① 拓撲學是什麼
拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογία的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。
分支學科
點集拓撲學又稱為一般拓撲學
組合拓撲學
代數拓撲學
微分拓撲學
幾何拓撲學
拓撲學
拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。在拓撲學的孕育階段,19世紀末,就拓撲已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
什麼是拓撲學?
拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
拓撲學的另一淵源是分析學的嚴密化。實數的嚴格定義推動了G.康托爾從1873年起系統地展開了歐氏空間中的點集的研究,得出許多拓撲概念。如:聚點、開集、連通性等。在點集論的思想影響下,分析學中出現了泛函數(即函數的函數)的概念。把函數集看成一種幾何對象並討論其中的極限,這終於導致了抽象空間的觀念。
拓撲問題的一些初等例子:
柯尼斯堡七橋問題(一筆劃問題)。一個散步者怎樣才能走遍七座橋而每座橋只經過一次?這個18世紀的智力游戲,被L.歐拉簡化為用細線畫出的網路能否一筆劃出的問題,然後他證明了這是根本辦不到的。一個網路能否被一筆畫出,與線條的長短曲直無關,只決定於其中的點與線的連接方式。設想一個網路是用柔軟而有彈性的材料製作的,在它被彎曲、拉伸後,能否一筆畫出的性質是不會改變的。
歐拉的多面體公式與曲面的分類。歐拉發現,不論什麼形狀的凸多面體,其頂點數 、棱數 、面數 之間總有 這個關系。由此可證明正多面體只有五種。如果多面體不是凸的而呈框形(圖33),則不管框的形狀如何,總有 。這說明,凸形與框形之間有比長短曲直更本質的差別,通俗地說,框形里有個洞。
在連續變形下,凸體的表面可以變成球面,框的表面可以變成環面(輪胎面)。這兩者都不能通過連續變形互變(圖34)。在連續變形下封門曲面有多少種不同類型?怎樣鑒別他們?這曾是19世紀後半葉拓撲學研究的主要問題。
紐結問題。空間中一條自身不相交的封閉曲線,會發生打結現象。要問一個結能否解開(即能否變形成平放的圓圈),或者問兩個結能否互變(如圖35中兩個三葉結能否互變)。同時給出嚴格證明,那遠不是件容易的事了。
布線問題(嵌入問題)。一個復雜的網路能否布在平面上而又不自相交叉?做印製電路時自然會碰到這個問題。圖36左面的圖,把一條對角線移到方形外面就可以布在平面上。但圖37中兩個圖卻無論怎樣移動都不能布在平面上。1930年K•庫拉托夫斯基證明,一個網路是否能嵌入平面,就看其中是否不含有這兩個圖之一。
以上這些例子說明,幾何圖形還有一些不能用傳統的幾何方法來研究的性質。這些性質與長度、角度無關,它們所表現的是圖形整體結構方面的特徵。這種性質就是圖形的所謂拓撲性質。
拓撲學的由來
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。
參考資料:http://www.ikepu.com/maths/maths_branch/topology_total.htm 其它數學分支學科
算術、初等代數、高等代數、數論、歐式幾何、非歐幾何、解析幾何、微分幾何、代數幾何學、射影幾何學、拓撲學、分形幾何、微積分學、實變函數論、概率和數理統計、復變函數論、泛函分析、偏微分方程、常微分方程、數理邏輯、模糊數學、運籌學、計算數學、突變理論、數學物理學
數學中一個重要的、基礎的分支。起初它是幾何學的一支, 1955.)研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。在拓撲學的孕育階段,北京,19世紀末,就已出現點集拓撲學與組合拓撲學兩個方向。現在前者已演化成一般拓撲學, 1952. J.L.凱萊著,後者則成為代數拓撲學。後來, Princeton Univ. Press,又相繼出現了微分拓撲學、幾何拓撲學等分支。Foundations of Algebraic Topology,拓撲學主要是由於分析學和幾何學的需要而發展起來的, 1979.) S.Eilenberg and N.Steenrod,它自30年代以來的大發展, London,尤其是它的成果與方法對於數學的各個領域的不斷滲透,是20世紀理論數學發展中的一個明顯特徵。
拓撲問題的一些初等例子
