㈠ 植物組織中糖的測定方法有很多種,舉例說明他們的原理和優缺點
有許多不同的分析技術用於糖的分離和測定,包括化學分析、比色分析、紙色譜、薄層色譜、氣相色譜和高效液相色譜等。本文總結了近十年植物組織中糖類化合物的研究進展,為其含量測定提供理論依據。
1 分光光度分析法
分光光度法是基於長鏈多糖在水溶液中離解後可與染料等陽離子相互結合發生反應,從而引起染料吸收光譜的變化進行測定。這種方法具有較好的選擇性,可以用於實際樣品的測定,通常有兩種常見方法。
1.1 蒽酮 - 硫酸比色法
糖在濃硫酸作用下,可經脫水反應生成糖醛或羥甲基糠醛,生成的糠醛或羥甲基糠醛可與蒽酮反應生成藍綠色糠醛衍生物,在一定范圍內,顏色的深淺與糖的含量成正比,故可用於糖的定量。糖類與蒽酮反應生成的有色物質,在可見光區的吸收峰為 630 nm,可在此波長下進行比色。該法的特點是幾乎可以測定所有的碳水化合物,不但可以測定戊糖和己糖而且可以測寡糖和多糖,在沒有必要細致劃分各種碳水化合物的情況下,用蒽酮法可以一次測出總量。蒽酮比色法是一種快速而簡便的定糖方法,但測定結果誤差較大,只能測定樣品中可溶性糖總量。陳鴻英等人用蒽酮硫酸法測定淫羊藿多糖的含量,得到的結果較穩定。
1.2 苯酚 - 硫酸比色法
植物體內的糖主要是指能溶於水及乙醇的單糖和寡聚糖。苯酚法測定糖的原理是在濃硫酸作用下,糖脫水生成的糠醛或羥甲基糠醛能與苯酚縮合成一種橙紅色化合物,在10mg~100 mg 范圍內其顏色深淺與糖的含量成正比,且在485 nm 波長下有最大吸收峰,故可用比色法在此波長下測定。苯酚法可用於甲基化的糖、戊糖和多聚糖的測定,方法簡單,試劑便宜,靈敏度高,實驗時基本不受蛋白質存在的影響,並且產生的顏色可穩定 160 min 以上。
2 氣相色譜法
氣相色譜法是以氣體作為流動相的一種色譜分析方法氣相色譜法測定糖類,具有選擇性好、樣品用量少、解析度高、快速准確、靈敏等優點。曾昭睿採用三 - 端烯丙基 - 不對稱二苯並 14- 冠 - 4- 二羥基冠醚做固定相分離了鼠李糖、岩藻糖、阿拉伯糖、木糖、甘露糖、葡萄糖、半乳糖的乙酸酯衍生物。吳建元等人利用氣相色譜法分析茯苓多糖的單糖組成結果 6 種標准單糖的衍生物實現了良好的分離並具有良好的峰形。胡磊等人用 1 一甲基咪唑為溶劑和催化劑、鹽酸羥胺和乙酸酐為肟化和乙醯化試劑,對植物樣品中糖與糖醇進行乙醯化衍生化利用氣相色譜分離和質譜鑒定的分析方法。
3 高效毛細管電泳法
除了少數帶有羧基和磺酸基的糖類化合物,絕大多數糖類化合物不帶電荷,極性很大且沒有發色基團。所以用一般的高效毛細管電泳系統無法得到分離和檢測。為了使糖類化合物能產生電遷移而得以相互分離,可採用的方法有:(1)衍生化使之帶上發色、熒光基團或電荷;(2)與硼酸鹽等絡合;(3)與緩沖液中的添加劑形成包合配合物;(4)高 pH緩沖條件下使之電離;(5)加入表面活性劑使形成膠束。20世紀 90 年代以來毛細管電泳因具備分離快速,所需樣品量少和自動化程度高的特點,已廣泛應用於糖化合物的分析。
4 高效液相色譜法
HPLC 用於糖的定性和定量分析具有快速、靈敏、樣品處理簡單等優點。從大量的文獻報道和綜述中可以看出,由於糖的特殊結構及它本身不含強紫外和熒光吸收的官能團,到目前為止還沒有建立一個統一的方法來分析所有的單糖和低聚糖。分析糖的色譜柱有化合鍵合烷基柱、陰陽離子交換柱、氨基鍵合硅膠柱和硅膠柱等。
文獻來源:孫艷濤,由欣. 植物組織中糖化合物測定方法的研究進展.科教文匯(上旬刊). 2011,10(上旬刊) :134-135.網頁鏈接
㈡ 多糖類物質按其來源和組分可分別分為幾種不同材料來源的多糖其提取方法是否相同
單糖一般是含有3-6個碳原子的多羥基醛或多羥 基酮
多糖(polysaccharide)是由糖苷鍵結合的糖鏈,至少要超過10個以上的單糖組成的聚合糖高分子碳水化合物,可用通式(c6h10o5)n表示。由相同的單糖組成的多糖稱為多糖,如澱粉、纖維素和糖原;以沒的單糖組成的多糖稱為雜多糖,如阿拉伯膠是由戊糖和半乳糖等組成。多糖不是一種純粹的化學物質,而是聚合程度不同的物質的混合物。
由兩個單糖分子通過糖苷鍵連接而形成的化合物的統稱。如蔗糖、乳糖、麥芽糖等.
