❶ 數據分析的方法有哪些(轉)
② 數據分析為了挖掘更多的問題,並找到原因; ③ 不能為了做數據分析而坐數據分析。 2、步驟:① 調查研究:收集、分析、挖掘數據 ② 圖表分析:分析、挖掘的結果做成圖表 3、常用方法: 利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數據進行挖掘。 ①分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。 ②回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。 ③聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。 ④關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。 ⑤特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。 ⑥變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。 ⑦Web頁挖掘。
❷ 數據分析常用的4大分析方法
1. 描述型分析:發生了什麼?
這是最常見的分析方法。在業務中,這種方法向數據分析師提供了重要指標和業務的衡量方法。
例如,每月的營收和損失賬單。數據分析師可以通過這些賬單,獲取大量的客戶數據。了解客戶的地理信息,就是“描述型分析”方法之一。利用可視化工具,能夠有效的增強描述型分析所提供的信息。
2. 診斷型分析:為什麼會發生?
描述性數據分析的下一步就是診斷型數據分析。通過評估描述型數據,診斷分析工具能夠讓數據分析師深入地分析數據,鑽取到數據的核心。
良好設計的BI dashboard能夠整合:按照時間序列進行數據讀入、特徵過濾和鑽取數據等功能,以便更好的分析數據。
3. 預測型分析:可能發生什麼?
預測型分析主要用於進行預測。事件未來發生的可能性、預測一個可量化的值,或者是預估事情發生的時間點,這些都可以通過預測模型來完成。
預測模型通常會使用各種可變數據來實現預測。數據成員的多樣化與預測結果密切相關。在充滿不確定性的環境下,預測能夠幫助做出更好的決定。預測模型也是很多領域正在使用的重要方法。
4. 指令型分析:需要做什麼?
數據價值和復雜度分析的下一步就是指令型分析。指令模型基於對“發生了什麼”、“為什麼會發生”和“可能發生什麼”的分析,來幫助用戶決定應該採取什麼措施。通常情況下,指令型分析不是單獨使用的方法,而是前面的所有方法都完成之後,最後需要完成的分析方法。
關於數據分析常用的4大分析方法的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❸ 怎麼做數據分析圖
以常用的大數據分析圖工具Excel為例,首先要新建一個空白表格。然後要在新建好的空白表格中鍵入相應的數據,再通過滑鼠右鍵設定單元格格式,把需要分析的數據填好在報表中。然後應用shift+滑鼠左鍵選定你想要分析的區域,根據分析需求選擇相應的函數和圖表類型,即可做出想要的大數據分析圖。
能繪制數據分析圖的專用工具多了,比如用PPT,Echarts,FineReport,全是能夠完成的。其實與其花許多時間在找專用工具,做圖表,調顏色上,不如多思索該如何分析,如何將自己表達的內容說清楚。所以最好用方便的數據分析圖工具——FineReport。只需拖拽即可生成你想要的圖表,大大節省了時間。
比如,目前主流的軟體——finereport,它小到填報、查詢、部署、集成,大到可視化大屏、dashboard駕駛艙,應有盡有,功能很強大。最重要的是,因為這個工具,整個公司的數據架構都可以變得規范,下一步就是構建企業的大數據平台了。而且它是java編寫的,支持二次開發,類Excel的設計器,無論是IT還是業務,上手都很簡單:編輯sql優化、數據集復用簡直都是小case,大大降低了報表開發的門檻。在企業中被關注最多的數據安全方面,FineReport支持多人同時開發同一套報表,並通過模板加鎖功能防止編輯沖突;通過數據分析許可權控制,保障數據安全。
❹ 網站常用的數據分析方法介紹
網站常用的數據分析方法介紹