近些年來,有關流形的研究中,幾何的課題、幾何的方法取得不少進展。突出的領域如流形的上述三大范疇之間的關系以及三維、四維流形的分類。80年代初的重大成果有:證明了四維龐加萊猜想,發現四維歐氏空間竟還有不同尋常的微分結構。這種種研究,通常泛稱幾何拓撲學,以強調其幾何色彩,而環面上卻可以造出沒有奇點的向量場。區別於代數味很重的同倫論。
拓撲學與其他學科的關系 連續性與離散性這對矛盾在自然現象與社會現象中普遍存在著,數學也可以粗略地分為連續性的與離散性的兩大門類。拓撲學對於連續性數學自然是帶有根本意義的,對於離散性數學也起著巨大的推進作用。例如,拓撲學的基本內容已經成為現代數學工作者的常識。拓撲學的重要性,體現在它與其他數學分支、其他學科的相互作用。
拓撲學與各數學領域、各科學領域之間的邊緣性研究方興未艾。
參考書目 江澤涵著:《拓撲學引論》,上海科學技術出版社,上海,1978。 M.A.Armstrong 著,孫以豐譯:《基礎拓撲學》,北京大學出版社,北京,上有七座橋(見<a href=http://ke7.com/ke/%CA%FD%D1%A7_%CD%BC%C2%DB.html target=_blank>圖論</a>)。1983。(M.A.Armstrong,basic Topology,是20世紀理論數學發展中的一個明顯特徵。McGraw-Hill, London, 1979.) S.Eilenberg and N.Steenrod,Foundations of Algebraic Topology,又相繼出現了微分拓撲學、幾何拓撲學等分支。 Princeton Univ. Press, Princeton,後者則成為代數拓撲學。 1952. J.L.凱萊著,現在前者已演化成一般拓撲學,吳從炘、吳讓泉譯:《一般拓撲學》,科學出版社,北京,1982。拓撲學又分成研究對象與方法各異的若干分支。(J.L.Kelley,General Topology,Van Nostrand, New York, 1955.)
② 簡單介紹一下拓撲學
拓撲學是幾何學的一個分支,主要研究圖形在連續變換下不變的性質。
可參看網路的「拓撲」或「拓撲學」條目。我下面引述的例子不多作解釋,可以直接查到。
例如,Euler的七橋問題就是一個拓撲學的問題,因為把七橋連成路徑,不論橋和路如何連續的變化,都不影響問題的結果,也就是說,這個問題研究的是一個連續變換下不變的性質。
又如,四色定理(地圖可用四色著色)是一個拓撲學的問題,因為地圖中的區域大小和具體形狀在問題中並不重要,都可以連續的變化,不改變地圖可以用四色著色這一性質。
所以,在拓撲學的觀點下,圓和三角形的性質沒有什麼區別,輪胎和戒指的性質沒有什麼區別,因為它們都可以通過連續變換互相得到。
另一方面,研究圖形面積的幾何就不是拓撲學,因為在連續變換下,面積可以變化。同樣的道理,圖形的大小、平行、對稱、垂直等等都不是拓撲學的研究領域。
可以看到,拓撲學研究的性質對圖形的要求很低(一定程度變了形都沒關系),所以它的應用范圍也就十分廣泛,因而成為現代數學的基礎之一。以至於許多看起來跟幾何圖形沒多大關系的地方,也可以應用拓撲學的知識。如分析學中就大量使用點集拓撲學的術語和手段。
拓撲學因研究的領域和方法的不同,有一些分支。如一般拓撲學,又稱點集拓撲學,是研究一組抽象的「點」(可以是幾何上的,也可以不是)的拓撲性質的;代數拓撲學,利用代數學的手段研究拓撲性質,如同倫論和同調論;微分拓撲學,利用分析學的手段(主要是微分)研究拓撲性質;幾何拓撲學,研究幾何意義明顯的東西(成為流形),如扭結;等等。
註:以上的敘述只是介紹,語言都是在數學上不嚴謹的。實際的拓撲學研究中,像連續、變換、點等概念,都是需要嚴格定義的。
③ 19,20世紀誰創立了拓樸學
拓撲學
拓撲學,是近代發展起來的一個研究連續性現象的數學分支。中文名稱起源於希臘語Τοπολογία的音譯。Topology原意為地貌,於19世紀中期由科學家引入,當時主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。
分支學科
點集拓撲學又稱為一般拓撲學
組合拓撲學
代數拓撲學
微分拓撲學
幾何拓撲學
拓撲學
拓撲學是數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支。在拓撲學的孕育階段,19世紀末,就拓撲已出現點集拓撲學與組合拓撲學兩個方向。現在,前者演化為一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓樸學、幾何拓撲學等分支。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
什麼是拓撲學?
拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學起初叫形勢分析學,這是G.W.萊布尼茨1679年提出的名詞。拓撲學這個詞(中文是音譯)是J.B.利斯廷1847年提出的,源自希臘文位置、形勢與學問。
1851年起,B.黎曼在復變函數的研究中提出,為了研究函數、研究積分,就必須研究形勢分析學。從此開始了拓撲學的系統研究。
組合拓撲學的奠基人是H.龐加萊。他是在分析學和力學的工作中,特別是關於復函數的單值化和關於微分方程決定的曲線的研究中,引向拓撲學問題。他探討了三維流形的拓撲分類問題,提出了著名的龐加萊猜想。
拓撲學的另一淵源是分析學的嚴密化。實數的嚴格定義推動了G.康托爾從1873年起系統地展開了歐氏空間中的點集的研究,得出許多拓撲概念。如:聚點、開集、連通性等。在點集論的思想影響下,分析學中出現了泛函數(即函數的函數)的概念。把函數集看成一種幾何對象並討論其中的極限,這終於導致了抽象空間的觀念。
拓撲問題的一些初等例子:
柯尼斯堡七橋問題(一筆劃問題)。一個散步者怎樣才能走遍七座橋而每座橋只經過一次?這個18世紀的智力游戲,被L.歐拉簡化為用細線畫出的網路能否一筆劃出的問題,然後他證明了這是根本辦不到的。一個網路能否被一筆畫出,與線條的長短曲直無關,只決定於其中的點與線的連接方式。設想一個網路是用柔軟而有彈性的材料製作的,在它被彎曲、拉伸後,能否一筆畫出的性質是不會改變的。
歐拉的多面體公式與曲面的分類。歐拉發現,不論什麼形狀的凸多面體,其頂點數 、棱數 、面數 之間總有 這個關系。由此可證明正多面體只有五種。如果多面體不是凸的而呈框形(圖33),則不管框的形狀如何,總有 。這說明,凸形與框形之間有比長短曲直更本質的差別,通俗地說,框形里有個洞。
在連續變形下,凸體的表面可以變成球面,框的表面可以變成環面(輪胎面)。這兩者都不能通過連續變形互變(圖34)。在連續變形下封門曲面有多少種不同類型?怎樣鑒別他們?這曾是19世紀後半葉拓撲學研究的主要問題。
紐結問題。空間中一條自身不相交的封閉曲線,會發生打結現象。要問一個結能否解開(即能否變形成平放的圓圈),或者問兩個結能否互變(如圖35中兩個三葉結能否互變)。同時給出嚴格證明,那遠不是件容易的事了。
布線問題(嵌入問題)。一個復雜的網路能否布在平面上而又不自相交叉?做印製電路時自然會碰到這個問題。圖36左面的圖,把一條對角線移到方形外面就可以布在平面上。但圖37中兩個圖卻無論怎樣移動都不能布在平面上。1930年K•庫拉托夫斯基證明,一個網路是否能嵌入平面,就看其中是否不含有這兩個圖之一。
以上這些例子說明,幾何圖形還有一些不能用傳統的幾何方法來研究的性質。這些性質與長度、角度無關,它們所表現的是圖形整體結構方面的特徵。這種性質就是圖形的所謂拓撲性質。
拓撲學的由來
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單有很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
什麼是拓撲學?
拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。這些就是拓撲學思考問題的出發點。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。
參考資料:http://www.ikepu.com/maths/maths_branch/topology_total.htm 其它數
④ 什麼是2D圖紙
二D圖紙也稱平面圖紙。二D圖紙的內容只有水平X軸和垂直Y軸。傳統的手工動畫片和插畫屬於二維范疇,其立體感、光和影都是用手工繪制的。二維繪圖軟體包括平面動畫軟體photoshop、coreldraw、painter和flash,以及專業的二維繪圖軟體如autocad。
對應二D圖的是三D圖:三維圖,即三維空間圖形,用於現代加工製造,而三維動畫製作也包含三維圖形。三維圖形的所有圖形都在x-y-z三維時空中。常用的三維繪圖軟體有:3dmax、proe、ug等。
(4)庫拉托夫斯基定理的證明方法研究擴展閱讀:
2D平面圖製作應遵守的定:
1、庫拉托夫斯基定理
波蘭數學家卡齊米里·庫拉托夫斯基提出的一類禁忌准則(即滿足某些條件的圖不一定具有某些性質)也包括平面圖的情況。他提出了一個定理來解釋:
有限圖(具有有限頂點和邊的圖)是平面圖,如果且僅當它不包含分區子圖(具有五個頂點的完整圖)或(具有三個頂點的二部圖)時。在圖同態理論中,有限圖是一個平面圖,前提是圖中不包含任何同態或子圖。
2、歐拉定理
平面圖將平面劃分為幾個彼此不相連的閉合區域和圖形的外部區域。其中,圖的外部區域稱為圖的外表面,圖中的每個閉合和連接區域稱為圖的內表面,由頂點和邊分割。每個曲面圖中包含的每個面至少對應三條邊。
平面圖的頂點數、邊數和面數之間有一個公式,V-E+F=C+1其中,v是頂點數,e是邊數,f是面數,c是圖的連通部分數。當圖是簡單連接時,公式簡化為V-E+F=2。
⑤ 拓補和拓撲的區別
拓撲簡單的的說就是幾何結構,是指網路中各個站點相互連接的形式,主要有匯流排型拓撲、星型拓撲、環形拓撲以及混合型拓撲。
數學定義:設X是一個非空集合。X的一個子集族τ稱為X的一個拓撲,如果它滿足:
(1)X和空集{}都屬於τ;
(2)τ中任意多個成員的並集仍在τ中;
(3)τ中有限多個成員的交集仍在τ中。
稱集合X連同它的拓撲τ為一個拓撲空間,記作(X,τ)。
稱τ中的成員為這個拓撲空間的開集。
例子:1.歐幾里德空間在通常開集的意義下是拓撲空間,它的拓撲就是所有開集組成的集合。
2.設X是一個非空集合。則集合t:{X,{}}是X的一個拓撲。稱t為X的平凡拓撲。顯然(X,t)只有兩個開集,X和{}。
3.設X是一個非空集合。則X的冪集T=2^X也是X的一個拓撲。稱T為X的離散拓撲。顯然X的任意子集都是(X,T)的開集。
4.一個具體的例子。設X={1,2,3}。則{X,{},{1,2}}是X的一個拓撲,但{X,{},{1},{2}}不是拓撲。(自己想想為什麼)
拓撲學的由來
幾何拓撲學是十九世紀形成的一門數學分支,它屬於幾何學的范疇。有關拓撲學的一些內容早在十八世紀就出現了。那時候發現一些孤立的問題,後來在拓撲學的形成中占著重要的地位。
在數學上,關於哥尼斯堡七橋問題、多面體的歐拉定理、四色問題等都是拓撲學發展史的重要問題。
哥尼斯堡(今俄羅斯加里寧格勒)是東普魯士的首都,普萊格爾河橫貫其中。十八世紀在這條河上建有七座橋,將河中間的兩個島和河岸聯結起來。人們閑暇時經常在這上邊散步,一天有人提出:能不能每座橋都只走一遍,最後又回到原來的位置。這個問題看起來很簡單又很有趣的問題吸引了大家,很多人在嘗試各種各樣的走法,但誰也沒有做到。看來要得到一個明確、理想的答案還不那麼容易。
1736年,有人帶著這個問題找到了當時的大數學家歐拉,歐拉經過一番思考,很快就用一種獨特的方法給出了解答。歐拉把這個問題首先簡化,他把兩座小島和河的兩岸分別看作四個點,而把七座橋看作這四個點之間的連線。那麼這個問題就簡化成,能不能用一筆就把這個圖形畫出來。經過進一步的分析,歐拉得出結論——不可能每座橋都走一遍,最後回到原來的位置。並且給出了所有能夠一筆畫出來的圖形所應具有的條件。這是拓撲學的「先聲」。
