導航:首頁 > 研究方法 > 大數據分析方法主要python

大數據分析方法主要python

發布時間:2022-07-30 15:51:23

① 大數據處理為什麼要用python

大數據的數據從哪裡來?除了部分企業有能力自己產生大量的數據,大部分時候,是需要靠爬蟲來抓取互聯網數據來做分析。
網路爬蟲是Python的傳統強勢領域,最流行的爬蟲框架Scrapy,HTTP工具包urlib2,HTML解析工具beautifulsoup,XML解析器lxml,等等,都是能夠獨當一面的類庫。
不過,網路爬蟲並不僅僅是打開網頁,解析HTML這么簡單。高效的爬蟲要能夠支持大量靈活的並發操作,常常要能夠同時幾千甚至上萬個網頁同時抓取,傳統的線程池方式資源浪費比較大,線程數上千之後系統資源基本上就全浪費在線程調度上了。Python由於能夠很好的支持協程(Coroutine)操作,基於此發展起來很多並發庫,如Gevent,Eventlet,還有Celery之類的分布式任務框架。被認為是比AMQP更高效的ZeroMQ也是最早就提供了Python版本。有了對高並發的支持,網路爬蟲才真正可以達到大數據規模。
抓取下來的數據,需要做分詞處理,Python在這方面也不遜色,著名的自然語言處理程序包NLTK,還有專門做中文分詞的Jieba,都是做分詞的利器。
數據處理
萬事俱備,只欠東風。這東風,就是數據處理演算法。從統計理論,到數據挖掘,機器學習,再到最近幾年提出來的深度學習理論,數據科學正處於百花齊放的時代。數據科學家們都用什麼編程?
如果是在理論研究領域,R語言也許是最受數據科學家歡迎的,但是R語言的問題也很明顯,因為是統計學家們創建了R語言,所以其語法略顯怪異。而且R語言要想實現大規模分布式系統,還需要很長一段時間的工程之路要走。所以很多公司使用R語言做原型試驗,演算法確定之後,再翻譯成工程語言。
Python也是數據科學家最喜歡的語言之一。和R語言不同,Python本身就是一門工程性語言,數據科學家用Python實現的演算法,可以直接用在產品中,這對於大數據初創公司節省成本是非常有幫助的。正式因為數據科學家對Python和R的熱愛,Spark為了討好數據科學家,對這兩種語言提供了非常好的支持。
Python的數據處理相關類庫非常多。高性能的科學計算類庫NumPy和SciPy,給其他高級演算法打了非常好的基礎,matploglib讓Python畫圖變得像Matlab一樣簡單。Scikit-learn和Milk實現了很多機器學習演算法,基於這兩個庫實現的Pylearn2,是深度學習領域的重要成員。Theano利用GPU加速,實現了高性能數學符號計算和多維矩陣計算。當然,還有Pandas,一個在工程領域已經廣泛使用的大數據處理類庫,其DataFrame的設計借鑒自R語言,後來又啟發了Spark項目實現了類似機制。
對了,還有iPython,這個工具如此有用,以至於差點把他當成標准庫而忘了介紹。iPython是一個互動式Python運行環境,能夠實時看到每一段Python代碼的結果。默認情況下,iPython運行在命令行,可以執行ipython notebook在網頁中運行。用matplotlib繪制的圖可以直接嵌入式的顯示在iPython Notebook中。
iPython Notebook的筆記本文件可以共享給其他人,這樣其他人就可以在自己的環境中重現你的工作成果;如果對方沒有運行環境,還可以直接轉換成HTML或者PDF。
為什麼是Python
正是因為應用開發工程師、運維工程師、數據科學家都喜歡Python,才使得Python成為大數據系統的全棧式開發語言。
對於開發工程師而言,Python的優雅和簡潔無疑是最大的吸引力,在Python互動式環境中,執行import this,讀一讀Python之禪,你就明白Python為什麼如此吸引人。Python社區一直非常有活力,和NodeJS社區軟體包爆炸式增長不同,Python的軟體包增長速度一直比較穩定,同時軟體包的質量也相對較高。有很多人詬病Python對於空格的要求過於苛刻,但正是因為這個要求,才使得Python在做大型項目時比其他語言有優勢。OpenStack項目總共超過200萬行代碼,證明了這一點。
對於運維工程師而言,Python的最大優勢在於,幾乎所有Linux發行版都內置了Python解釋器。Shell雖然功能強大,但畢竟語法不夠優雅,寫比較復雜的任務會很痛苦。用Python替代Shell,做一些復雜的任務,對運維人員來說,是一次解放。
對於數據科學家而言,Python簡單又不失強大。和C/C++相比,不用做很多的底層工作,可以快速進行模型驗證;和Java相比,Python語法簡潔,表達能力強,同樣的工作只需要1/3代碼;和Matlab,Octave相比,Python的工程成熟度更高。不止一個編程大牛表達過,Python是最適合作為大學計算機科學編程課程使用的語言——MIT的計算機入門課程就是使用的Python——因為Python能夠讓人學到編程最重要的東西——如何解決問題。

