導航:首頁 > 研究方法 > 單體鋰離子電池的熱模擬分析方法

單體鋰離子電池的熱模擬分析方法

發布時間:2022-07-03 02:44:27

1. 鋰電池如何建立電化學—熱耦合模型

大容量磷酸鐵鋰動力電池作為電動汽車的理想儲能裝置,仍需解決高產熱速率和放電不均勻等帶來的安全問題。鋰離子電池的電化學反應機理、產熱機理以及電熱耦合特性是動力電池熱管理研究的根本切入點。
探究電池放電過程中的反應物生成物擴散動力學及其與溫度場、電場之間的作用規律,對於提高電池的安全性能,實現內部溫度場的均勻性具有重要意義。 本文通過對磷酸鐵鋰動力電池建立一個涉及質量守恆、電荷守恆和能量守恆,並伴有電化學反應過程的電化學-熱耦合模型,研究電池恆流放電過程的溫度場和生熱速率,並通過實驗驗證了模型的合理性。結果表明,低倍率放電時,可逆生熱速率在總生熱速率中所佔份額較大;而高倍率放電時,歐姆熱生熱速率占絕對優勢。大電流放電時,產熱速率高,有必要使用電池熱管理系統。
鋰離子動力電池放電過程中,電勢分布和電化學反應速度分布對電池產熱特性有很大影響。本文建立了38120型圓柱形磷酸鐵鋰電池二維軸截面模型,該模型採用了鋰離子濃度和溫度的相關性參數,考慮了正、負集流體的作用。搭建了鋰離子電池放電測試平台,模型計算結果與實驗數據的一致性較好。分析了集流體內電勢分布對反應速度分布、產熱速率分布和溫度分布的影響,闡釋了單體電池放電機理。
單體電池電芯內部包含了若干個電化學電芯單元。電芯單元的電化學特性和熱行為對電池性能有很大影響。為了研究電芯單元和單體電池之間的作用關系,本文建立了由正、負集流體並聯連接一維電芯單元的LP2770120型方形磷酸鐵鋰電池三維電芯模型,考慮了方形電池正、負極耳的作用。模型計算結果與實驗數據的一致性較好。通過引入一維電芯單元相關參數,分析了三維方形電芯中一維電芯單元的工作機理。引入電池放電均勻性指數,分析了放電倍率和極耳位置對電池放電均勻性的影響。

2. 鋰離子電池simulink模擬,等效電路模型如下,在simulink里怎麼

看不到你如下的內容。
simscape,對著等效電路搭一個一樣的電路。

3. 鋰離子電池工作原理

鋰離子電池以碳素材料為負極,以含鋰的化合物作正極,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。鋰離子電池是指以鋰離子嵌入化合物為正極材料電池的總稱。鋰離子電池的充放電過程,就是鋰離子的嵌入和脫嵌過程。

在鋰離子的嵌入和脫嵌過程中,同時伴隨著與鋰離子等當量電子的嵌入和脫嵌(習慣上正極用嵌入或脫嵌表示,而負極用插入或脫插表示)。在充放電過程中,鋰離子在正、負極之間往返嵌入/脫嵌和插入/脫插,被形象地稱為「搖椅電池」。

當對電池進行充電時,電池的正極上有鋰離子生成,生成的鋰離子經過電解液運動到負極。而作為負極的碳呈層狀結構,它有很多微孔,達到負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。

同樣,當對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出,又運動回正極。回正極的鋰離子越多,放電容量越高。

電池的組成部分

(1)正極——活性物質一般為錳酸鋰或者鈷酸鋰,鎳鈷錳酸鋰材料,電動自行車則普遍用鎳鈷錳酸鋰(俗稱三元)或者三元+少量錳酸鋰,純的錳酸鋰和磷酸鐵鋰則由於體積大、性能不好或成本高而逐漸淡出。導電集流體使用厚度10-20微米的電解鋁箔。

