導航:首頁 > 研究方法 > 數據分析能力具體達成方法

數據分析能力具體達成方法

發布時間:2022-07-04 00:40:32

㈠ 做一名數據分析師要具備什麼能力

編覺得最重要的一點就是,我們得清楚企業對數據分析師的基礎技能需求是什麼。這樣我們才能有的放矢。我大抵總結如下:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
之後,怎麼安排自己的業余時間就看個人了。總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
如果是實在不懂,還可以去網上找些視頻課程看。切記,第一步是必不可少的,是數據分析的基礎。

㈡ 怎麼培養數據分析的能力

數據分析需要哪些思維/能力/知識呢?
比如,數據分析思維、結構化思維、公式化思維、學法體系的思維.......這些思維幫助你,即使碰到自己不熟悉的問題,也能從一定的角度切入分析並保持清晰的邏輯;
一定的業務理解能力,能理解業務背後的商業思路。只有理解問題,才能轉換成數據分析的問題,才知道如何設定分析目標並進行分析;
基礎理論知識:數理統計、模型原理、近期市場的調研等;
常規分析工具的使用:常用辦公軟體(Excel、PPT、思維導圖)、資料庫、統計分析工具、數據挖掘等;
數據報告和數據可視化的能力。數據分析得再好,如果不能以簡潔易懂的方式「表達」,成效也會大打折扣。
等等等,諸如此類的基本知識能力貯備......

那麼想要提升這些能力該做點什麼呢?下面具體來說說怎麼做能把這些基礎實力打好。
從分析理論和工具實踐著手

1、分析理論
分析理論包括:明確業務場景、確定分析目標、構建分析體系和梳理核心指標。
我們要做的就是,首先明確是什麼樣的業務場景,不同的業務,分析體系也隨之不同;然後,結合業務問題確定分析的目標,列出核心指標,再搜集整理所需要的數據。
推薦書籍:《數據化管理》、《決戰大數據 》
數據分析的幾個步驟:
(1)數據獲取
數據獲取往往看似簡單,但是它需要分析者對問題進行商業理解,即轉化成數據問題來解決,如,需要哪些數據,從哪些角度來分析等,在界定了這些問題後,再進行數據採集。
此環節,需要數據分析師具備結構化的邏輯思維。
推薦書籍:《金字塔原理》、麥肯錫三部曲:麥肯錫意識、工具、方法
推薦工具:思維導圖工具(Xmind網路腦圖等)
(2)數據處理
數據的處理需要掌握有效率的工具:
Excel及高端技能:
基本操作、函數公式、數據透視表、VBA程序開發。
我一般會先過一遍基礎,知道什麼是什麼,然後找幾個case練習。多逛逛excelhome論壇,平常多思考如何用excel來解決問題,善用插件,還有記得保存。
專業的報表工具:
(成規模的企業會用)日常做報表可以設計一個通用模板,只要會寫SQL就可上手。
相比excel做報表,這種工具開發的技術要求較低,能很快地開發常規報表、動態報表。
資料庫的使用:
熟練掌握SQL語言(很重要!!!),常見的有Oracle、SQL sever、My SQL等。
學習流行的hadoop之類的分布式資料庫來提升個人能力,對求職等都會有所幫助。
(3)分析數據
分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。
因此,熟練掌握一些統計分析工具不可免:
lPSS系列:老牌的統計分析軟體,SPSS Statistics(偏統計功能、市場研究)、SPSS Modeler(偏數據挖掘),不用編程,易學。
SAS:經典挖掘軟體,需要編程。
R:開源軟體,新流行,對非結構化數據處理效率上更高,需編程。
各類BI工具:Tableau、PowerBI、FineBI,對於處理好的數據可作自由的可視化分析,圖表效果驚人。
推薦書籍:
《說菜鳥不會數據分析》系列,入門級書,初學者最適。
《數據挖掘與數據化運營實戰,思路、方法、技巧與應用》,內容很系統很全面。
《市場研究定量分析方法與應用》,簡明等編著,中國人民大學出版社。