② 如何利用python進行數據分析

近年來分析學在數據、網路、金融等領域獲得了突出的地位。應用各種軟體組合起來進行數據收集,數據管理,以及數據分析,得出的結論用作商業決策,業務需求分析等等。分析學用於研究一個產品的市場效應,銀行的貸款決定,這些都只是分析學的冰山一角。它在大數據,安全,數字和軟體分析等領域有很深遠的影響,下面是Python在分析學中的主要作用的一個延續:
在這個信息過載的世界,只有那些可以利用解析數據的優勢來得出見解的人會獲益。Python對於大數據的解釋和分析具有很重要的作用。分析公司開發的很多工具都是基於Python來約束大數據塊。分析師們會發現Python並不難學,它是一個強有力的數據管理和業務支持的媒介。
使用單一的語言來處理數據有它的好處。如果你以前曾經使用過C++或者Java,那麼對你來說,Python應該很簡單。數據分析可以使用Python實現,有足夠的Python庫來支持數據分析。 Pandas是一個很好的數據分析工具,因為它的工具和結構很容易被用戶掌握。對於大數據來說它無疑是一個最合適的選擇。即使是在數據科學領域,Python也因為它的「開發人員友好性」而使其他語言相形見絀。一個數據科學家熟悉Python的可能性要比熟悉其他語言的可能性高得多。
除了Python在數據分析中那些很明顯的優點(易學,大量的在線社區等等)之外,在數據科學中的廣泛使用,以及我們今天看到的大多數基於網路的分析,是Python在數據分析領域得以廣泛傳播的主要原因。
不論是金融衍生品還時大數據分析,Python都發揮了重要的作用。就前者而言,Python能夠很好地和其它系統,軟體工具以及數據流結合在一起,當然也包括R。用Python來對大數據做圖表效果更好,它在速度和幫助方面也一樣可靠。有些公司使用Python進行預測分析和統計分析。

③ 有什麼比較好入門的大數據分析方法

1、excel是基礎中基礎,學好真心沒商量啦
2、SPSS是數據分析好手,裡面有聚類,各種回歸預測,時間序列,統計,卡方檢驗等等,易操作,屬於中級。
3,R語言是目前數據分析師主流工具,功能強大,貌似裡面的數據可視化可謂酷炫吊炸天。屬於中高級。
4、python是一種編程語言,用於數據分析挖掘,網路爬蟲等。強大高級。學習C++或者面向對象程序設計可以自學啦!最重要往往在最後。。。如果你一心想成為一名出色的數據分析師,不瞞你言,以上前三種必須學習啊。如果你現在不會,就慢慢學起來!

④ 如何使用Python分析大數據

互聯網創業離不開數據,如果能自己做個數據爬蟲,那豈不是一件很美好的事情嗎?
其實自己做數據挖掘不是夢,學點Python的基本功能,5步就能讓你成為一個爬蟲高手!