(2)隔膜——一種經特殊成型的高分子薄膜,薄膜有微孔結構,可以讓鋰離子自由通過,而電子不能通過。

(3)負極——活性物質為石墨,或近似石墨結構的碳,導電集流體使用厚度7-15微米的電解銅箔。

(4)有機電解液——溶解有六氟磷酸鋰的碳酸酯類溶劑,聚合物的則使用凝膠狀電解液。

(5)電池外殼——分為鋼殼(方型很少使用)、鋁殼、鍍鎳鐵殼(圓柱電池使用)、鋁塑膜(軟包裝)等,還有電池的蓋帽,也是電池的正負極引出端[3]。

以上內容參考網路-鋰離子電池

4. 鋰離子電池隔膜熱收縮率有什麼好的檢測方法

將一定尺寸的隔膜,放在需要測試的溫度下烘烤,結束後拿出來量尺寸,就可以計算收縮率了。

5. 鋰離子電池性能測試如何分析

鋰電池性能測試主要包含了電池的安全性能、環境性能、可靠性能、電化學性能等等。
3C鋰電池的性能測試包含了循環壽命、倍率、高低溫放電、安全性測試等。3C鋰電池性能測試可應用彈片微針模組作為連接模組,可起到穩定的電流傳輸能力,能在1-50A的范圍內保持穩定的連接,電流流通於同一材料體內,電壓恆定,無電流衰減,有利於3C鋰電池測試穩定進行。
1.循環壽命
3C鋰電池循環次數多少,反應出電池可以反復充放電用多少次。根據3C鋰電池使用的環境不同,循環壽命可以測試電池在低溫下、常溫下以及高溫下的循環壽命能達到多少。
2.倍率
在生活節奏很快的當下,對3C鋰電池快速充電的要求也越來越高。所以,需要對3C鋰電池的倍率性能進行測試。
3. 高低溫放電測試
在高低溫測試環境中,將3C鋰電池進行充放電測試,待充放電循環結束,保留曲線和數據。與常溫下的曲線和數據對比,看是否符合規格書上所說。
4.安全性測試
3C鋰電池的安全性測試包括過充電、過放電、短路、跌落、加熱、振動、擠壓、針刺等等,讓外來物主動破壞電池來測試電池的安全性。

6. 鋰離子電池

 鋰離子電池的組成簡介

鋰離子電池(Li-ion Batteries)是鋰電池發展而來。所以在介紹Li-ion之前,先介紹鋰電池。舉例來講,以前照相機里用的扣式電池就屬於鋰電池。鋰電池的正極材料是二氧化錳或亞硫醯氯,負極是鋰。電池組裝完成後電池即有電壓,不需充電.這種電池也可能充電,但循環性能不好,在充放電循環過程中,容易形成鋰枝晶,造成電池內部短路,所以一般情況下這種電池是禁止充電的。後來,日本索尼公司發明了以炭材料為負極,以含鋰的化合物作正極,在充放電過程中,沒有金屬鋰存在,只有鋰離子,這就是鋰離子電池。當對電池進行充電時,電池的正極上有鋰離子生成,生成的鋰離子經過電解液運動到負極。而作為負極的碳呈層狀結構,它有很多微孔,達到負極的鋰離子就嵌入到碳層的微孔中,嵌入的鋰離子越多,充電容量越高。同樣,當對電池進行放電時(即我們使用電池的過程),嵌在負極碳層中的鋰離子脫出, 又運動回正極。回正極的鋰離子越多,放電容量越高。我們通常所說的電池容量指的就是放電容量。在Li-ion的充放電過程中,鋰離子處於從正極→負極→正極的運動狀態。Li-ion Batteries就像一把搖椅,搖椅的兩端為電池的兩極,而鋰離子就象運動員一樣在搖椅來回奔跑。所以Li-ion Batteries又叫搖椅式電池。

鋰離子電池電池組成部分

(1)電池上下蓋

(2)正極——活性物質一般為氧化鋰鈷

(3)隔膜——一種特殊的復合膜

(4)負極——活性物質為碳

(5)有機電解液

(6)電池殼(分為鋼殼和鋁殼兩種)

鋰離子電池優缺點

鋰離子電池具有以下優點:

1) 電壓高,單體電池的工作電壓高達3.6-3.9V,是Ni-Cd、Ni-H電池的3倍

2) 比能量大,目前能達到的實際比能量為100-125Wh/kg和240-300Wh/L(2倍於Ni-Cd,1.5倍於Ni-MH),未來隨著技術發展,比能量可高達150Wh/kg和400 Wh/L

3) 循環壽命長,一般均可達到500次以上,甚至1000次以上.對於小電流放電的電器,電池的使用期限 將倍增電器的競爭力.