(4)數據可視化呈現
很多數據分析工具已經涵蓋了數據可視化部分,這時就只需要把數據結果進行有效的呈現和演講匯報即可,可用word\PPT\H5等方式展現。

2、工具實踐

(1)對於入門小白,建議從Excel工具入手,這里以Excel為例:
學習Excel是一個循序漸進的過程:
基礎的:簡單的表格數據處理、列印、查詢、篩選、排序
函數和公式:常用函數、高級數據計算、數組公式、多維引用、function
可視化圖表:圖形圖示展示、高級圖表、圖表插件
數據透視表、VBA程序開發......
多逛逛excelhome論壇,平常多思考如何用excel來解決問題,學慣用各種插件,對能夠熟練使用Excel都有幫助。

其中,函數和數據透視表是兩個重點。
函數
製作數據模板必須掌握的excel函數:
日期函數:day,month,year,date,today,weekday,weeknum 日期函數是做分析模板的必備,可以用日期函數來控制數據的展示,查詢指定時間段的數據。
數學函數:proct,rand,randbetween,round,sum,sumif,sumifs,sumproct
統計函數:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 統計函數在數據分析中具有舉足輕重的作用,求平均值,最大值,中位數,眾位數都用得到。
查找和引用函數:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 這幾個函數的作用不用多說,特別是vlookup,不會這個函數基本上復雜報表寸步難行。
文本函數:find,search,text,value,concatenate,left,right,mid,len 這幾個函數多半用在數據整理階段使用。
邏輯函數:and,or,false,true,if,iferror
(以上學會,基本能秒殺90%的辦公室白領!)
數據透視表
數據透視表的作用是把大量數據生成可交互的報表,它具有這樣一些重要功能:分類匯總、取平均、最大最小值、自動排序、自動篩選、自動分組;可分析佔比、同比、環比、定比、自定義公式等

現實中,取數或報表+EXCEL+PPT似乎還是主流形式。
工具上,無論是業務人員還是分析人員,都可以通過自動取數工具或者BI工具來製作報表,減少重復操作的時間。
其次,增加與業務人員的溝通,充分了解業務需求,當你的業務水平和他們差不多甚至更高時,自然而然知道他們一言兩語背後真實的需求是什麼了。
最後,站在更高角度上,報表的基本粒度就是指標,可梳理出企業的基本指標體系,從經營分析的角度去做報表,把報表的工作標准化,降低報表的冗餘,避免動不動就做一張報表。標准化包括指標分類,指標命名,業務口徑,技術口徑,實現方式等等。其實,最終目的是實現報表數據一致性,減少重復報表開發,降低系統開銷的戰略性舉措。
在業余時間,可以多補充數理統計知識,學習R、Python語言,學習常用的挖掘模型,往高級分析師路上發展!
一起加油鴨!

以上,就是今天的分享,數據分析能力聽起來很大很抽象,雖是軟實力但卻是行業的硬要求!量變引起質變,一步步來,才能做到觸類旁通,做起項目才會越來越順手。

㈢ 如何提升數據分析能力

1、數據支持。任何一個企業品牌要想進入大數據營銷,首先就要制定一個數據收集和整理的要點,明確大數據技術對於企業品牌的營銷發展意義。知道怎樣合法的收集到自己需要的數據,以及後續如何處理這些數據,如何通過這些數據來為企業盈利等等。這些基本的定義是企業開展大數據營銷的第一步。

2、數據使用工具。如果企業已經做好了大數據營銷的准備,並且已經有了自己所需的數據資源。那麼,這時候就需要一定的大數據分析工具了。市面上的大數據工具給企業商家帶來了全新的分析方式,基於成熟的分析結構、視覺化以及數據管理系統也迅速地改變著企業的分析方式,這些數據工具的出現極大的方便了企業的大數據營銷進程。

3、大數據人才。現在大數據的火爆,自然而然大數據的人才也就十分的稀缺。一個成功的團隊離不開人員的良好配置,大數據人才往往以數據分析人才為主,大致分為以下幾種:數據科學家,提供有關統計、相關性和質量等的專業技能;商業分析師,從商業的角度出發,甄別數據科學家從純粹數據分析角度發現的異常數據以及一般性規律,發掘出其中與公司業務發展緊密相關的數據和規律並根據重要性進行排序;技術專家,幫助提供收集、整理和處理數據所需的硬體和軟體解決方案。