本篇文章我們介紹4種網站分析中最常用,也是最有效的分析方法。他們分別是細分分析,對比分析,對比分析,質與量分析。這些分析方法在實際工作中經常組合使用。我們先來看下細分分析。
1,細分分析單一的指標數據或大維度下的指標數據是沒有意義的,只有當指標與維度配合使用時才有意義。細分也叫下鑽,是網站分析中最常用的一種方法。原理就是通過對匯總數據進行多個維度對指標進行分解。逐步找到有問題的部分。在整個的Google Analytics報告的中,隨處都充滿了細分方法。
匯總數據是一個極其籠統的大維度數據。而平均數數據則可能會掩蓋很多問題。這里是一個平均數的計算方法:訪問者A瀏覽了10個頁面,訪問者B瀏覽了2個頁面。網站每次訪問頁面瀏覽量6個頁面。看似表現不錯的平均數據其實包含很很多問題。但我們僅從平均數中無法看到這些問題。細分的主要目的就是對匯總數據和平均值數據進行剖析,發現這些問題並加以改進。
1.1如何使用Google Analytics進行細分我們如何使用Google Analytics來對指標進行細分?Google Analytics報告本身的結構就是一個支持細分的結構。不用我們進行特別的設置就可以對指標進行細分。下面我們來看下如何使用Google Analytics報告中的這些簡單的默認細分功能和高級細分功能。
默認細分功能在Google Analytics的四類報告中,都提供了細分功能。展開每一類的報告,概述報告,而下面的各個子報告都是對概述報告的一個細分。
同時在子報告中,也提供了更進一步的細分。我們所要做的就是找到感興趣的維度,並且點進去進一步查看。
自定義細分功能除了Google Analytics的默認細分功能外,還有三種更靈活的自定義細分功能。他們分別是次級維度細分,高級細分和自定義細分。自定義細分與默認細分功能最大的差別在於,默認細分是在一個大的維度下逐級深入細分。例如,流量來源,搜索引擎,Google,自然搜索,關鍵詞。而自定義細分則可以完整更復雜的跨越多個維度的細分。例如:流量來源,搜索引擎,地理位置。
次級維度
第一個自定義細分功能是次級維度,在大部分Google Analytics報告中,都可以實現次級維度的細分。以下是次級維度的截圖。我們可以很容易的使用次級維度來查看同一個指標在兩個不同維度中的表現如何。例如:北京地區的Google搜索引擎。
高級細分
第二個自定義細分是自定義報告,使用自定義報告進行細分要比次級維度靈活的多。細分的層級也要深入的多。自定義報告的的實質是對指標和維度的重組。
自定義報告
第三個自定義細分是高級細分,與自定義報告相比,高級細分的主要優勢在於細分結果的廣度。當我們設置了一個自定義細分的維度後,這個維度將應用於整個Google Analytics報告中。
2,對比分析除了使用細分以外,我們還可以使用對比分析來觀察指標的變化趨勢,例如,本月的訪問量是300萬,那麼和上個月相比怎麼樣呢?和去年同一時期又如何呢?這就是我們介紹的第二個方法,對比分析。對比分析的設置很簡單,在時間里設置好要對比的時間段,報告會自動給出指標的變化結果。這里有一個需要注意的問題是,當使用Google Analytics自帶的與上一個時期進行對比時,時間段內周末的數量可能會不相同。而這也將直接影響指標的對比結果。
3 ,聚合分析第三種分析方法是聚合分析,聚合分析常用於對網站內容的分析上。網站有大量的頁面訪問數據,而每一個頁面又都擁有自己的指標數據。對於如此龐大和細碎內容數據,我們該如何下手呢?答案是使用聚合分析。
3.1應用場合聚合分析通常用來對網站的分類和導航系統進行分析。例如:關注A頻道的訪問者是否也瀏覽了B頻道的信息?他們如何在這兩類信息間流動。使用列表篩選的功能是否中途也會使用站內搜索?這些在基於頁面的數據中是很難發現的,因為數據的顆粒度太細小了。需要我們對網站中不同的內容進行聚合。
3.2內容組介紹聚合內容的方法很簡單,就是將內容相關,或者你關注的信息進行分類,我們稱為內容組。而分類的粒度取決於你分析的最終粒度。
聚合內容的維度也有很多種,完全看我們的分析需求。最簡單的方法,我們可以按網站的頻道劃分內容組,或者按網站的功能來劃分。例如首頁,站內搜索功能,列表篩選功能,產品展示功能,購物結算功能。注冊登錄功能。等等。