4) 安全性能好,無公害,無記憶效應.作為Li-ion前身的鋰電池,因金屬鋰易形成枝晶發生短路,縮減了其應用領域:Li-ion中不含鎘、鉛、汞等對環境有污染的元素:部分工藝(如燒結式)的Ni-Cd電池存在的一大弊病為「記憶效應」,嚴重束縛電池的使用,但Li-ion根本不存在這方面的問題。

5) 自放電小,室溫下充滿電的Li-ion儲存1個月後的自放電率為10%左右,大大低於Ni-Cd的25-30%,Ni、MH的30-35%。

6) 可快速充放電,1C充電是容量可以達到標稱容量的80%以上。

7) 工作溫度范圍高,工作溫度為-25~45°C,隨著電解質和正極的改進,期望能擴寬到-40~70°C。

鋰離子電池也存在著一定的缺點,如:

1) 電池成本較高。主要表現在正極材料LiCoO2的價格高(Co的資源較小),電解質體系提純困難。

2) 不能大電流放電。由於有機電解質體系等原因,電池內阻相對其他類電池大。故要求較小的放電電流密度,一般放電電流在0.5C以下,只適合於中小電流的電器使用。

3) 需要保護線路控制。

A、 過充保護:電池過充將破壞正極結構而影響性能和壽命;同時過充電使電解液分解,內部壓力過高而導致漏液等問題;故必須在4.1V-4.2V的恆壓下充電;

B、 過放保護:過放會導致活性物質的恢復困難,故也需要有保護線路控制。
摘要:綜述了鋰離子電池的發展趨勢,簡述了鋰離子電池的充放電機理理論研究狀況,總結歸納了作為核心技術的鋰電池正負電極材料的現有的制備理論和近來發展動態,評述了正極材料和負極材料的各種制備方法和發展前景,重點介紹了目前該領域的問題和改進發展情況。

材料

電子信息時代使對移動電源的需求快速增長。由於鋰離子電池具有高電壓、高容量的重要優點,且循環壽命長、安全性能好,使其在攜帶型電子設備、電動汽車、空間技術、國防工業等多方面具有廣闊的應用前景,成為近幾年廣為關注的研究熱點。鋰離子電池的機理一般性分析認為,鋰離子電池作為一種化學電源,指分別用兩個能可逆地嵌入與脫嵌鋰離子的化合物作為正負極構成的二次電池。當電池充電時,鋰離子從正極中脫嵌,在負極中嵌入,放電時反之。鋰離子電池是物理學、材料科學和化學等學科研究的結晶。鋰離子電池所涉及的物理機理,目前是以固體物理中嵌入物理來解釋的,嵌入(intercalation)是指可移動的客體粒子(分子、原子、離子)可逆地嵌入到具有合適尺寸的主體晶格中的網路空格點上。電子輸運鋰離子電池的正極和負極材料都是離子和電子的混合導體嵌入化合物。電子只能在正極和負極材料中運動[4][5][6]。已知的嵌入化合物種類繁多,客體粒子可以是分子、原子或離子.在嵌入離子的同時,要求由主體結構作電荷補償,以維持電中性。電荷補償可以由主體材料能帶結構的改變來實現,電導率在嵌入前後會有變化。鋰離子電池電極材料可穩定存在於空氣中與其這一特性息息相關。嵌入化合物只有滿足結構改變可逆並能以結構彌補電荷變化才能作為鋰離子電池電極材料。

控制鋰離子電池性能的關鍵材料——電池中正負極活性材料是這一技術的關鍵,這是國內外研究人員的共識。

1 正極材料的性能和一般制備方法

正極中表徵離子輸運性質的重要參數是化學擴散系數,通常情況下,正極活性物質中鋰離子的擴散系數都比較低。鋰嵌入到正極材料或從正級材料中脫嵌,伴隨著晶相變化。因此,鋰離子電池的電極膜都要求很薄,一般為幾十微米的數量級。正極材料的嵌鋰化合物是鋰離子電池中鋰離子的臨時儲存容器。為了獲得較高的單體電池電壓,傾向於選擇高電勢的嵌鋰化合物。正極材料應滿足:

