導航:首頁 > 研究方法 > 求職數據分析方法

求職數據分析方法

發布時間:2022-07-20 08:05:37

如何學習成為一名數據分析師

學習數據分析師之前,你必須清楚自己想要達成什麼目標。也就是說,你想通過這門技術來解決哪些問題或實現什麼計劃。有了這個目標,你才能清晰地開展自己的學習規劃,並且明確它的知識體系。

② 新手怎麼學習數據分析

第一方面是數學基礎,第二方面是統計學基礎,第三方面是計算機基礎。要想在數據分析的道路上走得更遠,一定要注重數學和統計學的學習。數據分析說到底就是尋找數據背後的規律,而尋找規律就需要具備演算法的設計能力,所以數學和統計學對於數據分析是非常重要的。

而想要快速成為數據分析師,則可以從計算機知識開始學起,具體點就是從數據分析工具開始學起,然後在學習工具使用過程中,輔助演算法以及行業致死的學習。學習數據分析工具往往從Excel工具開始學起,Excel是目前職場人比較常用的數據分析工具,通常在面對10萬條以內的結構化數據時,Excel還是能夠勝任的。對於大部分職場人來說,掌握Excel的數據分析功能能夠應付大部分常見的數據分析場景。

在掌握Excel之後,接下來就應該進一步學習資料庫的相關知識了,可以從關系型資料庫開始學起,重點在於Sql語言。掌握資料庫之後,數據分析能力會有一個較大幅度的提升,能夠分析的數據量也會有明顯的提升。如果採用資料庫和BI工具進行結合,那麼數據分析的結果會更加豐富,同時也會有一個比較直觀的呈現界面。

數據分析的最後一步就需要學習編程語言了,目前學習Python語言是個不錯的選擇,Python語言在大數據分析領域有比較廣泛的使用,而且Python語言自身比較簡單易學,即使沒有編程基礎的人也能夠學得會。通過Python來採用機器學習的方式實現數據分析是當前比較流行的數據分析方式。

對大數據分析有興趣的小夥伴們,不妨先從看看大數據分析書籍開始入門!B站上有很多的大數據教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

③ 求職數據分析師有哪些小技巧

1. 職位搜索


我們平常搜索求職崗位的時候,總是還接搜索崗位名稱,但有時候搜索出來的,符合我們各方面要求的崗位,不是很多,又或者是自己的目標公司並沒有數據分析一職,這時候我們可以通過搜索一些職位相關的關鍵字,例如數據分析常用的工具是python,我們可以直接在職位搜索框搜索python,這樣一來,搜索的范圍會變大。因為目前各公司對於數據分析的要求不同,職位設置也不相同,通過搜索職位相關的關鍵字,范圍會比較廣,定位也會相對准確一些。


2. 簡歷投遞


找到自己的目標公司或職位之後,接下來就要准備投遞簡歷了。這這里簡單提一句簡歷製作,應聘數據分析相關崗位,簡歷中一定要體現自己數據分析的成果和思維。簡歷製作完成之後,盡量選擇多平台投遞,但不要海投。簡歷投遞時間,盡量在早上或者晚上,因為正常上班時間hr一般都會處理面試、人事統計等一些相關工作。


關於求職數據分析師有哪些小技巧,青藤小編就和您分享到這里了。如果你對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

④ 如何准備數據分析師面試需要具備哪些能力

【導讀】眾所周知,隨著社會的發展,數據分析師成為了炙手可熱的熱門執業,一方面是其高薪待遇另一方面就是其未來廣闊的發展前景。那麼對於想入行的求職者們,如何准備數據分析師面試?需要具備哪些能力呢?小編認為需要具備以下幾項能力,一起來看看吧!希望對大家有所幫助。

1. 理論知識(概率統計、概率分析等)

掌握與數據分析相關的演算法是演算法工程師必備的能力,如果你面試的是和演算法相關的工作,那麼面試官一定會問你和演算法相關的問題。比如常用的數據挖掘演算法都有哪些,EM
演算法和 K-Means 演算法的區別和相同之處有哪些等。