關於如何提升數據分析能力,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

㈣ 數據分析需要具備什麼能力

數據分析需要具備的能力:

一、基礎工具俗話說工欲善其事必先利其器,那麼SQL、Python、Excel等就是做數據分析最基礎的工具了,但是並不是學會這些就是數據分析師了,數據分析師的工作不僅僅需要掌握一些Python和SQL的基礎操作,更重要的是商業知識架構和數據能夠結合起來,能夠通過企業的各項數據發現企業經營過程中的業務問題,能夠幫企業解決問題。

二、業務分析能力工作內容是根據公司的業務來決定的,大致歸納了幾點:

①為產品經理提供幫助,國內產品經理不懂數據分析,而新產品的競爭情報分析、產品敏捷測試等都需要數據分析師幫助完成,後期產品迭代優化還是需要數據分析師採集用戶行為、習慣、評價等數據來完成。

②為運營經理提供幫助,產品運營中的用戶流量、促銷、顧客關系管理等需要數據分析師幫助完成。

③為公司數據制定標准,各部門數據打通,實現數據化管理等工作。

三、溝通協作、解決問題的能力任何企業都需要數據分析師,他的工作核心就是通過數據為企業解決問題,它作為企業的重要樞紐,連接著公司的產品和運營等部門,在企業起著至關重要的作用,這就需要非常強的邏輯思維能力和溝通能力,把各個環節溝通到位了,才能高效地為企業解決問題。

㈤ 如何提高收集數據和分析數據的能力

大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用、大數據安全等)。

如何從大數據中採集出有用的信息已經是大數據發展的關鍵因素之一。

想要培養數據分析的能力,可以從兩部分來著手:一是數據分析方法論的建立,二是數據分析從入門到精通的知識學習

理論:是進行分析的基礎
1)基礎的數據分析知識,至少知道如何做趨勢分析、比較分析和細分,不然拿到一份數據就無從下手;
2)基礎的統計學知識,至少基礎的統計量要認識,知道這些統計量的定義和適用條件,統計學方法可以讓分析過程更加嚴謹,結論更有說服力;
3)對數據的興趣,以及其它的知識多多益善,讓分析過程有趣起來。

實踐:可以說90%的分析能力都是靠實踐培養的
1)明確分析的目的。如果分析前沒有明確分析的最終目標,很容易被數據繞進去,最終自己都不知道自己得出的結論到底是用來幹嘛的;
2)多結合業務去看數據。數據從業務運營中來,分析當然要回歸到業務中去,多熟悉了解業務可以使數據看起來更加透徹;
3)了解數據的定義和獲取。最好從數據最初是怎麼獲取的開始了解,當然指標的統計邏輯和規則是必須熟記於心的,不然很容易就被數據給坑了;
4)最後就是不斷地看數據、分析數據,這是個必經的過程,往往一個工作經驗豐富的非數據分析的運營人員要比剛進來不久的數據分析師對數據的了解要深入得多,就是這個原因。

也可以採用第三方的大數據服務平台,觀向數據是一款整體的數據採集、分析、可視化系統,可以幫助企業品牌發展提供科學化決策。

㈥ 數據分析的基本方法有哪些

數據分析的三個常用方法
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。

㈦ 怎麼培養數據分析的能力


2、工具實踐

(1)對於入門小白,建議從Excel工具入手,這里以Excel為例:
學習Excel是一個循序漸進的過程:
基礎的:簡單的表格數據處理、列印、查詢、篩選、排序
函數和公式:常用函數、高級數據計算、數組公式、多維引用、function
可視化圖表:圖形圖示展示、高級圖表、圖表插件
數據透視表、VBA程序開發......
多逛逛excelhome論壇,平常多思考如何用excel來解決問題,學慣用各種插件,對能夠熟練使用Excel都有幫助。