1)在所要求的充放電電位范圍內,具有與電解質溶液的電化學相容性;

2)溫和的電極過程動力學;

3)高度可逆性;

4)全鋰化狀態下在空氣中的穩定性。

研究的熱點主要集中在層狀LiMO2和尖晶石型LiM2O4結構的化合物及復合兩種M(M為Co,Ni,Mn,V等過渡金屬離子)的類似電極材料上。作為鋰離子電池的正極材料,Li+離子的脫嵌與嵌入過程中結構變化的程度和可逆性決定了電池的穩定重復充放電性。正極材料制備中,其原料性能和合成工藝條件都會對最終結構產生影響。多種有前途的正極材料,都存在使用循環過程中電容量衰減的情況,這是研究中的首要問題。已商品化的正極材料有Li1-xCoO2(0<x<0.8),Li1-xNiO2(0<x<0.8),LiMnO2[7][8]。它們作為鋰離子電池正極材料各有優劣。鋰鈷氧為正極的鋰離子電池具有開路電壓高,比能量大,循環壽命長,能快速充放電等優點,但安全性差;鋰鎳氧較鋰鈷氧價格低廉,性能與鋰鈷氧相當,具有較優秀的嵌鋰性能,但制備困難;而鋰錳氧價格更為低廉,制備相對容易,而且其耐過充安全性能好,但其嵌鋰容量低,並且充放電時尖晶石結構不穩定。從應用前景來看,尋求資源豐富、價廉、無公害,還有在過充電時對電壓控制和電路保護的要求較低等優點的,高性能的正極材料將是鋰離子電池正極材料研究的重點。國外有報道LiVO2亦能形成層狀化合物,可作為正極電極材料[9]。從這些報道看出,雖然電極材料化學組成相同,但制備工藝發生變化後,其性能改變較多。成功的商品化電極材料在制備工藝上都有其獨到之處,這是國內目前研究的差距所在。各種制備方法優缺點列舉如下。

1)固相法一般選用碳酸鋰等鋰鹽和鈷化合物或鎳化合物研磨混合後,進行燒結反應[10]。此方法優點是工藝流程簡單,原料易得,屬於鋰離子電池發展初期被廣泛研究開發生產的方法,國外技術較成熟;缺點是所製得正極材料電容量有限,原料混合均勻性差,制備材料的性能穩定性不好,批次與批次之間質量一致性差。

2)絡合物法用有機絡合物先制備含鋰離子和鈷或釩離子的絡合物前驅體,再燒結制備。該方法的優點是分子規模混合,材料均勻性和性能穩定性好,正極材料電容量比固相法高,國外已試驗用作鋰離子電池的工業化方法,技術並未成熟,國內目前還鮮有報道。

3)溶膠凝膠法利用上世紀70年代發展起

來的制備超微粒子的方法,制備正極材料,該方法具備了絡合物法的優點,而且制備出的電極材料電容量有較大的提高,屬於正在國內外迅速發展的一種方法。缺點是成本較高,技術還屬於開發階段[11]。

4)離子交換法Armstrong等用離子交換法制備的LiMnO2,獲得了可逆放電容量達270mA•h/g高值,此方法成為研究的新熱點,它具有所制電極性能穩定,電容量高的特點。但過程涉及溶液重結晶蒸發等費能費時步驟,距離實用化還有相當距離。

正極材料的研究從國外文獻可看出,其電容量以每年30~50mA•h/g的速度在增長,發展趨向於微結構尺度越來越小,而電容量越來越大的嵌鋰化合物,原材料尺度向納米級挺進,關於嵌鋰化合物結構的理論研究已取得一定進展,但其發展理論還在不斷變化中。困擾這一領域的鋰電池電容量提高和循環容量衰減的問題,已有研究者提出添加其它組分來克服的方法[12][13][14][15][16][17]。但就目前而言,這些方法的理論機理並未研究清楚,導致日本學者Yoshio.Nishi認為,過去十年以來在這一領域實質進展不大[1],急須進一步地研究。