有些分析師的工作還需要有一定的數學基礎,比如概率論與數理統計,最優化原理等。這些知識在演算法優化中會用到。

除此以外,一些數據工程師的工作更偏向於前期的數據預處理,比如 ETL
工程師。這個職位考察你對數據清洗、數據集成的能力。雖然它們不是數據分析的「煉金」環節,卻在數據分析過程中佔了 80% 的時間。

2. 具體工具(sklearn、Python、Numpy、Pandas 等)

工程師一定需要掌握工具,你通常可以從 JD 中了解一家公司採用的工具有哪些。如果你做的是和演算法相關的工作,最好還是掌握一門語言,Python
語言最適合不過,還需要對 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。

數據 ETL 工程師還需要掌握 ETL 工具,比如 Kettle。

如果是數據可視化工作,需要掌握數據可視化工具,比如 Python 可視化,Tableau 等。

如果工作和數據採集相關,你也需要掌握數據採集工具,比如 Python 爬蟲、八爪魚。

3. 業務能力(數據思維)

數據分析的本質是要對業務有幫助。因此數據分析有一個很重要的知識點就是用戶畫像。

用戶畫像是企業業務中用到比較多的場景,對於數據分析來說,就是對數據進行標簽化,實際上這是一種抽象能力。

以上就是小編今天給大家整理發送的關於「如何准備數據分析師面試?需要具備哪些能力?」的相關內容,希望對大家有所幫助。想了解更多關於數據分析及人工智慧就業崗位分析,關注小編持續更新。

⑤ 數據分析需要掌握些什麼知識

我們先從整體上了解數據分析師要掌握的技能有哪些,然後再從具體職位類別來看,不同的職位具體要掌握的技能有哪些。

這樣你就能根據自己的實際情況,有針對性的准備和學習。

一、數據分析的勝任力模型是什麼?

從整體上來看,數據分析師需要掌握的能力有很多,從總體上可以分為以下幾類,這些能力構成了數據分析師的能力模型。


1)理論基礎,包括統計學

2)數據分析工具,常用的分析工具有 Excel,SQL,Python 等

3)可視化工具,常用的有 Excel,商業智能(Business Intelligence,BI)

4)業務知識,包括常用的指標、某行業的業務流程

5)數據分析思維,包括常用的分析方法

6)通用能力,包括 PPT、溝通能力

下面我們來詳細看下每一種能力的要求。

  1. 理論基礎:統計學

  2. 數據分析背後的理論基礎是統計學。所以,掌握了統計學以後我們才能去看懂數據表達的意義是什麼。舉個例子,給你一家公司員工的工資,是平均值能代表這家公司的工資水平,還是中位數能代表?

  3. 如果沒學過統計學,那麼可能只認識這里的平均值,而不知道中位數這個知識。但是,如果你學過了統計學就會知道,中位數比平均值更能反映出數據的集中表現。

  4. 統計學的內容比較多,詳細又可以分為兩類內容:描述統計分析、推論統計分析。

  5. 什麼是描述統計分析?

  6. 對大量信息進行歸納是處理數據時最基本的任務。中國約有 14 億人,一張記錄每位中國人的姓名和收入的電子表格包含了我們衡量這個國家經濟健康狀況所需的所有信息,通常我們也將多個數據集合在一起的東東叫「簡稱數據集」。但這張信息過量的表格其實相當於什麼都沒有告訴我們。這就是讓人覺得諷刺的地方:經常是數據越多,事實越模糊。

  7. 因此,我們需要簡化,將一系列復雜的數據減少為幾個能夠起到描述作用的數字,正如奧運會體操比賽中,我們將一套多難度組合的復雜動作濃縮為一個得分:9.8 分。

  8. 描述統計分析就是將一系列復雜的數據減少為幾個能夠起到描述作用的數字,用這些有代表性的數字來代表所有的數據。這樣在面對一大堆數據時,你可在不知道所有數據的情況下就能知道數據的整體情況。