⑤ 大數據分析方法分哪些

本文主要講述數據挖掘分析領域中,最常用的四種數據分析方法:描述型分析、診斷型分析、預測型分析和指令型分析。
當剛涉足數據挖掘分析領域的分析師被問及,數據挖掘分析人員最重要的能力是什麼時,他們給出了五花八門的答案。
其實我想告訴他們的是,數據挖掘分析領域最重要的能力是:能夠將數據轉化為非專業人士也能夠清楚理解的有意義的見解。
使用一些工具來幫助大家更好的理解數據分析在挖掘數據價值方面的重要性,是十分有必要的。其中的一個工具,叫做四維分析法。
簡單地來說,分析可被劃分為4種關鍵方法。
下面會詳細介紹這四種方法。
1. 描述型分析:發生了什麼?
最常用的四種大數據分析方法
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是「描述型分析」方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析:為什麼會發生?
最常用的四種大數據分析方法
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析:可能發生什麼?
最常用的四種大數據分析方法
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。
在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析:需要做什麼?
最常用的四種大數據分析方法
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對「發生了什麼」、「為什麼會發生」和「可能發生什麼」的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
例如,交通規劃分析考量了每條路線的距離、每條線路的行駛速度、以及目前的交通管制等方面因素,來幫助選擇最好的回家路線。
結論
最後需要說明,每一種分析方法都對業務分析具有很大的幫助,同時也應用在數據分析的各個方面。

⑥ 常見的大數據分析工具有哪些

我推薦一些常用的大數據分析工具
1.專業的大數據分析工具
2.各種Python數據可視化第三方庫
3.其它語言的數據可視化框架
一、專業的大數據分析工具
1、FineReport
FineReport是一款純Java編寫的、集數據展示(報表)和數據錄入(表單)功能於一身的企業級web報表工具,只需要簡單的拖拽操作便可以設計復雜的中國式報表,搭建數據決策分析系統。
2、FineBI
FineBI是新一代自助大數據分析的商業智能產品,提供了從數據准備、自助數據處理、數據分析與挖掘、數據可視化於一體的完整解決方案,也是我比較推崇的可視化工具之一。
FineBI的使用感同Tableau類似,都主張可視化的探索性分析,有點像加強版的數據透視表。上手簡單,可視化庫豐富。可以充當數據報表的門戶,也可以充當各業務分析的平台。
二、Python的數據可視化第三方庫
Python正慢慢地成為數據分析、數據挖掘領域的主流語言之一。在Python的生態里,很多開發者們提供了非常豐富的、用於各種場景的數據可視化第三方庫。這些第三方庫可以讓我們結合Python語言繪制出漂亮的圖表。
1、pyecharts
Echarts(下面會提到)是一個開源免費的javascript數據可視化庫,它讓我們可以輕松地繪制專業的商業數據圖表。當Python遇上了Echarts,pyecharts便誕生了,它是由chenjiandongx等一群開發者維護的Echarts Python介面,讓我們可以通過Python語言繪制出各種Echarts圖表。
2、Bokeh
Bokeh是一款基於Python的互動式數據可視化工具,它提供了優雅簡潔的方法來繪制各種各樣的圖形,可以高性能的可視化大型數據集以及流數據,幫助我們製作互動式圖表、可視化儀錶板等。
三、其他數據可視化工具
1、Echarts
前面說過了,Echarts是一個開源免費的javascript數據可視化庫,它讓我們可以輕松地繪制專業的商業數據圖表。
大家都知道去年春節以及近期央視大規劃報道的網路大數據產品,如網路遷徙、網路司南、網路大數據預測等等,這些產品的數據可視化均是通過ECharts來實現的。
2、D3
D3(Data Driven Documents)是支持SVG渲染的另一種JavaScript庫。但是D3能夠提供大量線性圖和條形圖之外的復雜圖表樣式,例如Voronoi圖、樹形圖、圓形集群和單詞雲等。

⑦ 為什麼從事大數據行業,一定要學習Python

Python這只小蟲子最近隨著大數據的興起可以說是十分的火了。有越來越多的人不敢小覷Python這門語言了。也有更多的人在學習Python。Python為何會有如此大的魅力?為什麼從事大數據行業必學Python?這還要從Python這門語言的優點開始講起。

雖然Python這種語言不如Java、C++這些語言普及,卻早在1991年就已經誕生了。它的語法簡單清晰,以實用為主,是門十分樸素的語言。同時,它還是編程語言中的「和事佬」,被人戲稱為膠水語言。因為它能夠將其他語言製作的各種模塊很輕松的聯結在一起。