2 負極材料的性能和一般制備方法

負極材料的電導率一般都較高,則選擇電位盡可能接近鋰電位的可嵌入鋰的化合物,如各種碳材料和金屬氧化物。可逆地嵌入脫嵌鋰離子的負極材料要求具有:

1)在鋰離子的嵌入反應中自由能變化小;

2)鋰離子在負極的固態結構中有高的擴散率;

3)高度可逆的嵌入反應;

4)有良好的電導率;

5)熱力學上穩定,同時與電解質不發生反應。

研究工作主要集中在碳材料和具有特殊結構的其它金屬氧化物。石墨、軟碳、中相碳微球已在國內有開發和研究,硬碳、碳納米管、巴基球C60等多種碳材料正在被研究中[18][19][20][21][22][23]。日本Honda Researchand Development Co.,Ltd的K.Sato等人利用聚對苯撐乙烯(Polyparaphenylene——PPP)的熱解產物PPP-700(以一定的加熱速度加熱PPP至700℃,並保溫一定時間得到的熱解產物)作為負極,可逆容量高達680mA•h/g。美國MIT的MJMatthews報道PPP-700儲鋰容量(Storagecapacity)可達1170mA•h/g。若儲鋰容量為1170mA•h/g,隨著鋰嵌入量的增加,進而提高鋰離子電池性能,筆者認為今後研究將集中於更小的納米尺度的嵌鋰微結構。幾乎與研究碳負極同時,尋找電位與Li+/Li電位相近的其他負極材料的工作一直受到重視。鋰離子電池中所用碳材料尚存在兩方面的問題:

1)電壓滯後,即鋰的嵌入反應在0~0.25V之間進行(相對於Li+/Li)而脫嵌反應則在1V左右發生;

2)循環容量逐漸下降,一般經過12~20次循環後,容量降至400~500mA•h/g。

理論上的進一步深化還有賴於各種高純度、結構規整的原料及碳材料的制備和更為有效的結構表徵方法的建立。日本富士公司開發出了鋰離子電池新型錫復合氧化物基負極材料,除此之外,已有的研究主要集中於一些金屬氧化物,其質量比能量較碳負極材料大大提高。如SnO2,WO2,MoO2,VO2,TiO2,LixFe2O3,Li4Ti5O12,Li4Mn5O12等[24],但不如碳電極成熟。鋰在碳材料中的可逆高儲存機理主要有鋰分子Li2形成機理、多層鋰機理、晶格點陣機理、彈性球-彈性網模型、層-邊端-表面儲鋰機理、納米級石墨儲鋰機理、碳-鋰-氫機理和微孔儲鋰機理。石墨,作為碳材料中的一種,早就被發現它能與鋰形成石墨嵌入化合物(Graphite Intercalation Compounds)LiC6,但這些理論還處於發展階段。負極材料要克服的困難也是一個容量循環衰減的問題,但從文獻可知,制備高純度和規整的微結構碳負極材料是發展的一個方向。

一般制備負極材料的方法可綜述如下。

1)在一定高溫下加熱軟碳得到高度石墨化的碳;嵌鋰石墨離子型化合物分子式為LiC6,其中的鋰離子在石墨中嵌入和脫嵌過程動態變化,石墨結構與電化學性能的關系,不可逆電容量損失原因和提高方法等問題,都得到眾多研究者的探討。2)將具有特殊結構的交聯樹脂在高溫下分解得到的硬碳,可逆電容量比石墨碳高,其結構受原料影響較大,但一般文獻認為這些碳結構中的納米微孔對其嵌鋰容量有較大影響,對其研究主要集中於利用特殊分子結構的高聚物來制備含更多納米級微孔的硬碳[25][26][27]。

3)高溫熱分解有機物和高聚物制備的含氫碳[28][29]。這類材料具有600~900mA•h/g的可逆電容量,因而受到關注,但其電壓滯後和循環容量下降的問題是其最大應用障礙。對其制備方法的改進和理論機理解釋將是研究的重點。

