Ⅰ 在線咨詢問題調節效應變數
摘要 調節變數定義
Ⅱ 如何在excel中畫調節效應圖
在excel中畫調節效應圖的方法和操作步驟如下:
1、首先,打開一個准備好的表格,如下圖所示。
Ⅲ 如何做SPSS的調節效應
調節變數可以是定性的,也可以是定量的.在做調節效應分析時,通常要將自變數和調節變數做中心化變換.簡要模型:Y = aX + bM + cXM + e .Y 與X 的關系由回歸系數a + cM 來刻畫,它是M 的線性函數, c 衡量了調節效應(moderating effect) 的大小.如果c 顯著,說明M 的調節效應顯著. 2、調節效應的分析方法 顯變數的調節效應分析方法:分為四種情況討論.當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做 Y=aX+bM+cXM+e 的層次回歸分析:1、做Y對X和M 的回歸,得測定系數R1 2 .2、做Y對X、M 和XM 的回歸得R2 2 ,若R2 2 顯著高於R1 2 ,則調節效應顯著.或者, 作XM 的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按 M 的取值分組,做 Y 對 X 的回歸.若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX +bM +cXM +e 的層次回歸分析. 潛變數的調節效應分析方法:分兩種情形:一是調節變數是類別變數,自變數是潛變數;二是調節變數和自變數都是潛變數.當調節變數是類別變數時,做分組結構 方程分析.做法是,先將兩組的結構方程回歸系數限制為相等,得到一個χ 2 值和相應的自由度.然後去掉這個限制,重新估計模型,又得到一個χ 2 值和相應的自 由度.前面的χ 2 減去後面的χ 2 得到一個新的χ 2,其自由度就是兩個模型的自由度之差.如果χ 2 檢驗結果是統計顯著的,則調節效應顯著;當調節變數和自變 量都是潛變數時,有許多不同的分析方法,最方便的是Marsh,Wen 和Hau 提出的無約束的模型. 3.中介變數的定義 自變數X 對因變數Y 的影響,如果X 通過影響變數M 來影響Y,則稱M 為中介變數. Y=cX+e1, M=aX+ e2 , Y= c′X+bM+e3.其中,c 是X 對Y 的總效應,ab 是經過中介變數M 的中介效應,c′是直接效應.當只有一個中介變數時,效應之間有 c=c′+ab,中介效應的大小用c-c′=ab 來衡量. 4、中介效應分析方法 中介效應是間接效應,無論變數是否涉及潛變數,都可以用結構方程模型分析中介效應.步驟為:第一步檢驗系統c,如果c 不顯著,Y 與X 相關不顯著,停止中介 效應分析,如果顯著進行第二步;第二步一次檢驗a,b,如果都顯著,那麼檢驗c′,c′顯著中介效應顯著,c′不顯著則完全中介效應顯著;如果a,b至少 有一個不顯著,做Sobel 檢驗,顯著則中介效應顯著,不顯著則中介效應不顯著.Sobel 檢驗的統計量是z=^a^b/sab ,中 ^a, ^b 分別是 a, b 的估計, sab=^a2sb2 +b2sa2, sa,sb 分別是 ^a, ^b 的標准誤. 5. 調節變數與中介變數的比較 調節變數M 中介變數M 研究目的 X 何時影響Y 或何時影響較大 X 如何影響Y 關聯概念 調節效應、交互效應 中介效應、間接效應 什麼情況下考慮 X 對Y 的影響時強時弱 X 對Y 的影響較強且穩定 典型模型 Y=aM+bM+cXM+e M=aX+e2 Y=c′X+bM+e3 模型中M 的位置 X,M 在Y 前面,M 可以在X 前面 M 在X 之後、Y 之前 M 的功能 影響Y 和X 之間關系的方向(正或負) 和強弱 代表一種機制,X 通過它影響Y M 與X、Y 的關系 M 與X、Y 的相關可以顯著或不顯著(後者較理想) M 與X、Y 的相關都顯著 效應 回歸系數c 回歸系數乘積ab 效應估計 ^c ^a^b 效應檢驗 c 是否等於零 ab 是否等於零 檢驗策略 做層次回歸分析,檢驗偏回歸系數c 的顯著性(t 檢驗);或者檢驗測定系數的變化(F 檢驗) 做依次檢驗,必要時做 Sobel 檢驗 6. 