㈢ 糖類物質的常用鑒定方法
糖類物質常用的鑒定方法有生葯水浸液,加a -萘酚試劑數滴,搖勻後沿管壁滴加濃硫酸,若有糖類成分與甙類存在,則在二液面交界處出現紫紅色環。
㈣ 糖類化合物的分類
糖類化合物從結構上分析都是多羥基醛、多羥基酮,或者水解可以產生多羥基醛、多羥基酮的化合物。根據它能否水解或者水解後生成單糖的數目,分為單糖(葡萄糖、果糖等)、雙糖(蔗糖、麥芽糖等)、多糖(澱粉、纖維素等),根據有無還原性又可分為還原性糖和非還原性糖。單糖和麥芽糖、乳糖等是還原性糖,分子結構中有半縮醛(酮)羥基,所以它們能夠還原fehling試劑、tollens試劑、benedict試劑。蔗糖是一種非還原性糖,分子結構中不含有半縮醛(酮)羥基,故對上述試劑呈負反應。
糖類化合物能與molisch試劑生成紫色環,該反應用來鑒定糖類化合物的存在。酮糖能與西里瓦諾夫試劑(seliwanoff)反應呈鮮紅色,醛糖無此反應,因此該反應可以鑒別醛糖和酮糖。單糖和具有還原性的二糖如麥芽糖、乳糖和苯肼試劑反應,生成不溶於水的黃色糖鎩晶體,非還原性糖不能生成糖鎩。根據糖鎩的晶形、生成時間,可以鑒定各種糖。
3、澱粉和纖維素是多糖,它們沒有還原性,但它們都能水解,水解產物具有還原性。澱粉遇碘生成藍色物質,這是鑒定澱粉的最簡便方法。
㈤ 糖類的結構通式
糖類的結構通式Cm(H2O)n
在化學上,由於其由碳、氫、氧元素構成,在化學式的表現上類似於「碳」與「水」聚合,故又稱之為碳水化合物。
以前所有分子式可寫成以上結構通式的化學物質皆被稱為「碳水化合物」,根據這個定義,有些科學家認為甲醛為最簡單的糖類,但是也有其他人認為是乙醇醛。
自然界的糖類通常都由一種簡單的碳水化合物:單糖所構成。一個典型的單糖具有以上結構,也就是多羥基醛或多羥基酮。
(5)多糖類成分的結構分析方法擴展閱讀:
糖類的生物學作用:
1、糖類主要包括沒甜味的澱粉和有甜味的麥芽糖等,是人體最主要的能源物質,在人體中起重要作用。
2、作為生物能源,例如肌肉收縮、神經傳導。
3、作為其他物質生物合成的碳源。
4、作為生物體的結構物質。
5、糖蛋白、糖脂等具有細胞識別、免疫活性等多種生理活性功能。
參考資料來源:網路—糖類
㈥ 測定糖類的主要方法有哪些
4種糖的測定方法
總結:
1、 直接滴定法。
原理為 糖還原天藍色的氫氧化銅為紅色的氧化亞銅。缺點:水樣中的還原性物質能對糖的測定造成影響。
2、 高錳酸鉀滴定法。
所用原理同直接滴定法。缺點:水樣中的還原性物質能對糖的測定造成影響,過程較為復雜,誤差大。
3、硫酸苯酚法。
糖在濃硫酸作用下,脫水形成的糠醛和羥甲基糠醛能與苯酚縮合成一種橙紅色化合物,在10-100mg范圍內其顏色深淺與糖的含量成正比,且在485nm波長下有最大吸收峰,故可用比色法在此波長下測定。苯酚法可用於甲基化的糖、戊糖和多聚糖的測定,方法簡單,靈敏度高,實驗時基本不受蛋白質存在的影響,並且產生的顏色穩定160min以上。
缺點:如果水樣呈橙紅色(大部分水樣為黃色),會對比色法造成較大的干擾。
4、蒽酮法
糖在濃硫酸作用下,可經脫水反應生成糠醛和羥甲基糠醛,生成的糠醛或羥甲基糠醛可與蒽酮反應生成藍綠色糠醛衍生物,在一定范圍內,顏色的深淺與糖的含量成正比,故可用於糖的測定。
缺點:,不同的糖類與蒽酮試劑的顯色深度不同,果糖顯色最深,葡萄糖次之,半乳糖、甘露糖較淺,五碳糖顯色更淺。
綜合比較;採用蒽酮法能將最為准確地測定尾水中糖的含量。
㈦ 糖類分析的方法有哪些
可查葯典
㈧ 各種多糖的結構組成
