允許函數的Rayleigh Ritz法,有限元法將函數定義在簡單幾何形狀(如二維問題中的三角形或任意四邊形)的單元域上(分片函數),且不考慮整個定義域的復雜邊界條件,這是有限元法優於其他近似方法的原因之一。

⑹ 有限元方法的特點

設計過程中產品力學/可靠性/散熱性能的評估方法主要有3種,
1、實驗研究
2、理論計算
3、有限元分析方法(CAE)

每種都有各自的特點:
實驗研究:優點:直觀,可靠;缺點:昂貴,周期長
理論計算:優點:快速、簡便;缺點:只能計算非常簡單的模型
有限元分析方法:優點:周期短,成本低;限制:數學模型的建立准確性

隨著工業4.0、機械2025等計劃的提出,對於製造的要求越來越高,有限元分析是未來的趨勢,目前很多大企業都有採用有限元分析方法來加速工業設計周期以及提高產品的質量,比如華為、創維、中車、美的、TCL、比亞迪、東方汽車、比克電池等等都有採用深圳有限元科技的有限元技術服務吧。

⑺ 有限元法有什麼特點和優勢

一、有限元法的特點:

1、把連續體劃分成有限個單元,把單元的交界結點(節點)作為離散點;

2、不考慮微分方程,而從單元本身特點進行研究。

3、理論基礎簡明,物理概念清晰,且可在不同的水平上建立起對該法的理解。

4、具有靈活性和適用性,適應性強。它可以把形狀不同、性質不同的單元組集起來求解,故特別適用於求解由不同構件組合的結構,應用范圍極為廣泛。

它不僅能成功地處理如應力分析中的非均勻材料、各向異性材料、非線性應力、應變以及復雜的邊界條件等問題,且隨著其理論基礎和方法的逐步完善,還能成功地用來求解如熱傳導、流體力學及電磁場領域的許多問題。

5、在具體推導運算過程中,廣泛採用了矩陣方法。

二、有限元法的優點

1、物理概念淺顯清晰,易於掌握。有限元法不僅可以通過非常直觀的物理解釋來被掌握,而且可以通過數學理論嚴謹的分析掌握方法的本質。

2、描述簡單,利於推廣。有限元法由於採用了矩陣的表達形式,從而可以非常簡單的描述問題,使求解問題的方法規范化,便於編制計算機程序,並且充分利用了計算機的高速運算和大量存儲功能。

3、方法優越。對於存在非常復雜的因素組合時候,比如不均勻的材料特性、任意的邊界條件、復雜的幾何形狀等混雜在一起的時候,有限元法都能靈活的處理和求解。

4、應用范圍廣。有限元法不僅能解決結構力學,彈性力學中的各種問題,而且隨著其理論基礎與方法的逐步改進與成熟,還可以廣泛地用來求解熱傳導、流體力學及電磁場等其他領域的諸多問題。不僅如此,在所有連續介質問題和場問題中,有限元法都得到了很好的應用。

⑻ 有限元分析方法的簡介

有限元分析是使用有限元方法來分析靜態或動態的物理物體或物理系統。在這種方法中一個物體或系統被分解為由多個相互聯結的、簡單、獨立的點組成的幾何模型。在這種方法中這些獨立的點的數量是有限的,因此被稱為有限元。由實際的物理模型中推導出來得平衡方程式被使用到每個點上,由此產生了一個方程組。這個方程組可以用線性代數的方法來求解。有限元分析 的精確度無法無限提高。元的數目到達一定高度後解的精確度不再提高,只有計算時間不斷提高。
有限元分析法(FEA)已應用得非常廣泛,現已成為年創收達數十億美元的相關產業的基礎。即使是很復雜的應力問題的數值解,用有限元分析的常規方法就能得到。此方法是如此的重要,以至於即便像這些只對材料力學作入門性論述的模塊,也應該略述其主要特點。 不管有限元法是如何的卓有成效,當你應用此法及類似的方法時,計算機解的缺點必須牢記在心頭:這些解不一定能揭示諸如材料性能、幾何特徵等重要的變數是如何影響應力的。一旦輸入數據有誤,結果就會大相徑庭,而分析者卻難以覺察。所以理論建模最重要的作用可能是使設計者的直覺變得敏銳。有限元程序的用戶應該為此目標部署設計策略,以盡可能多的封閉解和實驗分析作為計算機模擬的補充。 與現代微機上許多字處理和電子製表軟體包相比,有限元的程序不那麼復雜。然而,這些程序的復雜程度依然使大部分用戶無法有效地編寫自己所需的程序。可以買到一些預先編好的商用程序1,其價格範圍寬,從微機到超級計算機都可兼容。但有特定需求的用戶也不必對程序的開發望而生畏,你會發現,從諸如齊凱維奇(Zienkiewicz2)等的教材中提供的程序資源可作為有用的起點。大部分有限元軟體是用Fortran語言編寫的,但諸如felt等某些更新的程序用的是C語言或其它更時新的程序語言。
在實踐中,有限元分析法通常由三個主要步驟組成: 1、預處理:用戶需建立物體待分析部分的模型,在此模型中,該部分的幾何形狀被分割成若干個離散的子區域——或稱為「單元」。各單元在一些稱為「結點」的離散點上相互連接。這些結點中有的有固定的位移,而其餘的有給定的載荷。准備這樣的模型可能極其耗費時間,所以商用程序之間的相互競爭就在於:如何用最友好的圖形化界面的「預處理模塊」,來幫助用戶完成這項繁瑣乏味的工作。有些預處理模塊作為計算機化的畫圖和設計過程的組成部分,可在先前存在的CAD文件中覆蓋網格,因而可以方便地完成有限元分析。 2、分析:把預處理模塊准備好的數據輸入到有限元程序中,從而構成並求解用線性或非線性代數方程表示的系統
u和f分別為各結點的位移和作用的外力。矩陣K的形式取決於求解問題的類3、分析的早期,用戶需仔細地研讀程序運算後產生的大量數字,即 型,本模塊將概述桁架與線彈性體應力分析的方法。商用程序可能帶有非常大的單元庫,不同類型的單元適用於范圍廣泛的各類問題。有限元法的主要優點之一就是:許多不同類型的問題都可用相同的程序來處理,區別僅在於從單元庫中指定適合於不同問題的單元類型。