4)各種金屬氧化物其機理與正極材料類似[24],

也受到研究者的注意,研究方向主要是獲取新型結構或復合結構的金屬氧化物。

5)作為一種嵌鋰材料,碳納米管、巴基球C60等也是當前研究的一個新熱點,成為納米材料研究的一個分支。碳納米管、巴基球C60的特殊結構使其成為高電容量嵌鋰材料的最佳選擇[22][23][30]。從理論上說,納米結構可提供的嵌鋰容量會比目前已有的各種材料要高,其微觀結構已被廣泛研究並取得了很大進展,但如何制備適當堆積方式以獲得優異性能的電極材料,這應是研究的一個重要方向[31][32][33]。

3 結語

綜上所述,近年來鋰離子電池中正負極活性材料的研究和開發應用,在國際上相當活躍,並已取得很大進展。材料的晶體結構規整,充放電過程中結構不發生不可逆變化是獲得比容量高,循環壽命長的鋰離子電池的關鍵。然而,對嵌鋰材料的結構與性能的研究仍是該領域目前最薄弱的環節。鋰離子電池的研究是一類不斷更新的電池體系,物理學和化學的很多新的研究成果會對鋰離子電池產生重大影響,比如納米固體電極,有可能使鋰離子電池有更高的能量密度和功率密度,從而大大增加鋰離子電池的應用范圍。總之,鋰離子電池的研究是一個涉及化學、物理、材料、能源、電子學等眾多學科的交叉領域。目前該領域的進展已引起化學電源界和產業界的極大興趣。可以預料,隨著電極材料結構與性能關系研究的深入,從分子水平上設計出來的各種規整結構或摻雜復合結構的正負極材料將有力地推動鋰離子電池的研究和應用。鋰離子電池將會是繼鎳鎘、鎳氫電池之後,在今後相當長一段時間內,市場前景最好、發展最快的一種二次電池。

電池的分類有不同的方法其分類方法大體上可分為三大類
第一類:按電解液種類劃分包括:鹼性電池,電解質主要以氫氧化鉀水溶液為主的電池,如:鹼性鋅錳電池(俗稱鹼錳電池或鹼性電池)、鎘鎳電池、氫鎳電池等;酸性電池,主要以硫酸水溶液為介質,如鉛酸蓄電池;中性電池,以鹽溶液為介質,如鋅錳干電池(有的消費者也稱之為酸性電池)、海水激活電池等;有機電解液電池,主要以有機溶液為介質的電池,如鋰電池、鋰離子電池待。

第二類:按工作性質和貯存方式劃分包括:一次電池,又稱原電池,即不能再充電的電池,如鋅錳干電池、鋰原電池等;二次電池,即可充電電池,如氫鎳電池、鋰離子電池、鎘鎳電池等;蓄電池習慣上指鉛酸蓄電池,也是二次電池;燃料電池,即活性材料在電池工作時才連續不斷地 從外部加入電池,如氫氧燃料電池等;貯備電池,即電池貯存時不直接接觸電解液,直到電池使用時,才加入電解液,如鎂-氯化銀電池又稱海水激活電池等。

第三類:按電池所用正、負有為材料劃分包括:鋅系列電池,如鋅錳電池、鋅銀電池等;鎳系列電池,如鎘鎳電池、氫鎳電池等;鉛系列電池,如鉛酸電池等;鋰系列電池、鋰鎂電池;二氧化錳系列電池,如鋅錳電池、鹼錳電池等;空氣(氧氣)系列電池,如鋅空電池等

充電電池定義
充電電池又稱:蓄電池、二次電池,是可以反復充電使用的電池。常見的有:鉛酸電池(用於汽車時,俗稱「電瓶」)、鎘鎳電池、氫鎳電池、鋰離子電池。

電池的額定容量
電池的額定容量指在一定放電條件下,電池放電至截止電壓時放出的電量。IEC標准規定鎳鎘和鎳氫電池在20±5℃環境下,以0.1C充電16小時後以0.2C放電至1.0V時所放出的電量為電池的額定容量。單位有Ah, mAh (1Ah=1000mAh)

如何正確使用鋰離子電池?
正確使用鋰離子電池應注意以下幾點:
避免在嚴酷條件下使用,如:高溫、高濕度、夏日陽光下長時間暴曬等,避免將電池投入火中;
裝、拆電池時,應確保用電器具處於電源關閉狀態;使用溫度應保持在-20~55℃之間;
避免將電池長時間「存放」在停止使用的用電器具中;