  9. 這就好比,我們通常一說起美女,能想到的是這樣幾個指標:長腿,大眼睛,臉蛋好看。雖然全國有那麼多美女,你也沒有見過全部的美女,但是你卻能通過這樣幾個代表美女的指標就可以大概知道什麼是美女。

同樣的,描述統計學的關鍵點在於,找到幾個關鍵的數字來描述數據的整體情況。那麼,問題就來了,能擔當起這樣重要責任的數字有哪些呢?描述數據的整體情況,我們可以用 4 個指標來做,分別是:平均值、四分位數、標准差和標准分。例如,前面我們在拿到工資數據,就可以用「中位數」這樣的數字來描述工資的整體情況。

所以,描述統計分析就是掌握 4 個指標:平均值,四分位數,標准差和標准分。

什麼是推論統計分析?

推論統計分析就是通過樣本來推斷出總體。需要掌握的知識包括概率分布、中心極限定、如何用樣本估計總體、置信區間、假設檢驗。例如,互聯網常用的 AB 測試背後的原理就是假設檢驗,如果不掌握推論統計分析,那麼連 AB 測試的結果也看不懂,更不用說完成一個 AB 測試實驗。

2.數據分析工具

很多人看到現在 Python 很火,就不管自己的能力水平如何,就一頭扎進學習 Python 的大潮,最後發現其實自己學不會,或者學完用不上。

這其實是不對的,真正工作里最常用的數據分析工具其實是 Excel,SQL。所以,如果你的零基礎,不建議一上來就學 Python,而是先學會 Excel 分析數據,然後學會 SQL。

這樣你學會了常用的分析工具,然後再學 Python 才是加分項。同時,這樣學習的順序還有一個好處,如果你是零基礎沒學過編程,一上來學 Python,大概率是學不會的。但是如果你學過用 Excel、SQL 處理數據,那麼就具備了一定的基礎,再學 Python,很多概念就會理解起來比較容易。

這就好比,一個嬰兒不是一上來就學習跑步(Python),而是先把走路學會,具備了走路(Excel、SQL)的基礎,再跑步就容易多了。


需要注意的是,除非是工作必須要求的,其他少部分公司用的工具其實不需要學習。比如有些公司要求其他編程語言,例如 R、SPSS、SAS 這些工具。

現在 Pyhon 已經是人工智慧排名第一的編程語言了,大部分公司要求 Python,很少部分的公司要求其他的編程語言,所以學習市場要求最多的那個技能才能找到更多機會。如果你學習了少部分公司才要求的工具,那麼意味著你找工作或者跳槽只能選擇這些公司,而會錯失其他大部分公司的求職機會,對你整個職業生涯不利。

TIOBE 編程語言排行榜是全球編程語言流行趨勢的一個指標,每月更新,官網地址(https://www.tiobe.com/tiobe-index)。下圖是 2021 年 2 月份排名前 10 的編程語言的變化圖,其中橙色曲線是 Python,我們會發現 Python 的流行趨勢越來越高。

3.可視化工具

常用的可視化工具包括 Excel、商業智能(BI)。

一般的可視化圖表用 Excel 里的圖表功能就可以實現,而且使用起來也方便。如果是要經常做報表,並且要求實現報表自動化,那麼就需要用到商業智能(BI)工具。

那什麼是商業智能(BI)呢?

微軟官方給的定義是「使用用於自助服務和企業商業智能 (BI) 的統一、可擴展平台(該平台易於使用,可幫助獲取更深入的數據見解),連接到任何數據並對數據進行可視化。 」

毫無懸念,看這種官方定義就是看不懂。簡單來說就是把數據導入商業智能(BI)工具中,就可以快速對數據可視化。例如下圖就是把數據導入用商業智能(BI)工具中,通過可視化數據來分析。


IDC《2019 年下半年中國商業智能軟體市場數據跟蹤報告》顯示,在中國商業智能軟體子市場中,報表分析仍是目前市場最主要的需求,2019 年全年年市場份額佔比為 79.0%。高級分析和預測分析市場份額佔比 21.0%(下圖)。


常用的商業智能(BI)工具有哪些呢?