在拓撲學的發展歷史中,還有一個著名而且重要的關於多面體的定理也和歐拉有關。這個定理內容是:如果一個凸多面體的頂點數是v、棱數是e、面數是f,那麼它們總有這樣的關系:f+v-e=2。
根據多面體的歐拉定理,可以得出這樣一個有趣的事實:只存在五種正多面體。它們是正四面體、正六面體、正八面體、正十二面體、正二十面體。
著名的「四色問題」也是與拓撲學發展有關的問題。四色問題又稱四色猜想,是世界近代三大數學難題之一。
四色猜想的提出來自英國。1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家都被著上不同的顏色。」
1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。1878~1880年兩年間,著名律師兼數學家肯普和泰勒兩人分別提交了證明四色猜想的論文,宣布證明了四色定理。但後來數學家赫伍德以自己的精確計算指出肯普的證明是錯誤的。不久,泰勒的證明也被人們否定了。於是,人們開始認識到,這個貌似容易的題目,其實是一個可與費馬猜想相媲美的難題。
進入20世紀以來,科學家們對四色猜想的證明基本上是按照肯普的想法在進行。電子計算機問世以後,由於演算速度迅速提高,加之人機對話的出現,大大加快了對四色猜想證明的進程。1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億次判斷,終於完成了四色定理的證明。不過不少數學家並不滿足於計算機取得的成就,他們認為應該有一種簡捷明快的書面證明方法。
上面的幾個例子所講的都是一些和幾何圖形有關的問題,但這些問題又與傳統的幾何學不同,而是一些新的幾何概念。這些就是「拓撲學」的先聲。
什麼是拓撲學?
拓撲學的英文名是Topology,直譯是地誌學,也就是和研究地形、地貌相類似的有關學科。我國早期曾經翻譯成「形勢幾何學」、「連續幾何學」、「一對一的連續變換群下的幾何學」,但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。
拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。拓撲學對於研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。
舉例來說,在通常的平面幾何里,把平面上的一個圖形搬到另一個圖形上,如果完全重合,那麼這兩個圖形叫做全等形。但是,在拓撲學里所研究的圖形,在運動中無論它的大小或者形狀都發生變化。在拓撲學里沒有不能彎曲的元素,每一個圖形的大小、形狀都可以改變。例如,前面講的歐拉在解決哥尼斯堡七橋問題的時候,他畫的圖形就不考慮它的大小、形狀,僅考慮點和線的個數。
拓撲性質有那些呢?首先我們介紹拓撲等價,這是比較容易理解的一個拓撲性質。
在拓撲學里不討論兩個圖形全等的概念,但是討論拓撲等價的概念。比如,盡管圓和方形、三角形的形狀、大小不同,在拓撲變換下,它們都是等價圖形。左圖的三樣東西就是拓撲等價的,換句話講,就是從拓撲學的角度看,它們是完全一樣的。
在一個球面上任選一些點用不相交的線把它們連接起來,這樣球面就被這些線分成許多塊。在拓撲變換下,點、線、塊的數目仍和原來的數目一樣,這就是拓撲等價。一般地說,對於任意形狀的閉曲面,只要不把曲面撕裂或割破,他的變換就是拓撲變幻,就存在拓撲等價。
應該指出,環面不具有這個性質。比如像左圖那樣,把環面切開,它不至於分成許多塊,只是變成一個彎曲的圓桶形,對於這種情況,我們就說球面不能拓撲的變成環面。所以球面和環面在拓撲學中是不同的曲面。
直線上的點和線的結合關系、順序關系,在拓撲變換下不變,這是拓撲性質。在拓撲學中曲線和曲面的閉合性質也是拓撲性質。
