1. 元計算felac有限元方法,其基本思路和解題步驟
元計算felac有限元方法,其基本思路和解題步驟
(1)建立積分方程,根據虛位移原理或方程餘量,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點。
(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元。區域單元劃分採用有限元方法的前處理完成,並給出計算單元和節點編號相互之間的關系、節點的位置坐標,同時還需要列出問題的邊界的節點號和相應的邊值條件。
(3)確定單元基函數,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條件的插值函數作為單元的形函數。有限元方法中的形函數是在單元中選取的,由於各單元具有規則的幾何形狀,在選取形函數時可遵循一定的法則。
(4)單元分析:將各個單元中的求解函數用單元形函數的線性組合表達式進行逼近;再將近似函數代入積分方程,並對單元區域進行積分,可獲得含有待定系數(即單元中各節點的函數值)的單元矩陣與荷載。
(5)總體合成:在得出單元矩陣與荷載之後,將區域中所有單元矩陣與荷載按一定法則進行迭加,形成總體有限元方程。
(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(Dirichlet邊界條件 )、自然邊界條件(Neumann邊界條件)、混合邊界條件(Cauchy邊界條件)。對於自然邊界條件,一般在積分表達式中可自動得到滿足。對於本質邊界條件和混合邊界條件,需按一定法則後對總體有限元方程進行修正。
(7)解有限元方程:根據邊界條件修正的總體有限元方程組,採用適當的代數方程組求解器,求出各節點的函數值。
2. 有限元法的特點
有限元分析法是對於結構力學分析迅速發展起來的一種現代計算方法。它是50年代首先在連續體力學領域--飛機結構靜、動態特性分析中應用的一種有效的數值分析方法,隨後很快廣泛的應用於求解熱傳導、電磁場、流體力學等連續性問題。
有限元分析,即有限元方法(馮康首次發現時稱為基於變分原理的差分方法),是一種用於求解微分方程組或積分方程組數值解的數值技術. 這一解法基於完全消除微分方程, 即將微分方程轉化為代數方程組(穩定情形); 或將偏微分方程(組)改寫為常微分方程(組)的逼近, 這樣可以用標準的數值技術(例如歐拉法,龍格-庫塔法等)求解.
解偏微分方程的過程中, 主要的難點是如何構造一個方程來逼近原本研究的方程, 並且該過程還需要保持數值穩定性.目前有許多處理的方法, 他們各有利弊. 當區域改變時(就像一個邊界可變的固體), 當需要的精確度在整個區域上變化, 或者當解缺少光滑性時, 有限元方法是在復雜區域(像汽車和輸油管道)上解偏微分方程的一個很好的選擇. 例如, 在正面碰撞模擬時, 有可能在"重要"區域(例如汽車的前部)增加預先設定的精確度並在車輛的末尾減少精度(如此可以減少模擬所需消耗); 另一個例子是模擬地球的氣候模式, 預先設定陸地部分的精確度高於廣闊海洋部分的精確度是非常重要的.
3. 線性代數有幾種解線性方程組的方法
1、克萊姆法則
用克萊姆法則求解方程組 有兩個前提,一是方程的個數要等於未知量的個數,二是系數矩陣的行列式要不等於零。
用克萊姆法則求解方程組實際上相當於用逆矩陣的方法求解線性方程組,它建立線性方程組的解與其系數和常數間的關系,但由於求解時要計算n+1個n階行列式,其工作量常常很大,所以克萊姆法則常用於理論證明,很少用於具體求解。
2、矩陣消元法
將線性方程組的增廣矩陣通過行的初等變換化為行簡化階梯形矩陣,則以行簡化階梯形矩陣為增廣矩陣的線性方程組與原方程組同解。當方程組有解時,將其中單位列向量對應的未知量取為非自由未知量,其餘的未知量取為自由未知量,即可找出線性方程組的解。
(3)有限元代數方程組求解方法研究擴展閱讀
xj表未知量,aij稱系數,bi稱常數項。
稱為系數矩陣和增廣矩陣。若x1=c1,x2=c2,…,xn=cn代入所給方程各式均成立,則稱(c1,c2,…,cn)為一個解。若c1,c2,…,cn不全為0,則稱(c1,c2,…,cn)為非零解。
若常數項均為0,則稱為齊次線性方程組,它總有零解(0,0,…,0)。兩個方程組,若它們的未知量個數相同且解集相等,則稱為同解方程組。線性方程組主要討論的問題是:
一個方程組何時有解。
有解方程組解的個數。