目前使用最多的商業智能(BI)工具是 Power BI、Tableau、帆軟,選擇其中任意一種學習就可以了。

4.業務知識

因為數據分析是用來解決具體行業問題的,需要從業務的角度出發,了解各個指標,以及每個指標之間的關系,還需要聯系業務去理解數據。所以,工作中數據分析脫離不了業務,在分析中要找到導致問題發生的根本原因,而不只是單純的統計數據。

因此需要具備某個行業的業務知識才能去理解這個行業里的術語、業務問題等。

業務知識包括某個行業的常用指標、業務流程。需要注意的是,不同行業的指標、業務流程是不一樣的,所以需要學習的時候針對你的目標行業去學習准備。例如,下圖分別是金融信貸行業、在線教育行業的業務流程。

金融信貸行業業務流程(來自書《數據分析思維》)

在線教育業務流程(來自書《數據分析思維》)

如果是剛入門,這塊內容做到了解即可,等進入工作以後,再慢慢深入業務,積累業務經驗。具體某個行業的常用指標、業務流程可以看書《數據分析思維》,這本書里涉及了 10 多個行業的指標、業務流程。

5.數據分析思維

在數據分析相關的職位里經常會寫這么一條招聘要求「具備數據分析思維」。在工作或者面試中,會經常聽到分析思維、分析思路、分析方法。這三個詞語有什麼關系呢?其實簡單來說,它們都是指分析方法。

數據分析思維需要你掌握 10 種常用的分析方法。

數據分析 10 種常用的分析方法

如果你的分析目的是想將復雜問題變得簡單,就可以使用邏輯樹分析方法,例如經典的費米問題就可以用這個分析方法。

如果你的分析目的是做行業分析,那麼就可以用 PEST 分析方法,例如你想要研究中國少兒編程行業。

如果你想從多個角度去思考問題,那麼就可以用多維度拆解分析方法,例如找相親對象,需要從多個角度去分析是否合適。

如果你想進行對比分析,就要用到對比分析方法,例如你朋友問自己胖嗎,就是在對比。

如果你想找到問題發生的原因,那麼就要用到假設檢驗分析方法,其實破案劇里警察就是用這個方法來破案的。

如果你想知道 A 和 B 有什麼關系,就要用到相關分析方法,例如豆瓣在我們喜歡的電影下面推薦和這部分電影相關的電影。

如果你想對用戶留存和流失分析,就要用到群組分析方法,例如微博用戶留存分析。

如果你想對用戶按價值分類,那麼就要用到 RFM 分析方法,例如信用卡的會員服務,就是對用戶按價值分類,對不同用戶使用不同的營銷策略,從而做到精細化運營。

如果你想分析用戶的行為或者做產品運營,就要用到 AARRR 模型分析方法,例如對拼多多的用戶進行分析。

如果你想分析用戶的轉化,就要用到漏斗分析方法,例如店鋪本周銷量下降,想知道是中間哪個業務環節出了問題。

6.通用能力

通用能力包括 PPT 製作分析報告、溝通能力。

在工作中,要經常做分析結果做成數據分析報告,然後展示給業務部門、上級領導、客戶等,而這種展示數據分析報告的場景常用的工具就是 PPT,所以就要求你會用 PPT 製作數據分析報告,有較好的的文字、書面總結能力。

職業社交網站領英發布的《2018 新興工作崗位報告》報告里說,最大的技能缺口是軟技能,比如口頭交流、領導力和時間管理等。這份報告中建議,職場人士需要在快速變化的工作環境中,學習並保持軟技能,因為擁有這些技能的人才具備更大的職場優勢。