多糖(polysaccharide)是由多個單糖分子縮合、失水而成,是一類分子結構復雜且龐大的糖類物質。凡符合高分子化合物概念的碳水化合物及其衍生物均稱為多糖。多糖在自然界分布極廣,亦很重要。有的是構成動植物細胞壁的組成成分,如肽聚糖和纖維素;有的是作為動植物儲藏的養分,如糖原和澱粉;有的具有特殊的生物活性,像人體中的肝素有抗凝血作用,肺炎球菌細胞壁中的多糖有抗原作用。多糖的結構單位是單糖,多糖相對分子質量從幾萬到幾千萬。結構單位之間以苷鍵相連接,常見的苷鍵有α-1,4-、β-1,4-和α-1,6-苷鍵。結構單位可以連成直鏈,也可以形成支鏈,直鏈一般以α-1,4-苷鍵(如澱粉)和β-1,4-苷鍵9如纖維素)連成;支鏈中鏈與鏈的連接點常是α-1,6-苷鍵。
由一種類型的單糖組成的有葡萄糖、甘露聚糖、半乳聚糖等,由二種以上的單糖組成的雜多糖(hetero polysaccharide)有氨基糖的葡糖胺葡聚糖等,在化學結構上實屬多種多樣。就分子量而論,有從0.5萬個分子組成的到超過106個的多糖。比10個少的短鏈的稱為寡糖。不過,就糖鏈而論即使是寡糖,在寡糖上結合了蛋白質和脂類的,就整個分子而論,如果是屬於高分子,則從廣義上來看也屬於多糖,因此特稱為復合多糖 (conjugated polysaccharide,complex poly-saccharide)或復合糖質(glycoconjugate)(糖蛋白、糖脂類、蛋白多糖)。
向左轉|向右轉
㈨ 多糖類的提取方法
一、提取與純化動植物中存在的多糖或微生物胞內多糖,因其細胞或組織外大多有脂質包圍,要使多糖釋放出來,第一步就是去除表面脂質,常用醇或醚迴流脫脂。第二步將脫脂後的殘渣以水為主體的溶液提取取多糖 (即冷水,熱水,熱或冷的0.1-1.0mol/L NaOH,熱或冷的1%醋酸或1%苯酚等),這樣提取得到的多糖提取液含有許多雜質,主要是無機鹽,低分子量的有機物質及高分子量的蛋白質、木質素等。第三步則要除去這些雜質,對於無機鹽及低分子量的有機物質可用透析法、離子交換樹脂或凝膠過濾法除去;對於大分子雜質可用酶消化 (如蛋白酶.木質素酶) ,乙醇或丙酮等溶劑沉澱法或金屬絡合物法。多糖提取液中除去蛋白質是一個很重要的步驟,常用的方法有Sevag法、三氟三氯乙烷法、三氯乙酸法,後者較為劇烈,對於含呋喃糖殘基的多糖由於連接鍵不穩定,所以不宜使用。但該法效率較高,操作簡便,植物來源的多糖常採用該法。上述三種方法均不適合於糖肽,因為糖肽也會像蛋白質那樣沉澱出來。除去蛋白質後,應再透析一次,選用不同規格的超濾膜和透析袋進行超濾和透析,可以將不同分子大小的多糖進行分離和純化,該法在除去小分子物質十分實用,同時能滿足大生產的需要。具有廣闊的應用前景。至此,得到的提取液基本上是沒有蛋白質與小分子雜質的多糖混合物。一般來講,通過上述方法所得到的是多糖的混合物,如果要得到單一的多糖,還必須對該混合物進行純化。柱層析在多糖的純化較為常用,常分為兩類:一是只有分子篩作用的凝膠柱層析, 它根據多糖分子的大小和形狀不同而達到分離目的,常用的凝膠有葡聚糖凝膠及瓊脂糖凝膠,以及性能更佳的Sephacryl等。洗脫劑為各種濃度的鹽溶液及緩沖液,其離子強度不應低於0.02mol/L。二是離子交換層析,它不僅根據分子量的不同,同時也具有分子篩的作用,常用的交換劑有DEAE-纖維素、DEAE-葡聚糖和 DEAE-瓊脂糖等,此法適合於分離各種酸性,中性多糖和粘多糖。多糖的純化還可用其他方法,如制備性高效液相層析、制備性區帶電泳,親和層析等,這些方法有時對制備一些小量純品供分析用是很有用處的。