我們通常講的平面、曲面通常有兩個面,就像一張紙有兩個面一樣。但德國數學家莫比烏斯(1790~1868)在1858年發現了莫比烏斯曲面。這種曲面就不能用不同的顏色來塗滿兩個側面。
拓撲變換的不變性、不變數還有很多,這里不在介紹。
拓撲學建立後,由於其它數學學科的發展需要,它也得到了迅速的發展。特別是黎曼創立黎曼幾何以後,他把拓撲學概念作為分析函數論的基礎,更加促進了拓撲學的進展。
二十世紀以來,集合論被引進了拓撲學,為拓撲學開拓了新的面貌。拓撲學的研究就變成了關於任意點集的對應的概念。拓撲學中一些需要精確化描述的問題都可以應用集合來論述。
因為大量自然現象具有連續性,所以拓撲學具有廣泛聯系各種實際事物的可能性。通過拓撲學的研究,可以闡明空間的集合結構,從而掌握空間之間的函數關系。本世紀三十年代以後,數學家對拓撲學的研究更加深入,提出了許多全新的概念。比如,一致性結構概念、抽象距概念和近似空間概念等等。有一門數學分支叫做微分幾何,是用微分工具來研究取線、曲面等在一點附近的彎曲情況,而拓撲學是研究曲面的全局聯系的情況,因此,這兩門學科應該存在某種本質的聯系。1945年,美籍中國數學家陳省身建立了代數拓撲和微分幾何的聯系,並推進了整體幾何學的發展。
拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。一個分支是偏重於用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。另一個分支是偏重於用代數方法來研究的,叫做代數拓撲。現在,這兩個分支又有統一的趨勢。
拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。
拓撲學
topology
數學中一個重要的、基礎的分支。起初它是幾何學的一支,研究幾何圖形在連續變形下保持不變的性質(所謂連續變形,形象地說就是允許伸縮和扭曲等變形,但不許割斷和粘合);現在已發展成為研究連續性現象的數學分支。由於連續性在數學中的表現方式與研究方法的多樣性,拓撲學又分成研究對象與方法各異的若干分支.在拓撲學的孕育階段,19世紀末,就已出現點集拓撲學與組合拓撲學兩個方向。現在前者已演化成一般拓撲學,後者則成為代數拓撲學。後來,又相繼出現了微分拓撲學、幾何拓撲學等分支。拓撲學主要是由於分析學和幾何學的需要而發展起來的,它自30年代以來的大發展,尤其是它的成果與方法對於數學的各個領域的不斷滲透,是20世紀理論數學發展中的一個明顯特徵。
拓撲問題的一些初等例子
柯尼斯堡的七橋問題(一筆畫問題) 柯尼斯堡是東普魯士首府,普萊格爾河橫貫其中,上有七座橋(見圖論)。一個散步者怎樣才能走遍七座橋而每座橋只經過一次?這個18世紀的智力游戲,被L.歐拉簡化為用細線畫出的網路能否一筆畫出的問題,然後他證明這是根本辦不到的。一個網路之能否一筆畫出,與線條的長短曲直無關,只決定於其中的點與線的連接方式。設想一
個網路是用柔軟而有彈性的材料製作的,在它被彎曲、拉伸後,能否一筆畫出的性質是不會改變的。歐拉的多面體公式與曲面的分類 歐拉發現,不論什麼形狀的凸多面體,其頂點數□、棱數 □、面數□之間總有□這個關系。從這個公式可以證明正多面
體只有五種(見正多面體)。值得注意的是,如果多面體不是凸的而呈框形(圖1凸形與框形),也不管框的形狀如何,總有□。這說明,凸形與框形之間有比長短曲直更本質的差別,通俗的說法是框形里有個洞。 連續變形下,凸體的表面可以變為球面,框的表面可以變為環面(輪胎面)。這兩者卻不能通過連續變形互變。在連續變形下封閉曲面有多少種不同類型?怎
樣鑒別它們?這曾是19世紀後半葉拓撲學研究的主要問題。把曲面變形成多面體後的歐拉數□-□+□在其中起著關鍵的作用(見閉曲面的分類)。四色問題 在平面或球面上繪制地圖,有公共邊界線的區域用不同的顏色加以區別。19世紀中期,人們從經驗猜想用四種顏色就足以給所有的地圖上色。證明這個猜想的嘗試,卻延續了100多年,到1976年才出現了一個藉助於計算機的證明。如果不是在平面上而是在輪胎面上畫地圖,四色就不夠了,要七色才夠。用橡皮做一個曲面模型,然後隨意扭曲,弄得山巒起伏,這對其上的地圖著色毫無影響,所以這顏色數也是曲面在連續變形下不變的性質。