其實,任何職位都需要溝通能力,但是,數據分析師對溝通能力的要求更高。因為,數據分析師解決的是實際的問題,需要跨部門溝通業務,做好的數據分析報告也要展示給各個部門、領導、客戶,只有好的溝通能力,才能讓你的分析結果得到用戶的認可。 那麼這些通用能力如何提升呢?最直接的方式,就是通過寫文章來提升。

通過寫作可以同時提升你下面 3 個能力:

1)邏輯能力

寫作的本質其實是把一件事情講清楚,而邏輯能力強的人寫出來的內容,讀起來更順暢。

2)文字表達能力

數據分析師要經常做數據分析報告,和通過郵件匯報分析結果。這體現的其實就是文字表達能力,提高這個能力的辦法就是不斷去寫作。

3)溝通能力

寫作其實就是把想說的話通過文字和你的用戶去溝通。另外,經常在社群里提問和解答他人的問題,也可以提高你的溝通能力。你會看到不同人提問的水平是不一樣的,有的人可以完整的把一個問題描述清楚,有的人說完,其他人也不明白他的問題是什麼。這其實就是體現了溝通能力。

二、不同職位的數據分析能力要求有什麼不一樣?

經過前面的分析,我們從整體上知道了數據分析師需要掌握的能力。但並不是說,這些能力全都掌握了你才能找到一份數據分析師的工作。因為不同的職位的要求不一樣的。在《職業發展前景:數據分析師的晉升通道》章節我們知道了數據分析相關職位的分類。


我把勝任力模型中的這些能力對應到不同的職位,就可以清楚的看到對應職位的能力要求(下圖)。


有一個誤區,很多人以為只要掌握了分析工具,就掌握了數據分析,其實不是的。從圖中,我們可以看出。各個數據分析職位都需要的能力是:業務知識、分析思維、PPT、溝通能力。這些能力才可以讓你從一個只會舞弄工具的普通職場人變成真正解決業務問題的職場高手。

很多人以為數據分析師需要掌握很高大的工具,其實不是的。例如騰訊里有一個崗位叫「商業數據分析師」,這聽起來很高大上。其實這個職位對應的就是上圖初級數據分析師的能力要求,也就是理論基礎(描述統計分析),分析工具(Excel),可視化工具(Excel)。

上圖中黃色標出的是相對於前一職位多出來的能力。中級數據分析師在初級數據分析師要求的能力上增加了分析工具(SQL),可視化工具(商業智能 BI)。高級數據分析師在中級數據分析師要求的能力上增加了理論基礎(推論統計分析),分析工具(Python)。

Excel、SQL、Python 要掌握到什麼程度?

我們知道了數據分析師最常用的分析工具是 Excel、SQL、Python。那麼問題就來了,這些分析工具具體掌握哪些內容呢?

⑥ 如何准備數據分析師面試

1. 理論知識(概率統計、概率分析等)


掌握與數據分析相關的演算法是演算法工程師必備的能力,如果你面試的是和演算法相關的工作,那麼面試官一定會問你和演算法相關的問題。比如常用的數據挖掘演算法都有哪些,EM 演算法和 K-Means 演算法的區別和相同之處有哪些等。


有些分析師的工作還需要有一定的數學基礎,比如概率論與數理統計,最優化原理等。這些知識在演算法優化中會用到。


除此以外,一些數據工程師的工作更偏向於前期的數據預處理,比如 ETL 工程師。這個職位考察你對數據清洗、數據集成的能力。雖然它們不是數據分析的“煉金”環節,卻在數據分析過程中佔了 80% 的時間。


2. 具體工具(sklearn、Python、Numpy、Pandas 等)


工程師一定需要掌握工具,你通常可以從 JD 中了解一家公司採用的工具有哪些。如果你做的是和演算法相關的工作,最好還是掌握一門語言,Python 語言最適合不過,還需要對 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。


數據 ETL 工程師還需要掌握 ETL 工具,比如 Kettle。


如果是數據可視化工作,需要掌握數據可視化工具,比如 Python 可視化,Tableau 等。


如果工作和數據採集相關,你也需要掌握數據採集工具,比如 Python 爬蟲、八爪魚。


3. 業務能力(數據思維)