如果將Python語言擬人化,它絕對屬於「老好人」的那一類,讓人容易親近,人們與它交流並不需要花太多心思。但它卻擁有強大的功能。很多語言不能完成的任務,Python都能輕易完成。它幾乎可以被用來做任何事情,應用於多個系統和平台。無論是系統操作還是Web開發,抑或是伺服器和管理工具、部署、科學建模等,它都能輕松掌握。因此,從事海量數據處理的大數據行業,自然少不了這個「萬能工具」。

除此之外,Python這只小蟲子還受到了大數據老大哥Google的青睞。Google的很多開發都用到了Python。這使得人們能夠找到Python的很多指南和教程。讓你學起來更方便,你在使用中可能遇到的很多問題大多數都已經被Google給解決了,並把解決方法發布到了網路平台。

Python還擁有一系列非常優秀的庫,這省了你編程中的很多時間。尤其是在人工智慧和機器學習領域,這些庫的價值體現得更為明顯。

不管怎麼說,從事大數據工作,少不得要在網路上爬取數據,不用Python爬蟲,你還打算用什麼呢?

因此,在當前的大數據領域,從事大數據行業必學Python。
人工智慧、大數據、雲計算和物聯網的未來發展值得重視,均為前沿產業,多智時代專注於人工智慧和大數據的入門和科譜,在此為你推薦幾篇優質好文:
————————————————
版權聲明:本文為CSDN博主「oshidai」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/oshidai/article/details/88712833

⑧ 如何用python進行大數據挖掘和分析

毫不誇張地說,大數據已經成為任何商業交流中不可或缺的一部分。桌面和移動搜索向全世界的營銷人員和公司以空前的規模提供著數據,並且隨著物聯網的到來,大量用以消費的數據還會呈指數級增長。這種消費數據對於想要更好地定位目標客戶、弄懂人們怎樣使用他們的產品或服務,並且通過收集信息來提高利潤的公司來說無疑是個金礦。
篩查數據並找到企業真正可以使用的結果的角色落到了軟體開發者、數據科學家和統計學家身上。現在有很多工具輔助大數據分析,但最受歡迎的就是Python。
為什麼選擇Python?
Python最大的優點就是簡單易用。這個語言有著直觀的語法並且還是個強大的多用途語言。這一點在大數據分析環境中很重要,並且許多企業內部已經在使用Python了,比如Google,YouTube,迪士尼,和索尼夢工廠。還有,Python是開源的,並且有很多用於數據科學的類庫。所以,大數據市場急需Python開發者,不是Python開發者的專家也可以以相當塊速度學習這門語言,從而最大化用在分析數據上的時間,最小化學習這門語言的時間。
用Python進行數據分析之前,你需要從Continuum.io下載Anaconda。這個包有著在Python中研究數據科學時你可能需要的一切東西。它的缺點是下載和更新都是以一個單元進行的,所以更新單個庫很耗時。但這很值得,畢竟它給了你所需的所有工具,所以你不需要糾結。
現在,如果你真的要用Python進行大數據分析的話,毫無疑問你需要成為一個Python開發者。這並不意味著你需要成為這門語言的大師,但你需要了解Python的語法,理解正則表達式,知道什麼是元組、字元串、字典、字典推導式、列表和列表推導式——這只是開始。
各種類庫
當你掌握了Python的基本知識點後,你需要了解它的有關數據科學的類庫是怎樣工作的以及哪些是你需要的。其中的要點包括NumPy,一個提供高級數學運算功能的基礎類庫,SciPy,一個專注於工具和演算法的可靠類庫,Sci-kit-learn,面向機器學習,還有Pandas,一套提供操作DataFrame功能的工具。
除了類庫之外,你也有必要知道Python是沒有公認的最好的集成開發環境(IDE)的,R語言也一樣。所以說,你需要親手試試不同的IDE再看看哪個更能滿足你的要求。開始時建議使用IPython Notebook,Rodeo和Spyder。和各種各樣的IDE一樣,Python也提供各種各樣的數據可視化庫,比如說Pygal,Bokeh和Seaborn。這些數據可視化工具中最必不可少的就是Matplotlib,一個簡單且有效的數值繪圖類庫。
所有的這些庫都包括在了Anaconda裡面,所以下載了之後,你就可以研究一下看看哪些工具組合更能滿足你的需要。用Python進行數據分析時你會犯很多錯誤,所以得小心一點。一旦你熟悉了安裝設置和每種工具後,你會發現Python是目前市面上用於大數據分析的最棒的平台之一。
希望能幫到你!