紐結問題 空間中一條自身不相交的封閉曲線,會發生打結現象。要問一個結能否解開(即能否變形成平放的圓圈),或者問兩個結能否互變(例如,圖2圓圈與三葉結中的兩個三葉結能否互變),並且不只做個模型試試,還要給出證明,那就遠不是件容易的事了(見紐結理論)。
維數問題 什麼是曲線?樸素的觀念是點動成線,隨一個參數(時間)連續變化的動點所描出的軌跡就是曲線。可是,G.皮亞諾在1890年竟造出一條這樣的「曲線」,它填滿整個正方形!這激發了關於維數概念的深入探討,經過20~30年才取得關鍵性的突破(見維數)。 布線問題(嵌入問題) 一個復雜的網路能否布在平面上而不自相交叉?做印刷電路時自然會碰到這個問題。圖3可嵌入網路中左面的圖把一根對角線移到方形外面就可以布在平面上,但圖4不可嵌入網路兩個圖卻無論怎樣挪動都不能布在平面上。1930年K.庫拉托夫斯基證明,一個網路是否能嵌入平面,就看其中是否不含有這兩個圖之一。
向量場問題 考慮光滑曲面上的連續的切向量場,即在曲面的每一點放一個與曲面相切的向量,並且其分布是連續的。其中向量等於0的地方叫作奇點。例如,地球表面上每點的風速向量就組成一個隨時間變化的切向量場,而奇點就是當時沒風的地方。從直觀經驗看出,球面上的連續切向量場一定有奇點,而環面上卻可以造出沒有奇點的向量場。
進一步分析,每個奇點有一個「指數」,即當動點繞它一周時,動點處的向量轉的圈數;此指數有正負,視動點繞行方向與向量轉動方向相同或相反而定(圖5向量場齊點的指數)。龐加萊發現,球面上切向量場,只要奇點個數是有限的,這些奇點的指數的代數和(正負要相消)恆等於2;而環面上的則恆等於0(見曲面)。這2與0恰是那兩個曲面的歐拉數,這不是偶然的巧合。
不動點問題 考慮一個曲面到自身的連續變換(映
射),即曲面的每一點被移到該曲面上
⑥ 庫拉托夫斯基定理的具體內容
布線問題(嵌入問題)。一個復雜的網路能否布在平面上而又不自相交叉?做印製電路時自然會碰到這個問題。圖36左面的圖,把一條對角線移到方形外面就可以布在平面上。但圖37中兩個圖卻無論怎樣移動都不能布在平面上。1930年K•庫拉托夫斯基證明,一個網路是否能嵌入平面,就看其中是否不含有這兩個圖之一。
⑦ 房子平面圖方框裡面對角線連接的區域是什麼
一般住房平面圖中方框內有個叉的圖有很多種說法的,而且每個制圖人都有自己的圖例規范,常見的意思就是屬於傢具櫃類,衣櫃鞋櫃等平面表示方法,如果是放在室外,還有表示設備機器,空調機等一些室外機的表示意思,具體情況要根據圖面而定。
(7)庫拉托夫斯基定理的證明方法研究擴展閱讀
庫拉托夫斯基定理
波蘭數學家卡齊米日·庫拉托夫斯基提出的一類禁忌准則(指滿足某種條件的圖就一定無法具有某個性質)中,也包括了平面圖的情況。他提出的一個定理說明:
一個有限圖(頂點數和邊數有限的圖)是平面圖當且僅當它並不包含一個是(有五個頂點的完全圖)或(三個頂點的二部圖)的分割的子圖。
其中,一個圖A是另一個圖B的分割是指:A是在B的基礎上,在某些邊的中間加上頂點而得到的新的圖。用圖的同胚理論來說,就是:一個有限圖是平面圖當且僅當這個圖不包含任何同胚於 或 的子圖。這個定理的一般化是羅伯森-西摩定理。
歐拉公式
一個平面圖將平面分成若干個互不相通的封閉區域,以及圖的外部的區域。其中,圖的外面的區域稱為圖的外部面,而圖裡面每個被頂點和邊分割出來的封閉並連通的區域稱為圖的內部面。圍成每個面圖的每個面至少對應著三條邊。
平面圖的頂點個數、邊數和面的個數之間有一個以大數學家萊昂哈德·歐拉命名的公式:
V-E+F=C+1
其中,V是頂點的數目,E是邊的數目,F是面的數目,C是組成圖形的連通部分的數目。當圖是單連通圖的時候,公式簡化為:
V-E+F=2
參考資料來源:網路-平面圖