數據分析的本質是要對業務有幫助。因此數據分析有一個很重要的知識點就是用戶畫像。


用戶畫像是企業業務中用到比較多的場景,對於數據分析來說,就是對數據進行標簽化,實際上這是一種抽象能力。


關於如何准備數據分析師面試,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑦ 如何通過招聘數據分析來挖掘商業洞察

每個人在網路上留下的包含著其生活軌跡、社交言行等個人信息的網路數據,依靠對這些數據的分析,從個人的網上行為中剝離出他的興趣圖譜、性格畫像、能力評估,基於數據挖掘的人才推薦平台人才雷達(Talent Radar)幫助企業更高效的實現人崗匹配,提供獵頭服務。

為了評估一個技術人員的專業技能,人才雷達利會利用其在專業論壇(如Github、CSDN、知乎、丁香園等)上的發帖數、內容被引用數、引用人的影響力等數據,通過這些信息建模,完成其專業影響力的判斷。同時,微博的數據也被充分利用起來。

其中折射出的社交關系也是判斷一個人職業能力的因素之一。所以,判別用戶在社交網路上其好友的專業影響力也是人才雷達推薦系統中的一個重點。同時,即使被推薦者的個人能力難以符合職業需求,但如果他有著能力不錯的好友關系,則也可以作為合適的"推薦人"將任務傳播到下一層級當中。

不同用戶在社交網路上的行為習慣也是不同的,例如發微博的時間規律,在專業論壇上的時間長短,這些行為模式可以用來判別其工作時間規律,看其是否符合對應的職位需求。

通過各種數據源的融合和分析,人才雷達不僅能夠在節省成本的前提下幫助企業提高人才招聘的效率。與傳統的獵頭業務相比,其採用群體智慧的方式能夠更廣泛和客觀的篩選人才,並且由於其被動測量的方式也能在一定程度上避免直接面試時部分求職者的虛假表現。它現在的客戶有淘寶、微軟、網路等知名企業。

⑧ 如何選擇工作分析的方法

1.直接觀察方法: 職務分析師直接觀察員工工作的全過程。直接觀察適用於工作周期短的職務。例如清潔工,他的工作基本上是以一天為一個周期,職務分析師可以整天跟著清潔工直接觀察工作。
2.階段觀察法: 有些員工的工作周期性很長。為了完全觀察員工的所有工作,必須分階段觀察。比如行政文員,每年年底都要准備企業總結表彰大會。職務分析師必須在年底觀察職務。有時候因為時間跨度太長,職務分析不能拖很久,所以採用工作表...
3.工作表演: 適用於工作周期長、突發事件多的工作

閱讀全文

與求職數據分析方法相關的資料

熱點內容
香梨鑒別方法 瀏覽:296
噴槍噴漆槍的使用方法 瀏覽:597
檢測水泥的含泥量的方法 瀏覽:351
餐廳排長隊的技巧和方法 瀏覽:534
節稅十種方法和技巧 瀏覽:492
土方計算方法的適用范圍和條件 瀏覽:33
名人有哪些讀書方法 瀏覽:569
茶室泡茶的方法步驟 瀏覽:938
清洗消毒後病毒的檢測方法 瀏覽:24
緩解女性衰老有哪些方法 瀏覽:632
種植罌粟的方法 瀏覽:541
華為手機抖音全部分類操作方法 瀏覽:950
藍寶石簡單辨別方法 瀏覽:769
鍛煉身體的正確方法是用力吐氣嗎 瀏覽:169
如何提升考研成績的方法 瀏覽:256
牛疝氣圖片大全治療方法 瀏覽:138
圓形吸頂燈安裝方法有哪些 瀏覽:538
測試用例分析方法 瀏覽:678
各種花的用量計算方法 瀏覽:254
布面的製作方法視頻 瀏覽:176