其中,函數和數據透視表是兩個重點。
函數
製作數據模板必須掌握的excel函數:
日期函數:day,month,year,date,today,weekday,weeknum 日期函數是做分析模板的必備,可以用日期函數來控制數據的展示,查詢指定時間段的數據。
數學函數:proct,rand,randbetween,round,sum,sumif,sumifs,sumproct
統計函數:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 統計函數在數據分析中具有舉足輕重的作用,求平均值,最大值,中位數,眾位數都用得到。
查找和引用函數:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 這幾個函數的作用不用多說,特別是vlookup,不會這個函數基本上復雜報表寸步難行。
文本函數:find,search,text,value,concatenate,left,right,mid,len 這幾個函數多半用在數據整理階段使用。
邏輯函數:and,or,false,true,if,iferror
(以上學會,基本能秒殺90%的辦公室白領!)
數據透視表
數據透視表的作用是把大量數據生成可交互的報表,它具有這樣一些重要功能:分類匯總、取平均、最大最小值、自動排序、自動篩選、自動分組;可分析佔比、同比、環比、定比、自定義公式等

現實中,取數或報表+EXCEL+PPT似乎還是主流形式。
工具上,無論是業務人員還是分析人員,都可以通過自動取數工具或者BI工具來製作報表,減少重復操作的時間。
其次,增加與業務人員的溝通,充分了解業務需求,當你的業務水平和他們差不多甚至更高時,自然而然知道他們一言兩語背後真實的需求是什麼了。
最後,站在更高角度上,報表的基本粒度就是指標,可梳理出企業的基本指標體系,從經營分析的角度去做報表,把報表的工作標准化,降低報表的冗餘,避免動不動就做一張報表。標准化包括指標分類,指標命名,業務口徑,技術口徑,實現方式等等。其實,最終目的是實現報表數據一致性,減少重復報表開發,降低系統開銷的戰略性舉措。
在業余時間,可以多補充數理統計知識,學習R、Python語言,學習常用的挖掘模型,往高級分析師路上發展!
一起加油鴨!

以上,就是今天的分享,數據分析能力聽起來很大很抽象,雖是軟實力但卻是行業的硬要求!量變引起質變,一步步來,才能做到觸類旁通,做起項目才會越來越順手。

㈧ 怎樣提升數據分析能力

㈨ 數據分析師需要掌握哪些能力需要做哪些准備

㈩ 如何提高自己的數據分析能力

有了數據必須和業務結合才有效果。首先你需要摸清楚所在產業鏈的整個結構,對行業的上游和下游的經營情況有大致的了解。然後根據業務當前的需要,指定發展計劃,從而歸類出需要整理的數據。最後一步詳細的列出數據核心指標(KPI),並且對幾個核心指標進行更細致的拆解,當然具體結合你的業務屬性來處理,找出那些對指標影響幅度較大的影響因子。前期資料的收集以及業務現況的全面掌握非常關鍵。

閱讀全文

與數據分析能力具體達成方法相關的資料

熱點內容
無油洗發水的正確方法 瀏覽:33
浮漂切胚方法視頻 瀏覽:637
解奶正確方法 瀏覽:774
腳燒傷了怎麼辦最快的方法 瀏覽:848
拼裝式床頭與床包的連接方法 瀏覽:919
腸胃積熱怎麼治療方法 瀏覽:498
三星s44g在哪裡設置方法 瀏覽:38
大型雙列圓錐軸承的安裝方法 瀏覽:779
編創方法和步驟 瀏覽:941
甩頭發的技巧和方法 瀏覽:669
煤的發熱量簡單測定方法 瀏覽:455
把鍋子煮糊了用什麼方法 瀏覽:730
洛氏硬度儀使用方法 瀏覽:876
加工衣服的快速方法 瀏覽:66
電腦滑鼠耳機連接方法 瀏覽:709
15種方法快速止痛經 瀏覽:200
快速補血的食物和方法有哪些 瀏覽:838
產後女人如何豐胸方法 瀏覽:46
羊口蹄疫治療方法 瀏覽:494
暈車怎麼治有什麼快捷的好方法 瀏覽:556