7. 鋰離子電池的電化學熱耦合模型是什麼意思

鋰電池的工作原理:
鋰離子電池的正極材料通常有鋰的活性化合物組成,負極則是特殊分子結構的碳。常見的正極材料主要成分為 LiCoO2 ,充電時,加在電池兩極的電勢迫使正極的化合物釋出鋰離子,嵌入負極分子排列呈片層結構的碳中。放電時,鋰離子則從片層結構的碳中析出,重新和正極的化合物結合。鋰離子的移動產生了電流。
鋰電池(Lithium battery)是指電化學體系中含有鋰(包括金屬鋰、鋰合金和鋰離子、鋰聚合物)的電池。鋰電池大致可分為兩類:鋰金屬電池和鋰離子電池。鋰離子電池不含有金屬態的鋰,並且是可以充電的。可充電電池的第五代產品鋰金屬電池在1996年誕生,其安全性、比容量、自放電率和性能價格比均優於鋰離子電池。由於其自身的高技術要求限制,現在只有少數的幾個國家的公司在生產這種鋰金屬電池。
鋰電池通常分兩大類:
鋰金屬電池:鋰金屬電池一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負極材料、使用非水電解質溶液的電池。
鋰離子電池:鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負極材料、使用非水電解質的電池。

8. 電化學小白求助,鋰離子電池的循環伏安曲線分析

鋰離子電池的循環伏安曲線分析
循環伏安法合成PAN時,氧化還原峰電流電壓增加是必然的,因為聚苯胺是一種導電能力較強的聚合物,剛開始第一個循環是有較少的聚苯胺生成,有兩個態,完全態的PAN及中間氧化態PAN(含苯二胺及醌二亞胺),有三個峰,隨著圈數的增加PAN含量增加,。
循環伏安曲線是通過循環伏安法測量得到的曲線。 循環伏安法(Cyclic Voltammetry)一種常用的電化學研究方法。該法控制電極電勢以不同的速率,隨時間以三角波形一次或多次反復掃描,電勢范圍是使電極上能交替發生不同的還原和氧化反應

9. 如何做單體電池在不同倍率放電時的溫升anasys模擬分析

正常鋰電放電倍率標準是1C,在的單個電池上指放電電流為1.1A,如果要測試1C的時間,可以接個4瓦左右功率用電器來測試。放電倍率,是指電池在規定的時間內放出其額定容量時所需要的電流值,它在數據值上等於電池額定容量的倍數,通常以字母C表示。如電池的標稱額定容量為600mAh為1C(1倍率),300mAh則為0.5C,6A(600mAh)為10C.以此類推。時率又稱小時率,時指電池以一定的電流放完其額定容量所需要的小時數.如電池的額定容量為600mAh,以600mAh的電流放完其額定容量需1小時,故稱600mAh的電流為1小時率,以此類推。具體公式如下:

10. 求鋰離子動力電池的matlab模擬模型,希望建模的過程夠具體,最好是用卡爾曼濾波器的演算法。

S

閱讀全文

與單體鋰離子電池的熱模擬分析方法相關的資料

熱點內容
腳氣的處理方法有哪些 瀏覽:255
質量方法中的現狀能力分析圖叫啥 瀏覽:846
2期梅毒治療方法 瀏覽:303
山菍種植方法 瀏覽:281
說明方法舉例子的術語是什麼 瀏覽:173
建築工程測量課程教學方法 瀏覽:198
小學生學習英語的方法及技巧視頻 瀏覽:359
固定式幕布安裝方法 瀏覽:479
瀝青路面縱裂的解決方法 瀏覽:488
調經需要哪些方法吃哪些葯 瀏覽:540
自建房大門過門石安裝方法 瀏覽:999
手搖式電腦使用方法 瀏覽:864
蘋果6plus的閃光燈在哪裡設置方法 瀏覽:366
我愛這土地運用了哪些論證方法 瀏覽:587
魅族微信聲音怎麼設置在哪裡設置方法 瀏覽:214
抽氣機連接玻璃罩的研究方法 瀏覽:447
治療凍腳的方法 瀏覽:360
女人避孕套使用方法 瀏覽:325
如何優化教育孩子的觀念和方法 瀏覽:410
曹沖稱象用的測量方法是 瀏覽:232