對有解方程組求解,並決定解的結構。這幾個問題均得到完滿解決:所給方程組有解,則秩(A)=秩(增廣矩陣);若秩(A)=秩=r,則r=n時,有唯一解;r<n時,有無窮多解;可用消元法求解。
當非齊次線性方程組有解時,解唯一的充要條件是對應的齊次線性方程組只有零解;解無窮多的充要條件是對應齊次線性方程組有非零解。但反之當非齊次線性方程組的導出組僅有零解和有非零解時,不一定原方程組有唯一解或無窮解,事實上,此時方程組不一定有 ,即不一定有解。
克萊姆法則(見行列式)給出了一類特殊線性方程組解的公式。n個未知量的任一齊次方程組的解集均構成n維空間的一個子空間。
4. 有限元法的運用步驟
步驟1:剖分:
將待解區域進行分割,離散成有限個元素的集合。元素(單元)的形狀原則上是任意的。二維問題一般採用三角形單元或矩形單元,三維空間可採用四面體或多面體等。每個單元的頂點稱為節點(或結點)。
步驟2:單元分析:
進行分片插值,即將分割單元中任意點的未知函數用該分割單元中形狀函數及離散網格點上的函數值展開,即建立一個線性插值函數。
步驟3:求解近似變分方程
用有限個單元將連續體離散化,通過對有限個單元作分片插值求解各種力學、物理問題的一種數值方法。有限元法把連續體離散成有限個單元:桿系結構的單元是每一個桿件;連續體的單元是各種形狀(如三角形、四邊形、六面體等)的單元體。每個單元的場函數是只包含有限個待定節點參量的簡單場函數,這些單元場函數的集合就能近似代表整個連續體的場函數。根據能量方程或加權殘量方程可建立有限個待定參量的代數方程組,求解此離散方程組就得到有限元法的數值解。有限元法已被用於求解線性和非線性問題,並建立了各種有限元模型,如協調、不協調、混合、雜交、擬協調元等。有限元法十分有效、通用性強、應用廣泛,已有許多大型或專用程序系統供工程設計使用。結合計算機輔助設計技術,有限元法也被用於計算機輔助製造中。
有限單元法最早可上溯到20世紀40年代。Courant第一次應用定義在三角區域上的分片連續函數和最小位能原理來求解St.Venant扭轉問題。現代有限單元法的第一個成功的嘗試是在 1956年,Turner、Clough等人在分析飛機結構時,將鋼架位移法推廣應用於彈性力學平面問題,給出了用三角形單元求得平面應力問題的正確答案。1960年,Clough進一步處理了平面彈性問題,並第一次提出了有限單元法,使人們認識到它的功效。
50年代末60年代初,中國的計算數學剛起步不久,在對外隔絕的情況下,馮康帶領一個小組的科技人員走出了從實踐到理論,再從理論到實踐的發展中國計算數學的成功之路。當時的研究解決了大量的有關工程設計應力分析的大型橢圓方程計算問題,積累了豐富而有效的經驗。馮康對此加以總結提高,作出了系統的理論結果。1965年馮康在《應用數學與計算數學》上發表的論文《基於變分原理的差分格式》,是中國獨立於西方系統地創始了有限元法的標志。
有限元法常應用於流體力學、電磁力學、結構力學計算,使用有限元軟體ANSYS、COMSOL等進行有限元模擬,在預研設計階段代替實驗測試,節省成本。
5. 有限元分析方法的簡介
有限元分析是使用有限元方法來分析靜態或動態的物理物體或物理系統。在這種方法中一個物體或系統被分解為由多個相互聯結的、簡單、獨立的點組成的幾何模型。在這種方法中這些獨立的點的數量是有限的,因此被稱為有限元。由實際的物理模型中推導出來得平衡方程式被使用到每個點上,由此產生了一個方程組。這個方程組可以用線性代數的方法來求解。有限元分析 的精確度無法無限提高。元的數目到達一定高度後解的精確度不再提高,只有計算時間不斷提高。
有限元分析法(FEA)已應用得非常廣泛,現已成為年創收達數十億美元的相關產業的基礎。即使是很復雜的應力問題的數值解,用有限元分析的常規方法就能得到。此方法是如此的重要,以至於即便像這些只對材料力學作入門性論述的模塊,也應該略述其主要特點。 不管有限元法是如何的卓有成效,當你應用此法及類似的方法時,計算機解的缺點必須牢記在心頭:這些解不一定能揭示諸如材料性能、幾何特徵等重要的變數是如何影響應力的。一旦輸入數據有誤,結果就會大相徑庭,而分析者卻難以覺察。所以理論建模最重要的作用可能是使設計者的直覺變得敏銳。有限元程序的用戶應該為此目標部署設計策略,以盡可能多的封閉解和實驗分析作為計算機模擬的補充。 與現代微機上許多字處理和電子製表軟體包相比,有限元的程序不那麼復雜。然而,這些程序的復雜程度依然使大部分用戶無法有效地編寫自己所需的程序。可以買到一些預先編好的商用程序1,其價格範圍寬,從微機到超級計算機都可兼容。但有特定需求的用戶也不必對程序的開發望而生畏,你會發現,從諸如齊凱維奇(Zienkiewicz2)等的教材中提供的程序資源可作為有用的起點。大部分有限元軟體是用Fortran語言編寫的,但諸如felt等某些更新的程序用的是C語言或其它更時新的程序語言。