⑼ 有限元有哪些具體的方法,各自的優劣

有限元法應該是在差分法基礎上建立起來的。有限元法:對物理模型進行離散,網格劃分不用規則,就是各種單元可以混合使用,所以寫不出方程也可以求解。差分法:劃分的網格是規則的,對方程進行離散化,就是用很多個差分代替微分,用線性方程組代替微分方程的一種方法。學地質應該不用太區了解 基本原理,要注重分析的過程,和看懂分析結果才重要,地質畢竟也是實際的工程領域。那些理論就讓物理專業,力學專業的研究去吧。

⑽ 有限元法是什麼主要學點什麼

有限元法(finite element method)是20世紀60年代出現的一種數值計算方法。最初用於固體力學問題的數值計算,上世紀70年代在英國科學家Zienkiewicz O.C 等人的努力下,將它推廣到各類場問題的數值求解,如溫度場,電磁場,也包括流場。
有限元法離散方程的獲得方法主要有直接剛度法、虛功原理推導、泛函變分原理推導或加權餘量法推導。一般採用加權餘量法推導。
有限元法的優點是解題能力強,可以比較精確地模擬各種復雜的曲線或曲面邊界,網格的劃分比較隨意,可以統一處理多種邊界條件,離散方程的形式規范,便於編制通用的計算機程序,在固體力學方程的數值計算方面取得巨大的成功。但是在應用於流體流動和傳熱方程求解的過程中卻遇到一些困難,其原因在於,按加權餘量法推導出的有限元離散方程也只是對原微分方程的數學近似。當處理流動和傳熱問題的守恆性、強對流、不可壓縮條件等方面的要求時,有限元離散方程中的各項還無法給出合理的物理解釋。對計算中出現的一些誤差也難以進行改進。

閱讀全文

與有限元三個研究方法相關的資料

熱點內容
高中階段學習方法與技巧 瀏覽:696
小孩咳嗽用什麼方法好 瀏覽:846
園林檢測方法 瀏覽:20
怎麼去濕氣最好的方法 瀏覽:562
戴爾平板字體大小在哪裡設置方法 瀏覽:882
卵磷脂的食用方法 瀏覽:340
18種科學鍛煉方法 瀏覽:447
如何克服心理的方式方法 瀏覽:816
物理研究方法一共有幾種 瀏覽:391
用什麼方法可以把手機變成藍牙 瀏覽:488
想把真皮斑淡化有什麼土方法 瀏覽:518
恩蘋果手機簡訊歸類處理方法 瀏覽:946
工程圖紙問題及解決方法 瀏覽:546
s6藍牙耳機使用方法 瀏覽:974
訓犬的方法如何訓練馬犬 瀏覽:101
一個人能快速學會下腰的方法 瀏覽:780
籃球比賽技巧與方法視頻 瀏覽:860
循環水真空泵使用方法 瀏覽:570
vivo屏幕旋轉按鈕在哪裡設置方法 瀏覽:450
結核桿菌快速檢測方法有 瀏覽:660