中介效應與調節效應的SPSS 操作方法 處理數據的方法 第一做描述性統計,包括M SD 和內部一致性信度a(用分析里的scale 里的 realibility analsys) 第二將所有變數做相關,包括統計學變數和假設的X,Y,M 第三做回歸分析.(在回歸中選線性回歸linear) 要先將自變數和M 中心化,即減去各自的平均數 1、現將M(調節變數或者中介變數)、Y 因變數,以及與自變數、因變數、M 調節變數其中任何一個變數相關的人口學變數輸入indpendent 2、再按next 將X 自變數輸入(中介變數到此為止) 3、要做調節變數分析,還要將X與M 的乘機在next 里輸入作進一步回歸.檢驗主要看F 是否顯著
Ⅳ 自變數與調節變數都是分類變數時怎麼分析調節效應
根據自變數和調節變數的數據類型,可以分為以下四種情況:
Ⅳ 調節變數要和因變數相關才能檢驗調節效應嗎
不是的,調節變數其實可以跟自變數或者因變數都不相關。
調節效應的主要前提是自變數和因變數應該有相關,因為調節的目的就是看自變數對因變數的作用在不同條件下有哪些變化。如果自變數和因變數本來就無關,也就是說在任何條件下都無關,那也沒必要談條件了。
在用軟體做調節效應分析:
X是自變數,M是調節變數,Y是因變數(1)單獨分析X與Y顯著(2)單獨分析M和Y也顯著(3)單獨分析X和M顯著(4)最後將X*M,X和Y同時帶入方程,結果顯示交互項X*M顯著,但是X和M分別對Y不顯著了。
Y與X的關系受到第三個變數M的影響。調節變數可以是定性的(如性別、種族、學校類型等),也可以是定量的(如年齡、受教育年限、刺激次數等),它影響因變數和自變數之間關系的方向(正或負)和強弱。
以上內容參考:網路-調節變數
Ⅵ 如何用SPSS分析調節效應
做調節效應,通常是使用回歸進行。更多是使用分層回歸,即通過加入交互項後,看交互項是否顯著,模型解釋力度有沒明顯的變化,來判斷調節效應是否存在。如果加入交互項後模型明顯變化,或者調節項呈現出顯著性即說明具有調節作用。SPSSAU中就有這個分析方法推薦使用。
Ⅶ 如何做SPSS的調節效應
顯變數的調節效應分析方法:分為四種情況討論。當自變數是類別變數,調節變數也是類別變數時,用兩因素交互效應的方差分析,交互效應即調節效應;調節變數是連續變數時,自變數使用偽變數,將自變數和調節變數中心化,做Y=aX+bM+cXM+e
的層次回歸分析:1、做Y對X和M的回歸,得測定系數R12。2、做Y對X、M和XM的回歸得R22,若R22顯著高於R12,則調節效應顯著。或者,作XM的回歸系數檢驗,若顯著,則調節效應顯著;當自變數是連續變數時,調節變數是類別變數,分組回歸:按
M的取值分組,做
Y對
X的回歸。若回歸系數的差異顯著,則調節效應顯著,調節變數是連續變數時,同上做Y=aX
+bM
+cXM
+e的層次回歸分析。
Ⅷ 我的因變數是多分類變數,自變數是連續變數,調節變數是連續變數,如何用spss做調節效應分析
1.如果自變數裡面的分類變數是只有兩個分類的,那你就把它跟其他定量自變數一起挪到自變數對話框就可以。
2.如果分類變數超過兩個分類,有3個或以上時,需要實現設定啞變數或者是叫做虛擬變數。
3.這個需要自己重新編碼,就是把每個分類單獨一列,該項選擇了就編碼成1,其他的是0。
4.然後把這些單獨設置的全部一起移入自變數對話框跟定量自變數一起做回歸就好了。
Ⅸ spss調節效應 系數表解讀
調節效應是否顯著看AB乘積項的顯著性就可以了,顯著則調節效應顯著。至於A和B是否都顯著,是無關緊要的。
另一個需要注意的地方是,分析數據除了顯著性,應當關注效應量或稱效果量(effect size),這里可以看一下R方變化值,就是說加入AB乘積項前後,R方的變化值有多大,這個變化值表示了交互效應的大小,通常認為至少0.02或者0.03以上才能認為交互效應有意義,否則即使顯著,也可以說調節效應過小,缺少實際意義。