在實踐中,有限元分析法通常由三個主要步驟組成: 1、預處理:用戶需建立物體待分析部分的模型,在此模型中,該部分的幾何形狀被分割成若干個離散的子區域——或稱為「單元」。各單元在一些稱為「結點」的離散點上相互連接。這些結點中有的有固定的位移,而其餘的有給定的載荷。准備這樣的模型可能極其耗費時間,所以商用程序之間的相互競爭就在於:如何用最友好的圖形化界面的「預處理模塊」,來幫助用戶完成這項繁瑣乏味的工作。有些預處理模塊作為計算機化的畫圖和設計過程的組成部分,可在先前存在的CAD文件中覆蓋網格,因而可以方便地完成有限元分析。 2、分析:把預處理模塊准備好的數據輸入到有限元程序中,從而構成並求解用線性或非線性代數方程表示的系統
u和f分別為各結點的位移和作用的外力。矩陣K的形式取決於求解問題的類3、分析的早期,用戶需仔細地研讀程序運算後產生的大量數字,即 型,本模塊將概述桁架與線彈性體應力分析的方法。商用程序可能帶有非常大的單元庫,不同類型的單元適用於范圍廣泛的各類問題。有限元法的主要優點之一就是:許多不同類型的問題都可用相同的程序來處理,區別僅在於從單元庫中指定適合於不同問題的單元類型。
6. 請問有限元方法的基本原理是什麼
有限元方法的基本原理:將連續的求解域離散為一組單元的組合體,用在每個單元內假設的近似函數來分片的表示求解域上待求的未知場函數,近似函數通常由未知場函數及其導數在單元各節點的數值插值函數來表示。從而使一個連續的無限自由度問題變成離散的有限自由度問題。
將連續的求解域離散為一組單元的組合體,用在每個單元內假設的近似函數來分片的表示求解域上待求的未知場函數,近似函數通常由未知場函數及其導數在單元各節點的數值插值函數來表達。從而使一個連續的無限自由度問題變成離散的有限自由度問題。
(6)有限元代數方程組求解方法研究擴展閱讀:
有限元法常應用於流體力學、電磁力學、結構力學計算,使用有限元軟體ANSYS、COMSOL等進行有限元模擬,在預研設計階段代替實驗測試,節省成本。
用有限個單元將連續體離散化,通過對有限個單元作分片插值求解各種力學、物理問題的一種數值方法。有限元法把連續體離散成有限個單元:桿系結構的單元是每一個桿件;連續體的單元是各種形狀(如三角形、四邊形、六面體等)的單元體。
每個單元的場函數是只包含有限個待定節點參量的簡單場函數,這些單元場函數的集合就能近似代表整個連續體的場函數。根據能量方程或加權殘量方程可建立有限個待定參量的代數方程組,求解此離散方程組就得到有限元法的數值解。
有限元法已被用於求解線性和非線性問題,並建立了各種有限元模型,如協調、不協調、混合、雜交、擬協調元等。有限元法十分有效、通用性強、應用廣泛,已有許多大型或專用程序系統供工程設計使用。結合計算機輔助設計技術,有限元法也被用於計算機輔助製造中。
7. 線性代數有幾種解線性方程組的方法
第一種 消元法 ,此法 最為簡單,直接消掉只剩最後一個未知數,再回代求餘下的未知數,但只適用於未知數個數等於方程的個數,且有解的情況。
第二種 克拉姆法則, 如果行列式不等於零,則用常數向量替換系數行列式中的每一行再除以系數行列式,就是解;
第三種 逆矩陣法, 同樣要求系數矩陣可逆,直接建立AX=b與線性方程組的關系,X=A^-1.*b就是解
第四種 增光矩陣法, 利用增廣矩陣的性質(A,b)通過線性行變換,化為簡約形式,確定自由變數,(各行中第一個非零元對應的未知數除外餘下的就是自由變數),對自由變數進行賦值,求出其它未知數,然後寫成基礎解析的形式,最後寫出通解。
這種方法需要先判別: 增廣矩陣的秩是否等於系數矩陣的秩,相等且小於未知數個數,則無窮多解;等於未知數個數,唯一解。 秩不想等,無解。
第五種 計算機編程,隨便用個軟體,譬如Matlab,輸入密令,直接求解。
目前這5中教為適用,適合一切齊次或者非齊次線性方程組。
8. 什麼叫有限元分析方法
有限元分析是使用有限元方法來分析靜態或動態的物理物體或物理系統。在這種方法中一個物體或系統被分解為由多個相互聯結的、簡單、獨立的點組成的幾何模型。在這種方法中這些獨立的點的數量是有限的,因此被稱為有限元。由實際的物理模型中推導出來得平衡方程式被使用到每個點上,由此產生了一個方程組。這個方程組可以用線性代數的方法來求解。有限元分析的精確度無法無限提高。元的數目到達一定高度後解的精確度不再提高,只有計算時間不斷提高。