⑨ 使用Python做數據分析的優點是什麼

最近幾年,大數據的發展程度越來越明顯,很多企業由於使用了大數據分析使得企業朝著更好的方向發展,這就導致的數據分析行業的人才開始稀缺起來,對於數據分析這個工作中,是需要學會一些編程語言的,比如MATLAB,Python,Java等語言。對於初學者來說,Python是一個不錯的語言,Python語言簡單易懂,同時對於大數據分析有很明顯的幫助。那麼使用Python做數據分析的優點是什麼呢?一般來說就是簡單易學、語言通用、存在科學計算活躍區域等等。

首先說說Python的第一個優點,那就是簡單易學。很多學過Java的朋友都知道,Python語法簡單的多,代碼十分容易被讀寫,最適合剛剛入門的朋友去學習。我們在處理數據的時候,一般都希望數據能夠轉化成可運算的數字形式,這樣,不管是沒學過編程的人還是學過編程的人都能夠看懂這個數據。

Python在數據分析和交互、探索性計算以及數據可視化等方面都顯得比較活躍,這就是Python作為數據分析的原因之一,python擁有numpy、matplotlib、scikit-learn、pandas、ipython等工具在科學計算方面十分有優勢,尤其是pandas,在處理中型數據方面可以說有著無與倫比的優勢,已經成為數據分析中流砥柱的分析工具。

Python也具有強大的編程能力,這種編程語言不同於R或者matlab,python有些非常強大的數據分析能力,並且還可以利用Python進行爬蟲,寫游戲,以及自動化運維,在這些領域中有著很廣泛的應用,這些優點就使得一種技術去解決所有的業務服務問題,這就充分的體現的Python有利於各個業務之間的融合。如果使用Python,能夠大大的提高數據分析的效率。

python是人工智慧時代的通用語言

Python對於如今火熱的人工智慧也有一定的幫助,這是因為人工智慧需要的是即時性,而Python是一種非常簡潔的語言,同時有著豐富的資料庫以及活躍的社區,這樣就能夠輕松的提取數據,從而為人工智慧做出優質的服務。
通過上面的描述,想必大家已經知道了使用Python做數據分析的優點是什麼了吧,Python語言得益於它的簡單方便使得在大數據、數據分析以及人工智慧方面都有十分明顯的存在感,對於數據分析從業者以及想要進入數據分析從業者的人來說,簡單易學容易上手的優勢也是一個優勢,所以,要做好數據分析,一定要學會Python語言。

閱讀全文

與大數據分析方法主要python相關的資料

熱點內容
可以填哪些數一年級方法 瀏覽:365
如何用科學方法理財 瀏覽:406
檢測受體的密度和數量用什麼方法 瀏覽:26
蘋果二手機驗機方法的軟體 瀏覽:158
用跑步機跑步的正確方法 瀏覽:659
長沙膽結石哪些方法治療好 瀏覽:351
雞腳的正確安裝方法 瀏覽:502
如何正確泡奶粉的方法 瀏覽:22
豆腐腦不出水最簡單的方法 瀏覽:335
法蘭軟連接使用方法 瀏覽:452
尿不濕正確睡眠方法 瀏覽:643
平行四邊形abcd角度計算方法 瀏覽:92
win7系統屏幕時間設置在哪裡設置方法 瀏覽:635
耳鳴手術有哪些方法 瀏覽:761
根據教學情景設計教學方法 瀏覽:673
趣讀的方法有哪些 瀏覽:462
普爾茶餅如何保存方法 瀏覽:118
後手開士角炮正確方法 瀏覽:822
體院館鍛煉方法 瀏覽:549
豬肉餡快速解凍最好方法 瀏覽:564