3.3路徑分析創建的內容組主要用於進行訪問者路徑分析。也就是Google Analytics的訪問者流報告,和導航摘要報告中。通過訪問者在各內容組間的路徑來驗證網站邏輯和不同產品間的設計是否合理。
4,質與量分析最後介紹的質與量的分析方法。質與量與細分一樣,也始終貫穿於Google Analytics的各個報告中。
在流量來源報告中,訪問次數是一個量的標,跳出率是一個質的指標。通過這兩個指標可以有效的衡量不同渠道流量與網站內容的匹配度。
在內容報告中,瀏覽量是一個量的指標,退出百分比是一個質的指標,通過這兩個指標可以衡量頁面的質量。
4.1什麼是量什麼是網站的量?通常來說,量是一個絕對值,用來衡量事物的多少。例如,網站來了多少人,訪問了多少次,看了多少個頁面,產生了多少訂單等等。這些絕對值數據都可以歸為網站的量指標。但也並不絕對。
4.2什麼是質什麼是網站的質?通常來說,質是一個比率。用來衡量效果。例如:跳出率,轉化率,平均停留時間,每次訪問瀏覽頁面數,平均訂單價值等等。這些比率都可以歸為網站的質指標。
4.3主要應用場景及報告質與量在網站分析中的應用比較廣泛,任何的流量,網站頁面及訪問者行為都可以通過質與量兩個維度進行有效的分析。例如,進入次數與跳出率,頁面瀏覽量與關鍵行為點擊率,等等等等。
以上是小編為大家分享的關於網站常用的數據分析方法介紹的相關內容,更多信息可以關注環球青藤分享更多干貨
❺ 怎麼做圖表數據分析圖
方法/步驟
1、首先打開excel,電腦在安裝操作系統的時候都會默認安裝上三大辦公軟體,但是一般默認的版本都是2003版的,如果想使用高版本的excel先要卸載掉低版本的,然後再下載安裝高版本的。
注意事項
1、更換office的時候需要卸載掉原先的,然後在安裝新版本的office,避免不同版本軟體之間的沖突導致無法使用的現象。
2、雖然圖表的類型有很多種,但是並不是每種類型都適合自己當前的數據,需要結合自己的數據選擇最適合的圖表類型進行製作。
❻ 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
❼ 數據分析的分析方法都有哪些
很多數據分析是在分析數據的時候都會使用一些數據分析的方法,但是很多人不知道數據分析的分析方法有什麼?對於數據分析師來說,懂得更多的數據分析方法是很有必要的,而且數據分析師工作工程中會根據變數的不同採用不同的數據分析方法,一般常用的數據分析方法包括聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析等,我們要學會使用這些數據分析之前一定要懂得這些方法的定義是什麼。
第一先說因子分析方法,所謂因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奧典型抽因法等等。
第二說一下回歸分析方法。回歸分析方法就是指研究一個隨機變數Y對另一個(X)或一組變數的相依關系的統計分析方法。回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。回歸分析方法運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
接著說相關分析方法,相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系。
然後說聚類分析方法。聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,不需要事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。
接著說方差分析方法。方差數據方法就是用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。
最後說一下對應分析方法。對應分析是通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
通過上述的內容,我們發現數據分析的方法是有很多的,除了文中提到的聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析等分析方法以外,還有很多的數分析方法,而上面提到的數據分析方法都是比較經典的,大家一定要多多了解一下此類相關信息的發生,希望這篇文章能夠給大家帶來幫助。